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Polya’s theorem has been used to determine the number of isomers of various types of inorganic compounds. By the intro- 
duction of the now well-known concept of a point group description of a molecule into Polya’s formulation, we have been 
able to determine the number of both geometrical isomers and optical isomers for the first time. Cycle indices for most 
structures of inorganic chemistry are tabulated. 

Introduction 

The problem of determining the number of isomers of 
compounds can be approached by a brute force enumer- 
ation using drawings and models or by some analytical 
method of calculation. Counting isomers by means of 
models, referred to by Polya2 as “Herumprobieren,” 
becomes extremely difficult and subject to errors3 as 
the complexity of the structure increases. Applica- 
tions of permutation group theory have been made by 
Lunn and Senior4 and othersJ5 who used their method. 
The most effective method of calculation is one devised 
and used by P ~ l y a * > ~ r ~  for enumeration of isomers in 
fused aromatic systems. Polya’s articles, however, are 
esoteric and have been largely overlooked except in one 
attempt by Hills to apply Polya’s method to chemical 
isomerism in general. 

Instead of employing the unfamiliar permutation 
group formalism, we have reformulated Polya’s tech- 
nique in terms of point groups. By using this more 
familiar approach we hope to promulgate group theo- 
retical methods of calculating numbers of isomers. 

Mathematical Introduction 

A permutation of degree n rearranges n distinct ob- 
jects among themselves. The permutation 

1 2 3 . . .  n 
a1 a2 a3 . . . an 

A =  ( 
indicates that  1 is to be replaced by al, 2 is to be re- 
placed by a2, and so on. The ordered sequence (uI, 
u2, . . ., a,) is clearly some arrangement of the first n 
integers. With each element of a point group G, we 
can associate a permutation such that the set of all 
these permutations forms a so-called permutation group, 
G’, isomorphic to G. 

The rotations which transform an equilateral tri- 
angle into itself form the point group Ds of order 6. 
By means of the following diagram 

(1) Supported by a research grant from the National Institute of Health. 
(2) G. Polya, Hers. Chim Acta, 19. 22 (1936). 
(3) See example 111 of text. 
(4) A. C. Lunn and J K. Senior, J. Phys.  Chem., 33, 1027 (1929). 
(6) L. E Marchi, W. C. Fernelius, and J. P. McReynolds, J .  Am. Chcm. 

(6) G Polya. Acta Math.. 68, 145 (1937). 
(7) G. Polya, Krist . .  93, 415 (1936). 
(8) T. L. Hill, J .  Chem. Phys. ,  11,294 (1943). 

Soc., 66, 329 (1943). 

I 
CZ” 

one can readily write the permutation operation cor- 
responding to each symmetry operation of D3. 

Symmetry operation Permutation 

E 

c3 .t 

c3 - 

cz 

CZ‘ 

CZ“ 

The permutations have been expressed as a product of 
permutations that involve separate elements and which 
are called cycles. Cz, for example, is said to consist of 
one cycle of length one and one cycle of length two. 
As suggested above, elements belonging to the same 
class consist of similar sets of cycles. 

Polya’s theorem is based upon a function called the 
cycle index. The cycle index of a group G is given by2 

(1) 
1 

Z(G) = g z‘hiiizia.. . . . . fp’p 

where g is the order of G, p is the number of points 
permuted, fl, fi, . . . , fp are p variables, and h,ljz.. . j ,  is 
the number of permutations of G which consist of j ,  
cycles of length 1, j 2  cycles of length 2 ,  etc. The prime 
on the summation indicates that  i t  is to be taken over 
all sets { j ,  ] consistent with the condition that 

@ 

1 = 1  
C zjz = P 

As an example, the point group D3 consists of one 
element of three cycles of length 1 ; two elements of one 
cycle of length 3;  and three elements of one cycle of 
length 1 and one cycle of length 2. Therefore 

Z(Da) = ‘/a(fia f 2f3 + 3f1f2) 
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TABLE I 
CHOICE OF POINT GROUPS 

For total no. of stereoisomers For geometrical isomers 

C, C n v  
Cnii 
S, 

D, D n d  

D n11 

T T d  

0 oh 

I I h  

The cycle index is not unique for a point group, since it 
also depends upon the number of points being permuted, 
;.e., 9, which for our example is 3. 

