The compound undergoes rapid decarbonylation even at temperatures <0 °C, in contrast with $[CuCO(O-t-Bu)]_4$, which survives vacuum sublimation.¹⁸ The resistance of the latter compound to decarbonylation has been attributed to its kinetic stability, i.e. the unfavorable pyramidal cooordination geometry for copper(I), which would result from the initial decarbonylation product.¹⁸ Similar reasoning has also been exploited to account for the formation of a copper(I) carbonyl complex stabilized by a trischelating oxygen ligand.²¹ Such a model¹⁸ would also be applicable to the lability of Cu(CO)Cl(s), in that the tetrahedral coordination of copper(I) would not be hindered on decarbonylation, owing to the proximity of chloride ligands to an initially pyramidal decarbonylated copper(I) center. Indeed, the decarbonylated product is CuCl(s).

The Cu-Cl distances are normal, and the ligand tetrahedron is distorted such that the CI-Cu-Cl angles all assume values somewhat less than the ideal tetrahedral values, indicating a slight displacement of copper(I) toward the carbonyl ligand (Cu lies 1.0 Å from the plane through the three chloride ligands). The Cu-Cu separations are 3.672 (1) Å (the *a* axis repeat distance) and Cu-Cuⁱⁱ = 3.837 (2) Å (symmetry code: (ii) 1/2 - x, -y, 1/2+ z).

Acknowledgment. Financial support from the Swedish Natural Science Research Council is gratefully acknowledged.

Supplementary Material Available: Table SI, listing anisotropic thermal parameters (1 page); a table of calculated and observed structure factors (3 pages). Ordering information is given on any current masthead page.

(21) Kläui, W.; Lenders, B.; Hessner, B.; Evertz, K. Organometallics 1988, 7. 1357.

> Contribution from the Laboratoire de Synthèse et d'Electrosynthèse Organométalliques Associè au CNRS (URA 33), Faculté des Sciences Gabriel, 21000 Dijon, France

Hydrido Phosphido Derivatives of Bis(cyclopentadienyl)molybdenum and -tungsten and the Structure of $[(\eta^5-Cp)_2Mo(H)(\mu-PPh_2)Mn(CO)_2(\eta^5-Cp)]$

Christophe Barre, Marek M. Kubicki,* Jean-Claude Leblanc, and Claude Moise

Received February 27, 1990

Binuclear transition-metal complexes represent an important group of compounds interesting with respect to their structure, bonding, and potential catalytic activity.¹ Phosphido-bridged complexes, although known for a long time,² have received a good deal of attention only in the last decade.

In the course of our studies on the chemistry of metallocene derivatives of the group 5 and 6 transition metals we decided to make a new family of phosphido-bridged di- or polymetallic compounds. The simplest potential precursors for such polymetallics may be of the type $Cp_2M(PR_2)_2$, $Cp_2M(L)PR_2$, or $Cp_2M(H \text{ or } X)PR_2$. Some examples of diphosphido complexes are known in the chemistry of group 4 metals (Zr, Hf).³⁻⁵ Monophosphido complexes of Nb and Ta have been prepared from monohydrides Cp_2MHL (L = CO, PMe_2Ph) and PPh_2Cl, the resulting salts being further converted to the neutral species by

- (1) Gelmini, L.; Stephan, D. W. Organometallics 1988, 7, 849 and references therein
- Glevis Helchi, J. Soll, G. Z. Anorg. Allgem. Chem. 1960, 305, 1. Issleib, K.; Wenschuh, E. Ibid. 1960, 305, 15. (2)
- (3) Wade, S. R.; Wallbridge, M. G. H.; Willey, G. R. J. Chem. Soc., Dalton Trans. 1983, 2555.
- (4) Baker, R. T.; Whitney, J. F.; Wreford, S. S. Organometallics 1983, 2, 1049.
- Targos, T. S.; Rosen, R. P.; Whittle, R. R.; Geoffroy, G. L. Inorg. (5) Chem. 1985. 24. 1375

