6. The ¹¹⁹Sn NMR spectrum¹² of a slightly larger scale reaction¹³ exhibited singlet resonances for 6 (δ 118.42), Me₃SnOSnMe₃ (δ 114.03), and Me₃SnH (δ -102.33), and there was a single resonance at $\delta - 101.55$ in the ²⁹Si NMR spectrum. Except for 6, all compounds in the reaction mixture are volatile and can be conveniently removed in vacuo (70 °C, 10⁻³ mTorr, 14 h) to afford a spectroscopically pure product. Fine colorless needles of 6 were obtained by recrystallization from hexane at -40 °C

The reactions¹⁴ of 6 with Me₄SbOSiMe₃ and Me₄SbOCMe₃ (C₆D₆, 25 °C) afford quantitative yields of 7 and the corresponding stannyl ethers (i.e., Me₃SnOSiMe₃ and Me₃SnOCMe₃). ¹³C and ²⁹Si NMR spectra of the crude products obtained after evaporation of the volatiles (70 °C, 10⁻³ mTorr, 8 h) both consist of single resonances (¹³C δ 11.44; ²⁹Si δ -104.33) and are clearly indicative of a spherosilicate with five-coordinate Me₄Sb groups.⁴ A typical crude product is spectroscopically pure, but microcrystalline 7 can be obtained by recrystallization from hexane at -40 °C.

The facility with which heterosiloxane bonds can be heterolytically cleaved at the heteroatom (i.e., Si–O–M \rightarrow [SiO⁻] + $[M^+])^{13}$ provides a wealth of interesting chemical possibilities, ranging from our initial goal to synthesize supermolecular aluminosilsesquioxanes to the preparation of entirely new framework silicates under aprotic conditions. We have only begun to explore the chemistry of these new spherosilicates, but the observation that 7 reacts with Me₃SiCl and Me₃SnCl to afford 5 and 6, respectively, is clearly consistent with our expectation that 7 would function as a labile, aprotic source of [Si₈O₂₀]⁸⁻. Our efforts to use these spherosilicates to synthesize larger silsesquioxane and aluminosilsesquioxane frameworks will be presented in due course.

Acknowledgment. These studies were supported by the National Science Foundation (Grants CHE-8703016 and CHE-9011593) and an NSF-Presidential Young Investigator Award (Grant CHE-8657262). Acknowledgment is also made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. F.J.F. gratefully acknowledges financial support from an Alfred P. Sloan

- (12) For an excellent review of ¹¹⁹Sn NMR spectroscopy, including a large compilation of ¹¹⁹Sn chemical shifts and coupling constants, see: Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 1985, 16, 73-186.
- Wrackmeyer, B. Annu. Rep. NMR Spectrosc. 1985, 16, 73-186. (13) In a typical reaction, Me₃SnOSnMe₃ (1.508 g, 4.39 mmol) was added to a suspension of 4 (230 mg, 0.542 mmol) in benzene. The mixture was stirred for 1 h at 25 °C; then the volatiles were removed in vacuo (70 °C, 10⁻³ mTorr, 14 h) to afford a quantitative yield of spectro-scopically (¹H and ¹³C NMR) pure 6. Recrystallization from hexane (+25 to -40 °C) afforded fine white needles (54%). For 6: ¹H NMR (500.13 MHz, C₆D₆, 23 °C) δ 0.362 (J_{Sn-H} = 58.2.1, 59.2 Hz); ¹³C[¹H] NMR (125.03 MHz, C₆D₆, 23 °C) δ -2.12; ²³S[¹H] NMR (99.4 MHz, C₆D₆, 23 °C) δ -101.55; ¹¹⁹Sn[¹H] NMR (37.3 MHz, C₆D₆, 23 °C) δ 118.42; mass spectrum (EI, 70 eV, 200 °C) m/e (relative intensity) 1840 (100%, M⁺ CH₃), 1662 (30%, M⁺ CH₃ Me₃Sn), 165 (50%, Me₃Sn⁺); mp 184-186 °C. Anal. Calcd (found) for C₂₄H₇₂O₂₀Si₈Sn: C, 15.54 (15.93); H, 3.91 (3.79). C, 15.54 (15.93); H, 3.91 (3.79).
- (14) In a typical reaction, a benzene solution of 6 (400 mg, 0.216 mmol) and Me₃COSbMe₄ or Me₃SiOSbMe₄ (1.94 mmol) were stirred overnight at 25 °C. Evaporation of the solvent and volatiles (70 °C, 10-3 mTorr, at 25 °C. Evaporation of the solvent and volatiles (70 °C, 10⁻³ mTorr, 8 h) afforded a quantitative yield of spectroscopically (¹H and ¹³C NMR) pure 7. Fine microcrystals of 7 were obtained in 60% yield by recrystallization from hexane (+25 to -40 °C), For 7: ¹H NMR (500.13 MHz, C₆D₆, 23 °C) δ 1.083 ($w_{1/2} = 23$ Hz); ¹³Cl¹H} NMR (125.03 MHz, C₆D₆, 23 °C) δ 1.083 ($w_{1/2} = 23$ Hz); ¹³Cl¹H} NMR (125.03 MHz, C₆D₆, 23 °C) δ 1.083 ($w_{1/2} = 23$ Hz); ¹³Cl¹H} NMR (125.03 MHz, C₆D₆, 23 °C) δ 1.083 ($w_{1/2} = 0$ °C) σ (σ MHz, C₆D₆, 23 °C) δ -104.33; mass spectrum (EI, 70 eV, 200 °C) m/e (relative intensity) 180 (50%, Me₄Sb⁺), 155 (80%, Me₅Sb⁺), 151 (100%, Me₅Sb⁺); mp >400 °C. Anal. Calcd (found) for C₃₂H₉₆O₂₀Si₈Sb: C, 21.05 (17.63); H, 5.40 (5.05). The combustion analysis of 7 consistently gives carbon and hydrogene contents that are lower than expected. This gives carbon and hydrogen contents that are lower than expected. This is presumably because the oxidation of these highly siliceous compounds is often incomplete. (To facilitate combustion, our samples are usually mixed with WO_3 in tin capsules and allowed an extended combustion time (Desert Analytics)). Considering the source of 7 and its reactions with (TMS)Cl and Me₃SnCl, which give quantitative yields of 5 and i, we are confident of our structural assignment.
- (15) (a) Voronkov, M. G.; Maletina, E. A.; Roman, V. K. Heterosiloxanes. Derivatives of Non-Biogenic Elements; Harwood Academic Publishers: London, 1988; see also references cited therein. (b) Schindler, F.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 683-94. (c) Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1965, 4, 201-11.