Lastly, define a configuration counting series by 
F(z1, x2, . . . , xnL) = z Fk,k?  , , , k,,ixiklx2fiP , . . xtnk,,a 

where the summation is over k, = 0 to for e a c h j  
from 1 to m where m is the number of constituents. 
If Fkliiz .  . . icm is the number of isomers when kl substit- 
uents of t.ype 1, k? substituents of type 2, etc., are sub- 
stituted into a skeletal parent compound, then Polya's 
theorem says that 

( 2 )  

where G is the point group of the skeletal parent com- 
pound and 2 [G; f(x1, x?, . . . , x,J] denotes the poly- 
nomial obtained from Z(G) by replacing fj by (x? + 

In order to determine the number of ways of arrang- 
ing two different kinds of atoms on the corners of an 
equilateral triangle, letf(x1, x?) = x1 + x?, since m = 2 
(two different kinds of substituents), and obtain for D3 

F ( x l ,  xd = '/e[(% + x d 3  + 2(x13 + xz3) + 31x1 + .r2)(x12 + 
xz2)] = xi3 + ccl2x2 + x1x2 + xZ3 

The four unit coefficients, respectively, indicate that 
there is one way to distribute three atoms of the same 
kind, one way for two of the first kind and one of the 
second, one way for one of the first and two of the 
second, and only one way to distribute three of the 
second kind. 

xii + . . . + x,j).9 

Choice of Point Group 

In calculating the total number of stereoisomers, we 
choose the point group which corresponds to the rota- 
tions of the skeletal parent compound. This must in- 
clude all the rotational symmetry elements. Enan- 
tiomorphs can then be eliminated by adding any planes 
or alternating axes of symmetry. Table I lists the 
common point groups consisting of pure rotations along 
with the point groups into which they transform by the 
addition of planes, etc. The total number of stereo- 
isomers is calculated from the left-hand column, the 
number of geometrical from the right-hand column, and 
the number of pairs of enantiomorphs from their dif- 
ference. 

(9) For a proof of this theorem (in English) see G. E. Uhlenbeck and 
G. W. Ford, "Studies in Statistical Mechanics," J. de Boer and G. E. 
Uhlenbeck, Ed., Interscience Publishers, Inc., New York, N. Y. ,  1962, p. 
198. 

T A B L E  11 
ISOnfERS O F  OCTAHEDRAL COMPLEXES 

Pairs of 
Formula Stereoisomers Geometrical enantiomorphs 

Ma6 1 1 0 
Masb 1 1 0 
Ma& 2 2 0 
Masbs 2 2 0 
hlarbc 2 2 0 
Ma3bcd 5 4 1 
Mazbcde 15 9 6 

30 15 15 Mabcdef 
Maabncp 6 5 1 
Mazbpcd 8 6 2 
Mazbpc 3 3 0 

Calculation and Discussion 
The examples which follow illustrate the use of the 

preceding method of calculating stereoisomers-geo- 
metrical and enantiomorphs. 

(I) Tetrahedral.-The total number of stereoisomers 
is given by considering the point group T, whose cycle 
index for degree four is 

Z(T) = ~ / P P [ ~ I ~  + Sfif3 + 3f21 

In order to consider from one to four different substit- 
uents or ligands, replace ,fj by (xi" + x$ + xi + x&. 
A.11 the coefficients in this expansion are unity except 
for the coefficient of X1X2X3X4 which is 2. 

The number of geometrical isoTers alone is given bv 
using the point group Td, whose cycle index for degree 
four is 

Z('rd) = ' /24( f14  + Sfif3 + 3f12 + 6fi"fi + 6f4) 

Replacingjj by x? + xii + xi + xi gives a polynomial, 
all of whose coefficients are unity. The difference in the 
coefficients of xlx2x3x4 equals one, indicating the well- 
known pair of enantiomorphs. 