Table I. Crystallographic Data for Cp₂Mo(H)(µ-PPh₂)Mn(CO)₂Cp (3)

fw 588.38
space group $P2_1/n$ (No. 14)
$d_{\rm calc} = 1.628 \text{ g cm}^{-3}$
$\lambda = 0.71073 \text{ Å}$
μ (Mo K α) = 11.055 cm ⁻¹
R(F) = 0.032
$R_{\rm w}(F) = 0.035$
GOF = 1.288

treatment with NaOH.6 The similar salts of Mo and W [Cp₂M(H)(PPh₂H)]Cl have been obtained from the corresponding dihydrides Cp_2MH_2 and $PPh_2Cl.^7$ We report here the synthesis and characterization of the first molecules of molybdenum and tungsten containing both a terminal hydride and a phosphide ligand. Related complexes of hafnium Cp*2Hf(H)PRR' have been reported during the preparation of this note.⁸

Results

Molecular complexes $[Cp_2M(H)PPh_2]$ (M = Mo (1), W (2)) have been prepared according to reaction 1 in high yields. A

$$Cp_{2}M \begin{pmatrix} H \\ H \end{pmatrix} \xrightarrow{PPh_{2}Ci}_{toluene}$$

$$\left[Cp_{2}M \begin{pmatrix} PPh_{2}H \\ H \end{pmatrix}\right]^{+}Ci^{-} \xrightarrow{NaOH}_{H_{2}O/toluene} \xrightarrow{Cp_{2}M} \begin{pmatrix} PPh_{2} \\ H \end{pmatrix} (1)$$

$$M = Mo(1), W(2)$$

phosphine-type behavior of metallophosphanes 1 and 2 was checked by their reactions with Cp(CO)₂(THF)Mn, which gave the expected binuclear phosphido-bridged complexes Cp₂M- $(H)(\mu - PPh_2)Mn(CO)_2Cp (M = Mo (3), W (4))$. All new complexes were characterized by their ¹H and ³¹P NMR spectra, IR spectra, and elemental analyses. The X-ray structure determination of 3 is the first one carried out on a singly bridged μ phosphido binuclear complex without a metal-metal bond.

Discussion

The metallophosphanes 1 and 2 belong to the family of bent metallocenes. Some ionic and molecular biscyclopentadienides with molybdenum-phosphorus bonds are known, and they generally contain tertiary or secondary phosphines.9-11 1H resonances of C_5H_5 ligands in 1 and 2 are recorded in the very high fields with respect to the other known Cp_2MX_2 (M = Mo, W) complexes^{12,13} and are close to those reported for the d⁴ Mo(II) complex Cp₂Mo-PMe₃.¹¹ This suggests an electron-rich Cp₂M fragment and probably a highly covalent nature of the metalphosphide bond in 1 and 2. The ³¹P NMR resonance in 2 (W) is shifted upfield by 36 ppm with respect to the molybdenum complex 1. This shift is the same as in the precursor $[Cp_2M-$ (H)PPh₂H]⁺ salts⁷ but higher than that observed in monocyclopentadienides $Cp(CO)_2(PMe_3)M-PPh_2$ (metal(II), d⁴), where it is equal to 24 ppm.¹⁴ This indicates that the phosphorus nuclei

- (6) Bonnet, G.; Lavastre, O.; Leblanc, J. C.; Moise, C. New J. Chem. 1988. 12 551
- (7) Kubicki, M. M.; Kergoat, R.; Cariou, M.; Guerchais, J. E.; L'Haridon, P. J. Organomet. Chem. 1987, 322, 357.
- Vaughan, G. A.; Hillhouse, G. L.; Rheingold, A. L. Organometallics (8) 1989, 8, 1760.
- (9) Crabtree, R. H.; Dias, A. R.; Green, M. L. H.; Knowles, P. J. J. Chem. Soc. A 1971, 1350.
- Costa, S. M. B.; Dias, A. R.; Pina, F. J. S. J. Organomet. Chem. 1979, (10)175, 193.
- (11) Fiederling, K.; Grob, I.; Malisch, W. J. Organomet. Chem. 1983, 255, 299
- (12) Kubicki, M. M.; Kergoat, R.; Guerchais, J. E.; Bkouche-Waksman, I.; Bois, C.; L'Haridon, P. J. Organomet. Chem. 1981, 219, 329.
- (13) Different electronegativity scales: Blustin, P. H.; Raynes, W. T. J.
- Chem. Soc., Dalton Trans. 1981, 1237.
 (14) Malisch, W.; Maisch, R.; Colquhoun, I. J.; McFarlane, W. J. Organomet. Chem. 1981, 220, C1.