Foundation Research Fellowship. We also thank Professor Walter G. Klemperer (University of Illinois) for helpful comments.

Department of Chemistry University of California Irvine, California 92717

Frank J. Feher* Keith J. Weller

Received October 31, 1990

Electron Transfer in Inorganic Nitrogen Fixation¹

The biological reduction of dinitrogen involves a series of concomitant electron- and proton-transfer steps. Within this context, dinitrogen complexes of molybdenum(0) and tungsten(0) react with strong acids to produce ammonia, or hydrazine and ammonia.²⁻⁶ The initial phase of the reaction, which encompasses protonation and intramolecular electron reorganization, leads to the rapid formation of a hydrazido(2-) complex; $^{1,5,7-10}$ e.g. eq 1,

 $trans-[Mo(N_2)_2(dpepp)(PPh_3)] + 2HBr \rightarrow$ $[MoBr(NNH_2)(dpepp)(PPh_3)]Br + N_2$ (1)

$$2\{Mo^{IV}(NNH_2)\} \xrightarrow{4H^+} 2\{Mo^{III}\} + 2NH_4^+ + N_2 \qquad (2)$$

where dpepp = $PhP(CH_2CH_2PPh_2)_2$. The final phase, in THF solution, involves disproportionation¹¹ (intermolecular electron transfer) of the hydrazido(2-) complex to yield about 1 mol of ammonia/mol of Mo and 0.5 mol of N_2 /mol of Mo (eq 2).⁵ In CH₂Cl₂ solution, hydrazine is formed in addition to ammonia and N₂. In order to achieve the goal of developing a catalytic cycle for dinitrogen reduction, coupling of a reducing agent and a proton source is required. We wish to report the discovery of simple two-electron-reducing agents that fulfill the role of reducing the hydrazido(2-) ligand to ammonia, thus circumventing disproportionation (see Table I).

Reaction of trans- $[Mo(N_2)_2(dppe)(PPh_2Me)_2]$ (1), where dppe = $Ph_2PCH_2CH_2PPh_2$, with HBr (20 mol) in CH_2Cl_2 (48 h) produced ammonia, hydrazine, and N₂ in yields of 0.39, 0.44, and 1.39 mol/mol of 1, respectively, for a 100% nitrogen atom balance.¹¹ Addition of $SnCl_2$ (4 mol) to a similar reaction mixture caused significant changes in the yields of reduction products: 1.18, 0.25, and 1.19 mol/mol of 1, respectively, for a 100% nitrogen atom balance and ca. 300% increase in the yield of ammonia.^{12,13}

