more negative values would apply to the less shielded cores. The presumed minor importance of the 6s orbitals in the bonding would also be worthy of quantitative investigation. Such refinements would, of course, substantially increase the size of the problem, and they would be expected to result in only relatively small changes in the energies so that the essence of the present conclusions regarding the structure would remain unaltered.

The Bi_{θ}^{5+} species is evidently the first example of a homopolyatomic cation of a metallic element that is sufficiently stable to exist in a pure state, excepting, of course, the diatomic Hg_2^{2+} and Cd_2^{2+} . It is interesting to note that this grouping may not be without analogy, however, since it is isoelectronic with Pb_9^4 ⁻ and Sn_9^4 ⁻, two (of many) species of the post-transition metals for which Zintl and co-workers¹⁹ found evidence in liquid ammonia. This relationship has also been noted by Britton. 20 On the other hand, no evidence for a bis-

(19) Summarized by H. J. Emeléus and J. S. Anderson in "Modern Aspects of Inorganic Chemistry," 3rd Ed., D. **Van** Yostrand Co., New **York,** iV. **P.,** 1960, p. 512.

muth analog of Pb_7^{4-} , the other lead anion suggested by Zintl's work, has been found in the $BiCl₃-Bi$ system. In addition there is no evidence for any comparable, polynuclear cation of antimony in the SbX_3-Sb sys $tem, ^{21,22}$ perhaps due to its reluctance to form cations in the presence *of* halide. Compositions corresponding to the many species suggested by Zintl are generally not found in the binary alloy systems although a few isolated examples of other homopolyatomic ions with "closed-shell" MO 's may occur in the latter.²³ Continued investigations may well disclose other examples of such ions for the post-transition elements that are commonly thought *of* as metallic in character.

Acknowledgments.-- J. D. C. is particularly indebted to J. \V. Richardson for the overlap computations and to D. S. Martin, Jr., for helpful discussions.

(20) D. Britton, *Inorg. Chem.*, 3, 305 (1964).

- (21) J. D. Corbett, S. von Winbush, and F. C. Albers, *J. Am. Chem. Soc.*, **79,** 3020 (1957).
	- *(22)* J. D. Corbett and F. C. Aibers, *ibid.,* **82,** *533* (1960).

(23) J. D. Corbett, to be published.

CONTRIBUTION FROM THE CHEMISTRY AND NUCLEAR ENGINEERING DEPARTMENTS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK

The Crystal Structure of Sodium Perxenate Octahydratel

BY JAMES A. IBERS, WALTER C. HAMILTON, AND D. R. MACKENZIE

Received Muy 25, 1964

Sodium perxenate octahydrate, Na₄XeO₆.8H₂O, is orthorhombic with cell constants $a = 11.86$, $b = 10.36$, $c = 10.43$ Å. space group Pbcn, $Z = 4$. A three-dimensional X-ray diffraction investigation has resulted in a complete structure determination. The perxenate ion is approximately a regular octahedron with a mean Xe-O distance of 1.864 \pm 0.012 Å. The greatest deviation of an O-Xe-O angle from the ideal 90° is $2.6 \pm 0.8^{\circ}$. The two crystallographically independent sodium atoms are surrounded by very distorted octahedra composed of water molecules and perxenate oxygen atoms. **A** complex array of hydrogen bonds completes the structure.

Introduction

The reaction of XeF_6 with sodium hydroxide was shown by Malm, *et al.*,² to produce compounds which contain octavalent xenon and which, on the basis of chemical analyses, were thought to contain the perxenate ion, XeO_6^{-4} . In a previous communication³ we sketched the evidence from an X-ray study that one of the compounds that forms is sodium perxenate octahydrate. Subsequent to that study Zalkin, *et al.*,⁴ have shown that another product is sodium perxenate hexahydrate. In this paper we present in detail the results of our crystallographic study of sodium perxenate octahydrate and also discuss the geometry of the per-

(1) Research carried out under the auspices of the U. S. Atomic Energy Commission.

xenate ion and the complex hydrogen bonding scheme in the octahydrate.