(11) Square-Planar.-The cycle index for the di- 
hedral group Dd for degree four is 

Z(D6) = l / 6 ( f I 4  f 3fz2 + 2f12f2 + 2 f d )  

CSing D i h  

z(D4h) = 1/16(2j14 + 63'2' + 4fi2f2 f 4f4) 

The identity of these two cycle indices clearly indicates 
the lack of enantiomorphs, or optical isoiiqers, for 
square-planar complex ions. To calculate the num- 
bers of geometrical isomers, replace ij. by xi' + 
xi + xj + x?. The coefficients of x14, ~ 1 ~ x 2 ,  xl2xZ2) 

~ 1 ~ ~ 2 x 3 ,  and h^lx?x$4 are, respectively, 1, 1, 2, 2, 3 .  
These correspond to cis and trans isomers for the Corms 
I\la2b2 and I\la2bc. Mabcd exists in three different, 
well-known isomeric forms. 

(111) Octahedral.-For octahedral molecules we im- 
mediately write 

Z(0) = ':'24(ji6 + SfxZ 4- 3.fiZ?i2 + 6 5 ~ ~  + Sfi'f.2) 

Z ( O h )  = l/&iG + 8fa2 + 7fz3 + 6j'i?,f4 + 9fiYzz + 
Sfc + 3fi?fz + 6j:if2) 

The results of the expansions are tabulated in Table 11. 
These results agree with an enumeration by use of 

in every case except for Ma3bcd for which we 
(10) I<. F. Trimble, J .  Chein. Educ.. 31, 176 (1954) 



Vol, 3, No. 2, February, 1964 GROUP THEORY AND ISOMERISM 267 

Coordi- 
nation 

no. 

2 
3" 

45 

5" 

6" 

7 

8b 

8 

12 

TABLE I11 
CYCLE INDICES OF INORGANIC STRUCTURES 

Structure 

Linear 
Triangular 

Square-planar 

Tetrahedral 

Trigonal 
bipyramid 

Tetragonal 
pyramid 

Octahedral 

Pentagonal 
bipyramid 

Archimedean 
antiprism 

KaMo( CN)s 
dodeca- 
hedron 

Icosahedron 

a Results agree with Lunn and Senior. Results agree with 
Marchi, Fernelius, and McReynolds. 

find a pair of enantiomorphs. This one example serves 
to illustrate the power of this method. Also concern- 
ing octahedral complexes, it  has been stated1': "Opti- 
cal isomers can occur in nonchelate complexes with 
three or more different kinds of ligands and no more 
than two of any one kind." However, in addition to  
three trans forms of Ma3bcd, one can easily show an 
optically active pair for the cis form for the calculated 
total of five isomers, four of which are geometrical. 
The enantiomorphs are 

@ d :Q rl 

(IV) Other Common Inorganic Structures.-Table 
I11 presents a comprehensive list of cycle indices of 
commonly occurring inorganic structures. 

Application to a Complicated Dimeric Case.-As a 
final example, we shall calculate the number of isomers 

(11) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 
Interscience Publishers, Inc.. New York, N. Y., 1962, p. 155. See also 
J.  Lewis and R. G. Wilkins, "Modern Coordination Chemistry," Interscience 
Publishers, Inc., New York, N. Y., 1960, p. 180; R. B. Heslop and P.  L. 
Robinson, "Inorganic Chemistry," Elsevier Publishing Company, Amster- 
dam, 1960, p. 519. 

N 
C 

d e 

Fig. 1.-N represents nitrogen of pyridine. 

TABLE I V  
ISOMERS OF THE RESTRICTED FORM OF NbZClz( C~H60)b( CsH6N)z 

No. of 
Structure Point geom. 

isomers Cycle index (Fig. 1) group 
a c z v  ' / 4 ( f l ~  + 2flYZS + f'YZ9 11 
b 10 
C 

d 

of NbzC12(C2H50)6(C5H6N)2. l2  This compound is an 
example of octahedral coordination in which two co- 
ordination positions are common to each of the two 
metal ions (see Fig. 1). Either the chloride or ethoxide 
ligands but not the pyridines may occupy the bridge 
positions. 