Table II. Selected Interatomic Distances (Å) and Angles (deg) for $Cp_2Mo(H)(\mu$ -PPh₂)Mn(CO)₂Cp (3)^a

				_
MoMn	4.391 (1)	Mn-P	2.359 (2)	
Mo-P	2.602 (2)	Mn-Cl	1.753 (7)	
Mo-H1	1.71 (9)	Mn-C2	1.743 (7)	
Mo-G2	1.961	Mn-G1	1.791	
Mo-G3	1.964	P-C21	1.845 (7)	
		PC27	1.861 (6)	
Mo-P-Mn	124.47 (7)	P-Mn-Cl	89.9 (2)	
P-Mo-H1	82 (3)	P-Mn-C2	99.2 (2)	
P-Mo-G2	107.8	P-Mn-G1	121.0	
P-Mo-G3	107.8	C1-Mn-C2	90.1 (3)	
H1-Mo-G2	99	C1-Mn-G1	124.0	
H1-Mo-G3	103	C2-Mn-G1	123.9	
G2-Mo-G3	139.8	Mn-P-C21	98.8 (2)	
Mo-P-C21	113.5 (2)	Mn-P-C27	111.8 (2)	
Mo-P-C27	104.2 (2)	C21-P-C27	102.1 (3)	

"The G symbols represent the gravity centers of cyclopentadienyl rings: G1, C3-C7; G2, C11-C15; G3, C16-C20.

are more sensitive to the metal changes in biscyclopentadienides $(metal(IV), d^2)$ than in monocyclopentadienides and so that there may be a difference in the nature and in the strength of the metal-phosphide bonding in these two classes of compounds.

Complexes 1 and 2 react with $Cp(CO)_2Mn(THF)$ to give 3 and 4, respectively. These are the rare examples of stable bimetallic monophosphido-bridged terminal hydrido compounds. A few diphosphido-bridged terminal hydrido heterobimetallics has been reported.1,15-21 The known complexes containing a single phosphido bridge without metal-metal interactions are Cp₂Hf- $(PEt_2)(\mu-PEt_2)Fe(CO)_4^{22}$ and $(CO)_5M(\mu-PPh_2)Pt(H)(PPh_3)_2$ (M = Cr, Mo, W).²³ No byproduct with a metal-metal bond or with a hydride bridge was detected in the reactions of 1 and 2 with $Cp(CO)_2(THF)Mn$, thus suggesting that neither the metal $(Mo(IV), W(IV); d^2)$ lone pair nor the hydride is able to displace one carbonyl ligand from the Cp(CO)₂Mn unit. Rather large low-field coordination shifts ($\Delta = \delta_{(complex)} - \delta_{(freeligand)}$) of ³¹P resonances²⁴ were observed for 3 ($\Delta = +67$ ppm) and 4 ($\Delta = +54$ ppm) with respect to the starting complexes 1 and 2, respectively. As shown by X-ray structure determination of 3, there is neither a metal-metal interaction nor a cycle involving phosphorus. A similar coordination shift ($\Delta = +52$ ppm) was observed upon coordination of the terminal phosphide of $Cp(CO)_2FePPh_2$ ($\delta(^{31}P)$) = +54.3 ppm) by manganese in Cp(CO)Fe(μ -C(O)Me)(μ -PPh₂)Mn(CO)₄ (δ (³¹P) = +106.3 ppm).²⁵ The authors suggested that the downfield position of the μ -PPh₂ resonance does agree with the Garrou's²⁶ "ring effect". Perhaps it is related to a simple coordination effect, showing that the interpretation of ³¹P resonances needs more theoretical studies.