Experimental

The material studied here was prepared by adding about 1 ml. of 1 *M* NaOH to several mg. of XeF_6 at 77°K. The XeF_6 was almost certainly contaminated with XeF₄. A yellow color appeared in the frozen mixture and disappeared as the mixture melted. Colorless, well-developed crystals with dimensions of up to several tenths of a mm. formed within several minutes in the reaction vessel. Several of these crystals were selected for X-ray photography and were sealed in thin-walled glass capillaries to reduce dehydration or possible decomposition.

All photographs were taken with Mo K α X-rays from plate-like crystals with approximate dimensions $0.2 \times 0.2 \times 0.05$ mm. Data suitable for structure analysis were collected at room temperature by multiple-film Weissenberg photography. In order to minimize the time required to collect a complete data set, three crystals were photographed simultaneously on differed cameras to obtain data from the reciprocal nets *Okl, lkl,* . . *.13kl.* All independent intensities strong enough to be observed and accessible within the scattering angle $\theta_{\text{Mo}} \leq 26^{\circ}$ were estimated vis-

⁽²⁾ J. *G.* Malm, B. D. Holt, and K. W. Bane, "Noble **Gas** Compounds," H. **H.** Hyman, Ed., University of Chicago Press, Chicago, Ill., 1963, **p. 187.** (3) W. C. Hamilton, J. A. Ibers, and D. R. MacKenzie, *Science*, **141**, 532 (1963).

⁽⁴⁾ **A.** Zalkin, J, L). Forrester, *D.* H. Templeton, *S.* M. Williamson, and C. W. Koch, *ibid.,* **142,** 501 (1063); **A. Zalkin,** J. n. For-rester, and *D.* H. Templeton, *Iiiovg. Chem.,* **3, 1417** (1964).

ually. The 716 observed intensities were corrected for Lorentz and polarization effects, but not for absorption. The linear absorption coefficient calculated for the formula $Na_4XeO_8.8H_2O$ is 29 cm.-', *so* that absorption errors should not seriously affect the intensity measurements. Although a number of the strong reflections seem to suffer from extinction, no corrections were made. **A** final set of photographs of the *Okl* net was taken at the end of the experiment. The identity of these photographs with the initial photographs provides good evidence for the stability of the material during the photography.

The crystals investigated are orthorhombic with cell constants $a = 11.864, b = 10.358, c = 10.426$, each ± 0.005 Å.⁵ The observed extinctions (hk0, h + k odd; h01, l odd; 0kl, k odd) indicate that the space group is probably D_{2h}^{14} -Pbcn.⁶ The density, as measured by flotation in mixtures of methylene dibromide and carbon tetrachloride, is 2.33 ± 0.05 g. cm.⁻³. Siegel⁷ ascribes to a compound of formula $Na₄XeO₆·5H₂O$ an orthorhombic cell with constants $a = 10.36$, $b = 10.45$, $c = 11.87$ Å. It is clear on the basis of the agreement between that cell and the one found here (after redefinition of axes) that the two compounds are identical. Analytical results at Argonne² indicate a Na: Xe ratio of and an oxidation number of eight for Xe. The density observed here is in poor agreement with four formula weights of the pentahydrate in the units cell $(\rho_0 = 2.10 \text{ g. cm.}^{-3})$. However, it is in excellent agreement with the formula $\text{Na}_4\text{XeO}_6 \cdot 8\text{H}_2\text{O}$ (ρ_e = 2.38 g. cm.⁻³) which was deduced here from the structure determination.