We shall treat this differently and calculate the 
number of isomers in steps. Consider the bridging 
ligands to be the same. The point group is D 2 h ,  

and for degree eight (we are excluding the bridge posi- 
tions since they are fixed) the cycle index is 

Let fj = xj + xi' + xi, where X I  is for chloride, xz 
for ethoxide, and x3 for pyridine. If both chlorides 
serve as the bridge, the number of geometrical isomers 
is 8, the coefficient of x2%3'. If two of the ethoxides 
occupy the bridge positions, then the number of geo- 
metrical isomers is 68, the coefficient of x12x24x32. 

In the case where the bridge positions consist of one 
chloride and one ethoxide, the point group is cZv, whose 
cycle index for degree 8 is 

Z(Dzh) '/s(fi8 f 5fz4 + 2f1!fz2) 

Z(Czv) = '/4(fi8 -t-f14f22 + Vi4) 
Again, we let f, = xi' + xi + x; since there are three 
kinds of substituents. The number of geometrical 
isomers in this case is 47, the coefficient of X ~ X Z ' X ~ ~ .  

The total number of geometrical isomers is therefore 
the sum for the above three cases, viz. 123. 

We now recalculate the number of geometrical iso- 
mers with the added restrictiop that each of the pyridine 
molecules must be bonded to a different niobium atom. 
The five distinguishable ways to put one pyridine 
on each niobium ion' are illustrated in Fig. 1. The 

(12) This problem was the stimulus for the present program: R. A. D. 
Wentworth and C. H. Brubaker, Jr., Inoug. Chem., 3, 47 (1964). 
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calculations are summarized in Table IV. The total Calculation of the total number of geometrical iso- 
number of geometrical isomers of Nb2C12(C2H50)6- mers by considering the eight distinguishable ways to 
(C&"2, with the restrictions that (1) each niobium is distribute two pyridines on the eight nonbridging 
surrounded octahedrally by ligands, each niobium positions13 separately yields 123. This agrees with our 

preceding result is bonded to only one pyridine molecule, and ( 3 )  
pyridine molecules cannot act as bridging ligands, is 70. point group. 

(13) The number eight was calculated from the cycle index for the D2h 
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Scrambling of Methoxyl, Dimethylamino, and Chloro Groups on Silicon1 
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By means of gas chromatography, quantitative data were obtained on ester interchange between tetramethyl aud tctra- 
ethyl silicates (1) Si(OCHs)4 us. Si(OC2H5)1. ( 2 )  
Si(OCH3)4 vs. SiCla and (3)  Si[S(  CHa)*l4 us,  SiClr. The equilibria for the esters (system 1) are close to those expected for ideal 
random interchange. The 
deviation from ideal random behavior is larger in the case of exchange of dimethylamino groups with chlorines than in the 
case of alkoxy1 groups with chlorines. This is similar to the situation found with the analogous phosphorus Compounds. 
Measurements are presented on the rates oi exchange of chlorine for either methoxyl or dimethylamino groups. 

H' nuclear magnetic resonance was used to investigate the systems: 

However, the mixed species are greatly favored in the exchanges involving silicon tetrachloride. 

Although there is a considerable body of literature3 
on the redistribution reactions of alkoxyl groups, halo- 
gens, and amino groups on silicon, it is very difficult 
to determine from this literature whether or not 
equilibrium was reached, In studies of redistribution 
reactions, i t  is important to obtain the equilibrium 
values, since large deviations from the equilikria cor- 
responding to random sorting may be the cause of un- 
usually high or low yields in preparative chemistry. 
Such deviations are also important to the understand- 
ing of the chemistry of these compounds, as explained 
in the Discussion section of this paper, 

Unlike the previous authors, we took special care in 
this study to separate rate phenomena from the equi- 
libria. As a result, i t  is now possible to determine 
whether the data reported in the previous literature 
correspond to partial or complete equilibration. By 
treating the equilibria in terms of deviations of the 
corresponding free energies from those expected for 
completely random exchange, we have been able to 
compare on a logical basis the results obtained on com- 
pounds of silicon with those found for analogous 
compounds of phosphorus, 

(1) Presented in part at the  141st National Meeting of the American 
Chemical Society, Washington, D. C., March 22, 1962. 