Crystal structure determination of 3 (Table I, Figure 1) showed two outstanding features: the very long (2.602 (2) Å) Mo-P bond and the largely opened (124.5 (1)°) Mo-P-Mn angle (Table II). The Mo-Mn separation of 4.271 (1) Å is clearly nonbonding. The single Mo-Mn bond lengths were observed in the range 2.680

- (15)Breen, H. J.; Shulman, P. M.; Geoffroy, G. L.; Rheingold, A. L.; Fultz, W. C. Organometallics 1984, 3, 782. Mercer, W. C.; Whittle, R. R.; Burkhardt, E. W.; Geoffroy, G. L.
- (16)Organometallics 1985, 4, 68.
- (17) Mercer, W. C.; Geoffroy, G. L.; Rheingold, A. L. Organometallics 1985, 4, 1418.
- Rosenberg, H. J.; Lockledge, S. P.; Geoffroy, G. L. Organometallics (18)1986, 5, 2517.
- Shulman, P. M.; Burkhardt, E. D.; Lundquist, E. G.; Pilato, R. S.; Geoffroy, G. L. Organometallics 1987, 6, 101. (19)
- Powell, J.; Couture, C.; Gregg, M. R.; Sawyer, J. F. Inorg. Chem. 1989, (20) 28, 3437
- (21)
- Blum, T.; Braunstein, P. Organometallics 1989, 8, 2504. Baker, R. T.; Tulip, T. H.; Wreford, S. S. Inorg. Chem. 1985, 24, 1379. Powell, J.; Gregg, M. R.; Sawyer, J. F. Inorg. Chem. 1989, 28, 4451. (22)
- Mann, B. E.; Masters, C.; Shaw, B. L.; Stainbank, R. E. Inorg. Nucl. (24)
- Chem. Lett. 1971, 7, 881
- (25) Rosen, R. P.; Hoke, J. B.; Whittle, R. R.; Geoffroy, G. L.; Hutchinson, J. P.; Zubieta, J. A. Organometallics 1984, 3, 846. (26) Garrou, P. E. Chem. Rev. 1981, 81, 229.

Figure 1. Molecular structure of 3.

(1)-3.092 (1) Å.^{27,28} The Mo-P bond lengths in phosphidobridged monocyclopentadienyl complexes of molybdenum fall in the range 2.329-2.481 Å, 27-30 and in the biscyclopentadienyl cation [Cp₂MoCH(CF₃)CH(CF₃)PPh₂]⁺ it is also much shorter (2.487 (1) Å)⁷ than in 3. The only one μ -phosphido compound of a group 6 metal with a metal-phosphorus bond as long as in 3 is the dibridged electron-rich dianion $[(CO)_4W(\mu-PPh_2)_2W(CO)_4]^2$ in which the W-P distances are 2.610 (1) and 2.588 (1) Å.³¹ However, the W-P-W angles in this dibridged bimetallic are relatively small (104.20 (5)°) although the long W...W separation of 4.1019 (8) Å was found therein. The M-P-M angle as large as in 3 was observed in the tungstaphosphirene $Cp(CO)_2W=C$ - $(Ph)P(Ph)W(CO)_{5}(127.52(8)^{\circ})^{32}$ The Mo-P-Mn angle found in 3 (sp³-hybridized phosphorus) approaches the values observed in "open" bimetallic phosphinidenes (128.2-134.0°),^{33,34} where the phosphorus atom is formally sp²-hybridized. The above observations indicate that, for the sp³-hybridized phosphorus in phosphido-bridged complexes, the large M-P-M angles are to be expected in the absence of the metal-metal interactions and in the absence of the other bridges. Unusual geometrical parameters observed for 3 may result from steric repulsions of Cp₂MoH and Cp(CO)₂Mn fragments, but the electronic structure of this new class of compounds, especially in that which concerns the nature of the metal-phosphorus bond, remains uncertain. Chemical, theoretical, and structural studies on terminal hydrido-phosphido complexes are currently in progress.