Solution of the Structure

The multiplicity of the general positions in Pbcn is 8 and the four Xe atoms must therefore lie in special positions. It was clear from examination of the intensities *of* several reflections and from the threedimensional Patterson function that the Xe atoms are in positions (4c), $\pm (0, y, \frac{1}{4})$, $(\frac{1}{2}, \frac{1}{2} + y, \frac{1}{4})$, with γ approximately 0.20. From the Patterson function the positions of six atoms bonded to the Xe were readily found. Two of these were placed in two sets of special positions (4c) along the twofold axis, and four were placed in two sets of general positions $\pm (x, y, z)$, $\frac{1}{2} - x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$), $\frac{1}{2} + x$, $\frac{1}{2} - y$, \bar{z}), $(\bar{x}$,
 y, $\frac{1}{2} - z$). Successive least-squares and difference electron-density syntheses led to the placement of six more atoms in general positions in the asymmetric unit. From their coordination and peak heights in the electron density maps, two of the atoms were identified as sodium, and the four remaining were assigned as oxygen, presumably as water molecules. In a final series of least-squares refinements the Xe was allowed to vibrate anisotropically, while the other atoms were constrained to vibrate isotropically. In these refinements, which were carried out on *F,* unit weights were assigned for $F < 50$ electrons, and weights were taken as $(50/F)^2$ for $F \ge 50$ electrons. The atomic scattering [actors used were those *of* Watson and Freeman⁸ for Xe, Berghuis, et al.,⁹ for Na, and Hoerni and Ibers for *0.'"* Proper account was taken placed in two sets of general positions $\pm (x, y, z)$,
 $(1/2 - x, 1/2 - y, 1/2 + z), (1/2 + x, 1/2 - y, \overline{z}), (\overline{x}, z)$

(7) S. Siege1 and E. Gebert, ref. 2, p. 193.

(10) J. **A.** Hoerni and J. **A.** Ibers, *ibid.,* **7, 744 (1954).**

Fig. 1.---Perxenate ion with surrounding water molecules. A twofold axis coincides with the line O_1 -Xe- O_2 . The dashed lines are hydrogen bonds. The sodium ions coordinated to the perxenate ion and the water molecules are not shown. Distances are in A.

TABLE I PARAMETERS IN SODIUM PERXENATE OCTAHYDRATE[®]

Posi-				
tion	x	\mathcal{Y}	\overline{z}	$B, \mathring{A}.^2$
4c	0	0.20199(14)	$^{1}/_{4}$	Aniso-
				tropic
4c	0	0.3836(23)	$^{1}/_{4}$	2.0(4)
4c	0	0.0233(22)	1/4	2.0(4)
8d	0.1079(18)	0.2041(20)	0.3766(22)	2.2(4)
8d	0.1190(14)	0.2051(15)	0.1301(17)	0.8(3)
8d	0.1188(9)	0.4299(10)	0.4368(10)	1.8(2)
8d	0.2811(15)	0.2139(10)	0.2644(12)	1.9(3)
8d	0.3153(17)	0.4159(17)	0.4090(17)	2.2(3)
8d	0.4364(18)	0.1456(17)	0.4255(17)	2.0(3)
8d	0.3259(16)	0.0174(17)	0.1558(17)	2.0(3)
8d	0.3823(17)	0.3486(17)	0.1245(18)	2.0(3)

a The numbers in parentheses are estimated standard deviations. W indicates the oxygen atom in a water molecule.

TABLE IA ANISOTROPIC THERMAL PARAMETERS FOR XENOK

^a Root mean square amplitudes of vibration. The deviations from isotropy are so insignificant that the derived directions of the principal axes of the motion are meaningless.

of the effects of anomalous dispersion by applying corrections to F_c .¹¹ The final parameters derived from these refinements are given in Table I. The conventional R factor Σ F_0 $\frac{|F_e|}{\sqrt{\Sigma}}$ F_0 is 0.105. In Table I1 the final values of observed and calculated structure amplitudes are given. **A** final difference Fourier, based on the data of Table II, shows one peak of height 6.6 e/Å.³ at the Xe site; the next peak is of height 2.7 e/Å.³, approximately 25% of the height of an oxygen peak in this structure and about 15% of the height of a sodium atom. The residual density at the Xe site presumably arises from improper treatment of the Xe scattering or vibrations, but is only about 4% of the Xe peak height of 178 e/ \AA .³. Since the Xe lies

(11) J. **A.** Ibers and W. C. Hamilton, *ibid.,* **17,** 781 (1964)

⁽⁵⁾ These are the cell constants quoted in ref. 4 $(\lambda \text{ Mo } K\alpha_i = 0.70926)$ **A,);** they are in satisfactory agreement with our less precise values quoted in ref. **3,** where an accidental transposition of *b* and c was made.

