properties of these complexes compared with the related series containing nitrogen donor ligands, $Ru(N-N)(SQ)$, suggest that the N-donor analogues exist as $Ru^{II}(SQ)_2$ species in solution but change in charge distribution to the $Ru^{III}(SQ)(Cat)$ form in the solid state.

Acknowledgment. This research was supported by the National Science Foundation under Grant CHE 88-09923. Ruthenium trichloride was provided by Johnson Matthey, Inc., through their Metal Loan Program. **Our** thanks to Prof. Arnd Vogler for providing a copy of his review article prior to publication.

Supplementary Material Available: For Ru(PPh₃)₂(DBSQ)Cl₂ and $Ru(P\overline{Ph}_3)_2(Cl_4SQ)_2$, tables giving crystal data and details of the structure determination, atom coordinates and isotropic thermal parameters, anisotropic thermal parameters, and hydrogen atom coordinates and isotropic thermal parameters (26 pages); listings of observed and calculated structure factors (32 pages). Ordering information is given on any current masthead page.

Contribution from the Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching, Federal Republic of Germany

Synthesis and Structural Characterization of an Organotitanium Complex Containing a Planar Bis(μ -oxo) dititanium Core

Jun Okuda* and Eberhardt Herdtweck

Received September *25, 1990*

Hydrolysis of trichloro[tris(trimethylsilyl)cyclopentadienyl] titanium, [(η^5 -C₅H₂(SiMe₃)₃-1,2,4]TiCl₃ (1), yields with ¹/₂ equiv of water the μ -oxo complex $[(\eta^5-C_5H_2(SIM\epsilon_3)_3\cdot 1,2,4]_2T_1_2C1_4(\mu-O)$ (2), which upon further reaction with water gives dinuclear $[(\eta^5$ -C₃H₂(SiMe₃)₃-1,2,4]₂Ti₂Cl₂(µ-O)₂ (5). An X-ray structural determination of 5 revealed the presence of a planar Ti₂(µ-O)₂
core with Ti-O distances of 1.814 (1) and 1.835 (1) A and angles at Ti a substituted cyclopentadienyl ligands are n^2 -bonded and mutually trans configurated. Compound 5 crystallizes from pentane in the monoclinic space group $C\bar{Z}/c$, with cell dimensions $a = 21.144$ (1) \bar{A} , $b = 9.713$ (1) \bar{A} , $c = 20.686$ (2) \bar{A} , $\beta = 93.90$ (1)^o, $V = 4238$ Å³, and $D(\text{caled}) = 1.194$ g·cm⁻³ (Z = 4).

Introduction

Among the transition-metal-oxo complexes bearing η^5 -C₅H₅ (Cp) or η^5 -C₅Me₅ (Cp^{*}) groups as ancillary ligands,¹ titanium-oxo complexes seem to occupy a special position. While complexes featuring a terminal oxo functionality remain unknown so far,2 a diversity of ring³ and cage⁴ frameworks in addition to the relatively common linear Ti-O-Ti core⁵ have been characterized. These organotitanium complexes can be regarded as molecular models for materials formed by the extremely complicated sol-gel processes during hydrolysis of $TiCl₄$,⁶ since they are usually prepared by the reaction of metallocene derivatives L_2TiX_2 or of half-sandwich complexes of the formula $LTiX_3$ (L = Cp, Cp^{*}; $X =$ monoanionic ligand such as halide or alkyl) with water. We

- (2) For examples without carbon ligands, see: (a) Haase, W.; Hoppe, H. *Acra Crysrallogr.* **1968,** E24,282. (b) Fowles, *G.* W. A.; Lewis, D. F.; Walton, R. A. *J. Chem. SOC. A* 1968, 1468. (c) Guilard, R.; Lecomte, C. *Coord. Chem. Reu.* 1985,65,87. (d) Hiller, W.; Strihle, J.; Kobel, W.; Hanack, M. *Z. Kristallogr.* 1982, 159, 173. (e) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. *Inorg. Chem.* **1989**, 28, 3602. (f) Recently, a reactive zirconocene-oxo complex was reported: Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. *G. J. Am. Chem.* **Soc.** 1989, Ill, 8751. Carney, M. J.; Walsh, P. J.; Bergman, R. G. *Ibid.* **1990,** 112, 6426.
- (3) (a) Gorsich, R. D. *J. Am. Chem. Soc.* 1960, 82, 4211. (b) Skapski, A. C.; Troughton, P. G. H. Acta Crystallogr. 1970, B26, 716. (c) Petersen, J. L. Inorg. Chem. 1980, 19, 181. (d) Blanco, S. G.; Gomez-Sal, M.
P.; Carreras, S. M.; Mena, M.; Royo, P.; Serrano, R. J. Chem. Soc., G., Gomez-Sal, 1989, 375, **51.**
- (a) Huffmann, J. C.; Stone, J. *G.;* Krusell, W. C.; Caulton, K. *G. J. Am. Chem.* **Soc.** 1977,99,5829. (b) Roth, A.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. *Ibid.* 1986, 108, 6832. (c) Babcock, L. M.; Day, V. W.;
- Klemperer, W. G. J. Chem. Soc., Chem. Commun. 1987, 858. (d)
Babcock, L. M.; Klemperer, W. G. Inorg. Chem. 1989, 28, 2003.
(a) Corradini, P.; Allegra, G. J. Am. Chem. Soc. 1959, 81, 5510. (b)
Thewalt, U.; Schomburg, D. J. Thewalt, U.; Kebbel, J. *Ibid.* 1978, 150, 59. (d) Döppert, K. Natur-
wissenschaften 1990, 77, 19. (e) Gomez-Sal, M. P.; Mena, M.; Palacios,
F.; Royo, P.; Serrano, R.; Carreras, S. M. J. Organomet. Chem. 1989,
375, 57.
- *Gmelins Handbuch der Anorganischen Chemie, Titan;* Verlag Chemie: Weinheim, FRG, 1951; p 307. (6)