Experimental Section

Manipulations were conducted under an atmosphere of argon by using Schlenk techniques. Degassed solvents were employed throughout. Cp2MH2,35 [Cp2M(H)PPh2H]Cl,7 and Cp(CO)2(THF)Mn36 were pre-

- (27) Horton, A. D.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Chem. Commun. 1985, 247
- (28) Horton, A. D.; Mays, M. J.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1987, 1557.
- Petersen, J. L.; Stewatr, R. P., Jr., Inorg. Chem. 1980, 19, 186. (29)
- Bradford, M. R.; Connelly, N. G.; Harrison, N. C.; Jeffery, J. C. Organometallics 1989, 8, 1829. (30)
- Shyu, S.-G.; Calligaris, M.; Nardin, G.; Wojcicki, A. J. Am. Chem. Soc. (31)
- (31) Shyu, S.O., Cangaris, M., Paulin, G., Wojckk, A.J. Am. Chem. Soc. 1987, 109, 3617.
 (32) Huy, N. H. T.; Fischer, J.; Mathey, F. Organometallics 1988, 7, 240.
 (33) Flynn, K. M.; Murray, B. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1983, 105, 7460.
- Arif, A. M.; Cowley, A. H.; Norman, N. C.; Orpen, A. G.; Pakulski, M. J. Chem. Soc., Chem. Commun. 1985, 1267. Arif, A. M.; Cowley, A. H.; Norman, N. C.; Orpen, A. G.; Pakulski, M. Organometallics 1988, 7, 309
- King, R. B. Organometallic Synthesis; Academic Press: New York, 1965; Vol. 1, p 79. (35)

Table III. Positional Parameters and Equivalent Isotropic Thermal Parameters for $Cp_2Mo(H)(\mu$ -PPh₂)Mn(CO)₂Cp (3)

atom	x	У	Z	$B_{eq}, Å^2$
Мо	0.71420 (4)	0.14391 (4)	0.53022 (6)	2.282 (9)
Mn	0.87163 (7)	0.36964 (6)	0.48668 (9)	2.23 (2)
Р	0.7300 (1)	0.2914 (1)	0.4559 (2)	1.92 (3)
HI	0.795 (6)	0.128 (6)	0.413 (9)	5.0ª
G 1	0.9795	0.3475	0.4029	
G2	0.5970	0.0990	0.4441	
G3	0.7936	0.1312	0.6899	
01	0.7614 (4)	0.5173 (3)	0.4500 (6)	4.3 (1)
O2	0.8718 (4)	0.3986 (4)	0.7615 (5)	4.4 (1)
C1	0.8020 (5)	0.4564 (4)	0.4625 (7)	2.8 (1)
C2	0.8695 (5)	0.3833 (4)	0.6522 (7)	2.9 (1)
C3	0.9341 (5)	0.3567 (6)	0.3033 (7)	3.7 (2)
C4	0.9845 (5)	0.4166 (5)	0.3755 (8)	3.9 (2)
C5	1.0275 (5)	0.3810 (5)	0.4852 (8)	4.3 (2)
C6	1.0041 (5)	0.2990 (5)	0.4810 (8)	3.9 (2)
C7	0.9474 (5)	0.2846 (5)	0.3698 (8)	3.6 (2)
C11	0.5886 (5)	0.1557 (5)	0.3760 (7)	3.5 (2)
C12	0.6396 (6)	0.0864 (5)	0.3491 (8)	4.3 (2)
C13	0.6335 (6)	0.0340 (5)	0.4523 (8)	4.3 (2)
C14	0.5761 (5)	0.0711 (5)	0.5453 (7)	3.4 (2)
C15	0.5473 (5)	0.1480 (5)	0.4981 (7)	3.3 (1)
C16	0.8494 (7)	0.1706 (6)	0.6491 (8)	6.0 (2)
C17	0.7769 (9)	0.1968 (6)	0.7178 (8)	6.9 (3)
C18	0.7216 (7)	0.127 (1)	0.7447 (8)	9.8 (5)
C19	0.7723 (8)	0.0666 (5)	0.698 (1)	10.4 (3)
C20	0.8479 (8)	0.0950 (6)	0.640 (1)	7.9 (3)
C21	0.7102 (5)	0.3048 (4)	0.2811 (6)	2.3 (1)
C22	0.6730 (5)	0.3763 (4)	0.2300 (7)	3.3 (2)
C23	0.6716 (6)	0.3895 (5)	0.0988 (8)	4.6 (2)
C24	0.7078 (6)	0.3347 (5)	0.0165 (7)	4.3 (2)
C25	0.7431 (6)	0.2647 (5)	0.0660 (7)	4.4 (2)
C26	0.7436 (6)	0.2492 (5)	0.1939 (7)	3.3 (2)
C27	0.6213 (4)	0.3416 (4)	0.5194 (6)	2.1 (1)
C28	0.6265 (5)	0.3688 (5)	0.6442 (7)	3.2 (2)
C29	0.5447 (6)	0.4008 (5)	0.6997 (8)	3.9 (2)
C30	0.4577 (5)	0.4080 (5)	0.6323 (9)	4.0 (2)
C31	0.4525 (5)	0.3821 (5)	0.5076 (8)	4.1 (2)
C32	0.5322 (5)	0.3480 (5)	0.4504 (7)	3.1 (1)