^{(6) &}quot;International Tables for X-Ray Crystallography," Vol. 1, The Kynoch Press, Birmingham, 1952.

⁽⁸⁾ R. E. Watson and **A.** G. Freeman, private communication, 1963.

⁽⁹⁾ J. Berghuis, I. M. Haanappel. M. Potters, **B.** 0. Loopstra, *C.* **H.** MacGillavry, **and A.** L. Veenendaal, *Ada Cvyst.,* **8, 478 (1955).**

 $\mathcal{L}(\mathbf{x})$, $\mathcal{L}(\mathbf{x})$

 Table II

OBSERVED AND CALCULATED STRUCTURE AMPLITUDES (IN ELECTRONS) FOR Na₄XeO₆·8H₂O

on a twofold axis, the electron density error may be expected to be $\sqrt{2}$ times larger than in a general position.12 It is clear that no other atoms (except hydrogen) remain to be found in this structure.

Description **of** the Structure

From the electron density maps it is not possible to distinguish among the three species oxygen, hydroxyl, and fluorine. Chemical analysis indicates that the material is fluoride-free and that the oxidation number is 8. The presence of hydroxyl groups would be hard to explain in view of this oxidation number and the clear stereochemical evidence that there are four sodium atoms per molecule. Moreover, as we shall indicate, there are a number of $0 \cdots 0$ distances in the range 2.63 to 3.05 *8.* which can be interpreted in terms of a very reasonable over-all hydrogen bonding scheme for water molecules and XeO_6^{-4} ions. Finally, the volume per oxygen atom is 23.1 A.3, a typical value for hydrates. From these arguments, as well as from the reasonableness of all interatomic distances, we conclude that the material studied here is $Na₄XeO₆·8H₂O$.

The parameters of Table I, together with the cell dimensions and symmetry of the space group, describe a structure in which XeO_6^{-4} ions and Na ions are linked together by water molecules in a complicated threedimensional network. Figure 1 is a perspective drawing of the XeO_6^{-4} ion, together with the principal hydrogen-bonded interactions between the oxygens of the perxenate ion and of the water molecules. In Table I11 the principal interatomic distances and angles and their estimated standard deviations are listed.

Both the Xe atom and the two sodium ions are octahedrally coordinated. The ion is required by its position on the crystallographic twofold axis to have a twofold axis passing through Xe, O_1 , and O_2 ; the results here indicate that the perxenate ion has approximately the form of a regular octahedron. The hypothesis that the four independent Xe-0 bond lengths are equal cannot be rejected at the *5%* level. One of the O-Xe-O angles is 87.4° with an estimated standard deviation of 0.8°. Such a distortion from the ideal symmetry is not surprising in view of the different environments of the oxygen atoms in the crystal structure.

The mean Xe-0 distance in the perxenate ion is estimated from the four independent distances to be 1.864 \pm 0.012 Å. This value is in good agreement with that found for the hexahydrate, 1.840 ± 0.015 Å.⁴ This distance is about 0.11 A. longer than the average $Xe-O$ distance in $XeO₃$.¹³ This difference is exactly the difference found between the 1-0 distances in the IO_6^{-5} ion in $(NH_4)_2H_3IO_6^{14}$ (1.93 Å.) and in the $IO_3^$ ion $(1.82 \text{ Å.})^{15}$; these ions are isoelectronic with XeO_6^{-4} and XeOs. Te-0 distances ranging from 1.83 to 1.95

(15) J. A. Ibers, *Acta Cvysl.,* **9, 225** (1956).

Fig. $2. -0_1$ and 0_2 each lie near the center of a square pyramid with the bonded Xe at the apex and sodium and/or water on the corners of the base.

Water molecules (position of H inferred)

a Estimated standard deviations are about 0.02 **A.** and 0.6- 0.8' for all quantities in the table.