Scheme I

report here results of our attempts to further clarify the course of these hydrolysis reactions by modifying the steric properties of the supporting cyclopentadienyl ligand and the formation of a new dinuclear organotitanoxane with a planar $Ti_2(\mu-O)_2$ core. The cyclopentadienyl ligand systems we utilized in this study are sterically highly hindered η^5 -C₅H₂(SiMe₃)₃-1,2,4 ("Si₃Cp")⁷ and η^5 -C₅H₂(CMe₃)-4-(SiMe₃)₂-1,2 ("BuSi₂Cp").⁸ They have been designed to kinetically stabilize reactive intermediates and block any bimolecular condensation reactions that would lead to highnuclearity aggregates. $8,9$

Results

The key compound $(Si₃Cp)TiCl₃(1)$, reported briefly before,¹⁰ is accessible by reacting TiCl₃ or TiCl₃(THF)₃ with Li(Si₃Cp) in THF followed by in situ oxidation of the green titanium(II1) intermediate $(Si₃Cp)TiCl₂(THF)₂$. We found that carbon tetrachloride as oxidizing agent gives reproducibly $(Si_3Cp)TiCl_3$, albeit in moderate yields. The product can be isolated as pentane-soluble, orange crystals. The BuSi_2Cp analogue

(IO) Okuda, J. *Chem. Ber.* 1990, 123, 87.

Sutin. L.: Bottomlev. F. *Ado. Orpanomet. Chem.* **1988,** 28. 329.

⁽⁷⁾ Jutzi, P.; Sauer, R. J. Organomet. Chem. 1973, 50, C29.

(8) Okuda, J. Chem. Ber. 1989, 122, 1075.

(9) (a) Main group complexes: Jutzi, P. Adv. Organomet. Chem. 1986, 26,

217. (b) f-element complexes: Edelman, M. A. Norton, R. J.; Sarjudeen, N.; Winterborn, D. J. W. *Polyhedron* 1989, 8, 1601.

(BuSi2Cp)TiC13 **(6)** can be prepared similarly and obtained as **red crystals** in *ca.* **40%** yield. The more elegant method of treating tetrakis(trimethylsilyl)cyclopentadiene⁷ with titanium tetrachloride (Scheme I) that was expected to give **1** directly with elimination of Me₃SiCl has failed so far, resulting in the formation of dark intractable material under a variety of conditions and in different solvents. It is noteworthy that nearly any trichloro(cyclopentadieny1)titanium derivative including the parent compound CpTiCl₃¹¹ as well as Cp*TiCl₃¹² and $(Si₂Cp)TiCl₃¹³ (Si₂Cr =$ η^5 -C₅H₃(SiMe₃)₂-1,3) can be efficiently synthesized by this procedure.

The trichloro complex **1** smoothly and cleanly undergoes nucleophilic substitution of one chloride ligand with oxygen nucleophiles. Thus, refluxing 1 in pure methanol gives the yellow dichloro methoxo complex $\bar{3}$ in quantitative yield, whereas 1 equiv of 2,4pentanedione (acacH) in the presence of triethylamine gives the dichloro acetylacetonato complex **4** as orange-red crystals.

The methoxo complex 3 can **be** assigned the usual three-legged piano stool structure; for the acac complex **4,** however, both square-pyramidal and pentagonal-bipyramidal configurations are in principle conceivable.¹⁴ Reaction of 1 with $\frac{1}{2}$ equiv of water yields the mono(μ -oxo)-bridged complex 2, regardless of whether a base to trap the hydrogen chloride is added or not. Both 3 and **4** are also hydrolyzed to give this oxo complex that is isolated as pentane-soluble, dark yellow crystals. Analytical, mass spectral, and NMR spectroscopic data are in agreement with the proposed structure. In particular, the strong band at 762 cm-I for the antisymmetric Ti-O-Ti vibration in the IR spectrum is diagnostic for the presence of a linear μ -oxo bridge linking two titanium fragments.⁵

Since no intermediate can be detected during the formation of **2** from the trichloride **1** by 'H NMR spectroscopy, we assume that both the water adduct of **1**, $(Si₃CP)TiCl₃(H₂O)$, and the hydroxo species $(Si₃Cp)TiCl₂(OH)$ are strong acids and readily