^a B value is for an atom that was refined isotropically. The G symbols represent the gravity centers of cyclopentadienyl rings: G1, C3-C7; G2, C11-C15; G3, C16-C20.

pared by the literature procedures. ¹H and ³¹P NMR spectra were recorded on JEOL-FX100 and Bruker WM400 spectrometers. Chemical shifts are relative to external TMS and H_3PO_4 . IR spectra were recorded on a Perkin-Elmer 580B spectrophotometer.

 $Cp_2Mo(H)PPh_2$ (1). In a typical operation a solution of NaOH (0.04 g, 1 mmol) in water (10 mL) was added to a suspension of [Cp₂Mo-(H)PPh₂H]Cl (0.4 g, 0.9 mmol) in 15 mL of toluene and the mixture was stirred for 45 min at room temperature. During this time the solution turned deep orange. This solution was filtered and evaporated,

(36) Strohmeier, W.; Guttenberger, J. F. Chem. Ber. 1964, 97, 1871.

yielding after extraction with toluene and evaporation 0.35 g (95% yield) of 1. Anal. Calcd (found) for $C_{22}H_{21}MoP$: C, 64.09 (63.2); H, 5.13 (5.3); P, 7.51 (7.3). NMR, δ (ppm): ¹H ((CD₃)₂CO), 7.53–6.87 (Ph, m), 4.69 (Cp, d, $J_{PH} = 1.5$ Hz), -7.65 (Mo–H, d, $J_{PH} = 31.5$ Hz); ¹H (C_6D_6), 7.79–6.94 (Ph, m), 4.17 (Cp, d, $J_{PH} = 1.5$ Hz), -7.41 (Mo–H, d, $J_{PH} = 32.6$ Hz); ³¹P ((CD₃)₂CO), -10.3 (d).

Cp₂W(H)PPh₂ (2). The procedure was the same as for 1, with a 90% yield. Anal. Calcd (found) for $C_{22}H_{21}PW$: C, 52.82 (52.2); H, 4.23 (4.4); P, 6.19 (5.6). NMR, δ (ppm): ¹H ((CD₃)₂CO), 7.57-6.81 (Ph, m), 4.65 (Cp, d, J_{PH} = 1.5 Hz), -11.26 (W-H, dt, J_{PH} = 24 Hz, J_{WH} = 79 Hz); ¹H (C₆D₆), 7.80-6.90 (Ph, m), 4.11 (Cp, d, J_{PH} = 0.8 Hz), -11.01 (W-H, dt, J_{PH} = 25 Hz, J_{WH} = 79 Hz); ³¹P ((CD₃)₂CO), -46.3 (br).