A. have been found in what is assumed to be the $Te(OH)_{5}O^{-}$ ion by Raman.¹⁶

The geometry found is in agreement with the most obvious electronic structure for the perxenate ion, that involving six single electron pair bonds from Xe to 0 at the corners of a regular octahedron. Such a structure would lead to formal charges of -1 on each

⁽¹²⁾ See, for example, D. W. J. Cruickshank and J. S. Rollett, Acta. Cryst., *6,* 705 (1953).

⁽¹³⁾ D. H. Templeton, A. Zalkin, J. D. Forrester, and S. M. Williamson, *J. Am. Chem. Soc.,* **85,** 817 (1963).

⁽¹⁴⁾ L. Helmholz, *zbid.,* **69,** 2036 (1937).

⁽¹⁶⁾ *S.* Raman, *Inovg.* Chem., **8,** 634 (1964).

Fig. 3.-O₃ and O₄ are surrounded by slightly distorted tetrahedra composed of the bonded Xe and sodium and water.

Fig. 4.—The nearest neighbors of W_4 and W_2 (sodium and Hbonded oxygens) are arranged about these molecules in approximate trigonal bipyramids. Suggested positions of hydrogen atoms are indicated by the breaks in the bonds.

oxygen and $+2$ on Xe; there is probably some additional shift of electronic charge into the bonds from oxygen, thus leading to a small amount of doublebond character. This is consistent with the bond length found.

The geometry of the perxenate ion thus offers no surprises and adds further weight to the accumulating body of evidence that the rare gas compounds have molecular structures which are readily understood in terms of conventional ideas of structural chemistry. In particular, there are marked similarities to the structures of compounds of the neighboring halogens.

The sodium octahedra are severely distorted, as an examination of Table I11 will indicate.

Hydrogen Bonding

Hydrogen atoms have been assigned to the water molecules to form a complex three-dimensional hydrogen-bonded network which may be partially comprehended by an examination of Fig. 2–6, as well as Fig. 1. Six of the independent hydrogen atoms are involved in hydrogen bonds from water to perxenate oxygen at distances of 2.63, 2.64, 2.67, 2.72, 2.74, and 2.96 *8.* The two other hydrogen atoms may reasonably be assigned to hydrogen bonds between water molecules at distances of 3.04 and 3.05 *8.* Although these distances

Fig. 5.-The nearest neighbors of W_3 and W_1 (sodium and Hbonded oxygen) are at the corners of distorted tetrahedra. Suggested positions of hydrogen atoms are indicated by the breaks in the bonds.

Fig. 6.-Topological diagram of hydrogen bonding in sodium perxenate octahydrate. Atoms indicated may be related by symmetry operations of the space group to those atoms whosc coordinates are given in Table I.

may be too large to provide conclusive evidence for hydrogen bonds, they are the shortest nonbonded distances aside from the six above, and the bond angles (Table 111) would be reasonable if these are indeed hydrogen bonds.¹⁷ It is interesting that W_4 , which contributes hydrogen to the two shortest hydrogen bonds $(2.63 \text{ and } 2.64 \text{ Å}.)$, is also the acceptor in the postulated hydrogen bonds from *Wq* and **W3.** The coordination about **W4** is an almost regular trigonal bipyramid, W_2 and W_3 being at the apices (Fig. 4).

The extensive strong hydrogen bonding is consistent with the low temperature factors on all the atoms in the structure¹⁸ and is perhaps also in part responsible for the stability of the crystals, protecting the perxenate ions from reducing agents. The four shortest interperxenate ion *0.. '0* distances are 4.73, 4.83, 4.20, and 5.00 A.

⁽¹⁷⁾ A $O-H \cdot \cdot \cdot O$ hydrogen bond with a length of 3.35 Å. has been described by J. A. Ibers, J. Kumamoto, and R. G. Snyder, *J. Chem. Phys.*, 33, 1164 (1960).

⁽¹⁸⁾ That the temperature factor on **Oa** is lower than that for the other light atoms is viewed as an artifact, perhaps due to the same sort of systematic errors in the data which may be responsible for the large peak at the Xe position in the difference Fourier.