(2) On leave of absence from the  Inorganic Chemicals Division of Mon- 
sauto, July. 1961-1962. 

(3) D. F Peppard, W. G. Brown, and W. C .  Johnson, J .  Am. Chem. Soc.. 
68, 73 (1946); M. Kumada, J. I n s t .  Polylech. Osaka City Uniu. Seu. C, 2, 
139 (1952) [Chem. Abslr., 48, 11303g (1954)l; Yu N. Vol'nov, J .  Gen. 
Chem. USSR, 17, 1428 (1947); K. Schaarschmidt, 2. anoug. allgem. 
Chem., 310, 69 (1961). Also, for example, F. C. Boye and H. W. Past, 
J .  Or!. Chem., 17, 1389 (1952), and K. A. Andrianov, S. A. Golubtsov, and 
N. P. Lobusevich, Zh. Obsch. Khim.,  26, (1956) ;  J .  Gcn. Chem. USSR,  26, 
207 (1956). For reviews of the chemistry studied here, see C. Eaborn, 
"Organusilicun Compounds," B utterworth, London, 1960, and R. Fessenden 
and J. S. Fessenden, Chem. Rev., 61, 361 (1961). 

Experimental 
Tetramethyl silicate, tetraethyl silicate, and silicon tetrachlo- 

ride were repurified by careful distillation in a dry atmosphere 
from commercial samples obtained from the Anderson Chemical 
Company. The tetrakis(dimethy1amino)silane (Le . ,  octa- 
methylsilanetetramine) was prepared4 from silicon tetrachloride 
and was also carefully purified by fractionation. In all cases, 
middle cuts having a constant boiling point were taken from a 
fractionating column with ca. 20 theoretical plates. 

Ester Interchange.-The substituent-exchange reaction be- 
tween tetramethyl silicate and tetraethyl silicate was carried out 
in sealed glass tubes a t  150". Analyses were performed by gas 
chromatography using a Perkin-Elmer vapor fractometer, Model 
154D, with a printing integrator. X 2-m. column containing 
C-22 firebrick supporting 105% of Tween 80 was employed a t  a 
temperature of 80". The retention times of tetramethyl silicate 
and tetraethyl silicate mere identified through runs on the pure 
samples, and assignment of the chromatographic peaks due to 
the mixed esters was made from their sequence and checked by 
material-balance calculations. The retention times were found 
to  increase more than linearly with substitution of ethyl for 
methyl. 

Redistribution between the tetramethyl and tetraethyl silicates 
was found to  reach equilibrium within ca. 4 days a t  150". The 
data reported here correspond to 10 days a t  that temperature. 

Exchanges with SiCld.-Equilibrium measurements for the 
reactions between silicon tetrachloride and either tetramethyl 
silicate or tetrakis(dimethy1amino)silane were made at room 
temperature on samples heated in sealed glass tubes a t  120' for 
200 hr. in the case of the first system and 18 h1. for the second. 
These heating times were chosen on the basis of rate studies. 
However, because of fast re-equilibration a t  room temperature 
(see Fig. 5-7) the equilibrium data on the system Si[X(CH3)2]4 
vs. Sicla correspond to a temperature between 25 and 37", sincc 
the samples stood overnight at room temperature and the n.m.r. 
measuring probe operates at 37". Contrary to the data of 
Kumada,3 samples with low SiCl, content took somewhat longer 

(4) H. Breederveld and 13. I. Waterman, Research (London), 6,  A37 
(1952). 