Cp₂Mo(H)(μ -PPh₂)Mn(CO)₂Cp (3). A 2-fold excess of freshly prepared Cp(CO)₂(THF)Mn in THF was added at room temperature to a solution of 1 in THF, and the mixture was stirred overnight. After evaporation of the solvent, the solid was washed with pentane (to eliminate the nonreacted Cp(CO)₃Mn) and extracted with toluene. Crystallization gave deep orange crystals of 3 in 40% yield. Anal. Calcd (found) for C₂₉H₂₆MnMoO₂P: C, 59.20 (57.3); H, 4.45 (4.3). NMR, δ (ppm): ¹H (C₆D₆), 7.94-6.92 (Ph, m), 4.14 (Cp_{Mo}, d, J_{PH} = 1.5 Hz), 3.93 (Cp_{Mn}, d, J_{PH} = 1.5 Hz), -7.50 (Mo-H, d, J_{PH} = 34 Hz); ³¹P ((CD₃)₂CO), +57.0 (d). IR, cm⁻¹, THF: 1909, 1841 (ν_{CO}).

Cp₂W(H)(μ -**PPh₂**)**Mn(CO)₂Cp (4)** was prepared in the same manner as 3, with a 30% yield. Anal. Calcd (found) for C₂₉H₂₆MnO₂PW: C, 51.50 (49.7); H, 3.87 (3.8). NMR, δ (ppm) (CD₂Cl₂): ¹H, 7.80-6.97 (Ph, m), 4.66 (Cp_W, d, J_{PH} = 1.5 Hz), 3.91 (Cp_{Mn}, d, J_{PH} = 1.5 Hz), -11.18 (W-H, d, J_{PH} = 27.5 Hz); ³¹P, +8.0 (br). IR, cm⁻¹, THF: 1909, 1841 (ν_{CO}).

Crystallographic Studies. An orange irregularly shaped crystal having approximate dimensions of $0.20 \times 0.15 \times 0.15$ mm was mounted on an Enraf-Nonius CAD4 diffractometer. The unit cell was determined and refined from 25 randomly selected reflections (CAD4 routines). Intensities were measured with filtered Mo radiation, $\lambda = 0.71073$ Å, $\omega - 2\theta$ scan, $2^{\circ} < \theta < 25^{\circ}$. A total of 2008 unique reflections with $I > 3\sigma(I)$ were used in structure determination and refinement. Crystal data and refinement residuals are given in Table I. All calculations were carried out by using the Enraf-Nonius SDP library³⁷ with neutral-atom scattering factors. No absorption correction was made. The structure was solved and refined by conventional Patterson, difference Fourier, and full-matrix least-squares methods. The position of the hydride ligand was found from a difference Fourier map and refined with a fixed $B_{iso} = 5.0$ Å²; other hydrogen atoms placed in calculated positions were ridden on the carbon atoms bearing them and included in the final refinements with $B_{iso} = 5.0$ Å². The final atomic coordinates of non-hydrogen atoms refined with anisotropic temperature factors and of the hydride are given in Table III.

Supplementary Material Available: Tables of hydrogen atom positions, anisotropic temperature factors, bond distances, bond angles, leastsquares planes, and crystallographic data (8 pages); a listing of calculated and observed structure factors (11 pages). Ordering information is given on any current masthead page.

⁽³⁷⁾ Frenz, B. A. The Enraf-Nonius CAD4-SDP. A Real Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination. In Computing in Crystallography; Schenk, M., Olthof-Hazekamp, R., Van Koningsveld, M.; Eds.; Delft University Press: Delft, Holland, 1978.