- Reactions of Coordinated Dinitrogen. 28. Part 26: George, T. A.; (1)
- (a) George, T. A.; Tisdale, R. C. J. Am. Chem. Soc. 1985, 107, 5157-5159. (b) George, T. A.; Tisdale, R. C. J. Am. Chem. Soc. 1985, 27, 2909-2912
- Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton Trans. (3) 1977, 1852-1860.
- Takahashi, T.; Mizobe, Y.; Sato, M.; Uchida, Y.; Hidai, M. J. Am. Chem. Soc. 1980, 102, 7461-7467. (4)
- (5) Baumann, J. A.; Bossard, G. E.; George, T. A.; Howell, D. B.; Koczon, L. M.; Lester, R. K.; Noddings, C. M. Inorg. Chem. 1985, 24, 3568-3578
- Lazarowych, N. J.; Morris, R. H.; Ressner, J. M. Inorg. Chem. 1986, (6)

- Lazarowych, N. J.; Morris, R. L., Rossier, J. L. L. Chem. Soc., Dalton 75, 3926-3932. (a) Chatt, J.; Pearman, A. J.; Richards, R. L. J. Chem. Soc., Dalton 7rans. 1978, 1766-1776. (b) Anderson, S. N.; Fakley, M. E.; Richards, R. L.; Chatt, J. J. Chem. Soc., Dalton Trans. 1981, 1973-1980. George, T. A.; Tisdale, R. C. Polyhedron 1989, 8, 1756-1757. (a) George, T. A.; Koczon, L. M.; Tisdale, R. C.; Gebreyes, K.; Ma, L.; Shaikh, S.; Zubicta, J. Polyhedron 1990, 9, 545-551. (b) Gebreyes, K.; George, T. A.; Koczon, L. M.; Tisdale, R. C.; Zubieta, J. Inorg. K.; George, T. A.; Koczon, L. M.; Tisdale, R. C.; Zubieta, J. Inorg. Chem. 1986, 25, 405-407.
- Henderson, R. A. J. Chem. Soc., Dalton Trans. 1982, 917-925. Kaul, B. B.; Hayes, R. K.; George, T. A. J. Am. Chem. Soc. 1990, 112, (11)2002-2003.

Table I. Yields^{*a*} of Nitrogen-Containing Products from Reactions of Dinitrogen Complexes with HBr^{*b*} in CH₂Cl₂ at 23 °C for 46-48 h with Substrate

		mol of product ^a			% N
compde	substrate (mol)	NH ₃	N_2H_4	N ₂	balanced
1		0.39	0.44	1.39	100
1	$SnCl_2(2)$	0.71	0.54	1.20	100
1	$SnCl_2(4)$	1.18	0.25	1.19	100
1	$SnBr_2(4)$	1.00	0.38	1.13	100
1	$GeI_2(4)$	1.24	0.13	1.22	99
1	$[Et_4N][SnCl_3]$ (4)	0.70	0.50	1.17	100
1	$Sn(acac)_{2}(4)$	0.29	0.02	1.18	68
1	$ZnCl_{2}(4)$	0.56	0.33	1.40	100
2	- · ·	0	0.24	1.30	77
2	$SnCl_2$ (4)	0.72	0.20	1.19	86
2	$Gel_2(4)$	0.87	0.14	1.36	97
2	$[Et_4N][SnCl_3]$ (4)	0.46	0.18	1.20	81
2	$ZnCl_{2}(4)$	0.01	0.21	1.27	75

^a mol/mol of Mo. ^b20 mol/mol of Mo. ^c1 = trans- $[Mo(N_2)_2$ -(dppe)(PPh₂Me)₂], 2 = trans- $[Mo(N_2)_2(PS-diphos)(PPh_2Me)_2]$. ^d[(mol of N/mol of Mo)/2] × 100.

This is the first example of the successful use of a chemical reducing agent to effect the conversion of a hydrazido complex into ammonia.¹⁴

More dramatic evidence for the redox involvement of $SnCl_2$ comes from the reactions of the polymer-anchored N₂ complex *trans*-[Mo(N₂)₂(PS-diphos)(PPh₂Me)₂] (2), where PS-diphos = -P(Ph)CH₂CH₂PPh₂ attached to polystyrene (2% divinylbenzene). 2 reacted with HBr in CH₂Cl₂ to give 0.24 mol of hydrazine/mol of 2 and *no ammonia*.¹¹ Addition of HBr and SnCl₂ to CH₂Cl₂-swollen 2 resulted in yields of ammonia of 0.70 mol/mol of 2; hydrazine yields were unchanged.

If tin(II) is behaving as a reducing agent, then germanium(II) compounds should be better. Indeed, use of GeI_2 in place of $SnCl_2$ resulted in increased yields of ammonia (see Table I). Tin(II) halides readily pick up halide ion to form SnX_3^- , which is likely to be present in these reactions. Addition of $[Et_4N][SnCl_3]$ in place of $SnCl_2$ afforded similar increases in the yields of ammonia. When 2 was treated with a Lewis acid such as $ZnCl_2$ together with HBr, no ammonia was formed.

A possible mode of interaction of tin(II) with the hydrazido complex is through a Mo-Sn bond formed by coordination of

 SnX_3^- to $[MoBr(NNH_2)(dppe)(PPh_2Me)_2]^+$ after loss of phosphine (a prerequisite for ammonia/hydrazine formation⁵). There are many examples of SnX_3^- covalently bonded to transition metals.¹⁵ Interestingly, addition of monomeric tin(II) acetyl-acetonate, $Sn(acac)_2$,¹⁶ caused a decrease in the amount of ammonia, hydrazine particularly, and N₂ formed.

With tin(II) acting as a reducing agent, a tin(IV) product will be formed. If SnX_3^- is the ligand, then two-electron oxidation coupled with coordination of halide ion to tin(IV) would result in displacement of SnX_4 . No such simple scenario can be proposed for the formation of a stable tin(IV) complex (such as $Sn-(acac)_2Br_2$) derived from $Sn(acac)_2$ in a noncoordinating solvent. In other words, $SnCl_2$ (in the form of SnX_3^-) and $Sn(acac)_2$ are both able to coordinate to Mo to form a precursor complex, but only the former can accomplish two-electron transfer because of the relative stability of the successor complex and immediate products.

The success of two-electron-reducing agents to "turn on" the hydrazido complex derived from 2 to afford ammonia closely parallels electrochemical studies carried out on Mo and W complexes. For example, following the two-electron reduction of $[W(Tos)(NNH_2)(dppe)_2]^+$ (Tos = tosylate), a complex that does not produce ammonia with acid alone, ammonia was formed.¹⁷ Similarly, two-electron reduction of the dialkylhydrazido complex,

 $[MoBr(NNCH_2(CH_2)_3CH_2)(dppe)_2]^+$, produced [Mo-(NNCH_2(CH_2)_3CH_2)(dppe)_2], which when treated with HBr yielded piperidine and the molybdenum imido complex [MoBr-(NH)(dppe)_2]^+.¹⁸

The effect of adding $SnCl_2$ and HBr to 2 is very similar to that of adding $[Mo(N_2)_2(PPh_2Me)_4]$ and HBr to 2.¹¹ It is difficult to see much resemblance between the two. The apparent requirement for loss of a phosphine before ammonia or hydrazine is formed suggests an inner- rather than outer-sphere mechanism. One common denominator is the presence of halide ion. Perhaps electron transfer involves halide ion bridging between metal centers. Further work is underway to isolate intermediates and discover other suitable reducing agents.

Acknowledgment. We are grateful to the National Institutes of Health (Grant GM-38613) for support of this work.

- (16) For many examples of $Sn(acac)_2$ behaving as a ligand, see ref 15.
- (17) (a) Pickett, C. J.; Talarmin, J. Nature (London) 1985, 317, 652-653.
 (b) Pickett, C. J.; Ryder, K. S.; Talarmin, J. J. Chem. Soc., Dalton Trans. 1986, 1453-1457.
- Trans. 1986, 1453-1457.
 (18) (a) Hussain, W.; Leigh, G. J.; Pickett, C. J. J. Chem. Soc., Chem. Commun. 1982, 747-748. (b) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. J. Chem. Soc., Dalton Trans. 1989, 425-430.

T. Adrian George*

Bharat B. Kaul

Department of Chemistry University of Nebraska—Lincoln Lincoln, Nebraska 68588-0304

Received December 17, 1990

⁽¹²⁾ Evidence of SnCl₂ acting as a reducing agent in reactions of intermediates in N₂ reduction has been reported: Jackson, M. A. Ph.D. Dissertation, University of Nebraska, 1988. An unsuccessful attempt to employ SnCl₂ to reduce hydrazido(2-) complexes has been noted: Chatt, J.; Heath, G. A.; Richards, R. L. J. Chem. Soc., Dalton Trans. 1974, 2074-2082.

⁽¹³⁾ When N₂H₄·2HCl was treated with HBr/SnCl₂ in CH₂Cl₂ (46 h), no ammonia was formed. A small amount of N₂ was evolved.

⁽¹⁴⁾ In acid reactions in which preformed hydrazido(2-) complexes were reacted with SnCl₂, the results were the same as those obtained from reactions with 1 and SnCl₂. Protonation of the bis(dinitrogen) complexes is very fast; see ref 10.

⁽¹⁵⁾ Holt, M. S.; Wilson, W. I.; Nelson, J. H. Chem. Rev. 1989, 89, 11-49.