- (1 1) Cardoso. A. M.; Clark, R. J. H.; Moorhouse, **S.** *J. Chem.* **Soc.,** *Dalton Trans.* 1980, 1156.
- (12) (a) Yamamoto, H.; Yasuda, H.; Tatsumi, K.; Lee, K.; Nakamura, A.; Chen, J.; Kai, Y.; Kasai, N. Organometallics 1989, 8, 105. (b) Hidalgo-Llinas, G.; Mena, M.; Palacios, F.; Royo, P.; Serrano, R. J. *Organomet. Chem.* **1988,** *340,* 37.
- (13) Jutzi, **P.;** Kuhn, M. *J. Organomet. Chem.* 1979, 173, 221.
- (14) According to ¹H and ¹³C NMR spectral data, the analogous benzoyl-
acetone complex $(Si_Cp)TiCl_2(\eta^2-C_6H_3COCHCOCH_3)$ has a molecular
plane of symmetry, ruling out a rigid square-pyramidal structure:
Okuda, J. Unpublis

Figure 1. ORTEP representation of $[\{\eta^5 \text{-} C_5 H_2(SiMe_3)\} \text{-} 1,2,4]$ TiCl $]_2(\mu\text{-}O)_2$ **(5).** Atoms are drawn with 50% probability thermal ellipsoids.

Table I. Crystallographic Data for **5**

chem formula $C_{28}H_{38}Cl_2O_2Si_6Ti_2$	z	
762.0	T. °C	23 ± 1 °C
monoclinic	$D(\text{calcd})$ g-cm ⁻³	1.194
C2/c		62.6
21.144(1)		1.54184
9.713(0.6)	transm factors	0.3499-0.1207
		0.043
93.90 (0.7)		0.047
4238 (1)		
	20.686(2)	abs coeff (μ) , cm ⁻¹ λ (Cu Ka), A $R(F_n)$ $R_{\rm w}(F_{\rm o})$

dissociate to the presumably highly nucleophilic dichloro oxo anion A that attacks another molecule of **1** to give **2.** The less elec-

trophilic zirconium do form aquo and hydroxo complexes, as has been described in the recent literature.¹⁵

When the μ -oxo complex 2 is further treated with another 1 equiv of water and 2 equiv of base *(eq* 1) or, more directly, when

the trichloride **1** is reacted with 1 equiv of water in the presence of 2 equiv of **base,** the new titanoxane derivative **5** is formed cleanly and can be isolated as pentane-soluble lemon yellow needlelike crystals in **good** yield. Elemental analysis and **E1** and FD mass spectra as well as molecular weight determination by vapor

^{(15) (}a) Lasser, W.; Thewalt, U. J. Organomet. Chem. 1984, 275, 63; 1986, $311, 69$. (b) Thewalt, U.; Döppert, K.; Lasser, W. *Ibid.* 1986, 308, 303. (c) Bortolini, R.; Patel, V.; Munday, I.; Taylor, N. J.; Carty, A. J. J **Kriiger,** C. J. *Organomet. Chem.* 1989, 377, C55.

Table 11. Final Positional Parameters **of** Compound **5** (Including Estimated Standard Deviations)

atom	x	у	z	B_{eq} , ^a $\overline{A^2}$
Ti	0.03954(2)	0.08607(6)	0.03472(3)	3.03(1)
CI	0.10207(4)	0.2028(1)	$-0.03114(4)$	4.98 (2)
Sil	$-0.07988(4)$	0.2885(1)	0.11751(5)	4.28(2)
Si ₂	0.10033(4)	$-0.16633(1)$	0.16558(5)	3.85(2)
Si3	0.19365(4)	0.1804(1)	0.13218(5)	4.70 (2)
Ο.	0.03965(8)	$-0.0914(2)$	0.0074(1)	3.27(4)
C1	$-0.0028(1)$	0.1919(3)	0.1250(2)	3.37(7)
C ₂	0.0062(1)	0.0487(3)	0.1380(2)	3.40(7)
C ₃	0.0729(1)	0.0147(3)	0.1414(1)	3.27(7)
C4	0.1061(1)	0.1398(3)	0.1293(2)	3.37(7)
C5	0.0593(1)	0.2453(3)	0.1205(2)	3.61(7)
C11	$-0.1458(2)$	0.1641(4)	0.1036(2)	6.1(1)
C12	$-0.0776(2)$	0.4138(4)	0.0512(2)	6.6(1)
C13	$-0.0869(2)$	0.3825(5)	0.1949(2)	7.4(1)
C ₂₁	0.0370(2)	$-0.2920(4)$	0.1454(2)	5.8(1)
C ₂₂	0.1720(2)	$-0.2181(4)$	0.1258 (2)	5.7(1)
C ₂₃	0.1153(2)	$-0.1609(5)$	0.2559(2)	6.3(1)
C ₃₁	0.2287(2)	0.1266(6)	0.2138(2)	7.8(1)
C32	0.2009(2)	0.3688(5)	0.1225(2)	7.1(1)
C ₃₃	0.2381(2)	0.0951(5)	0.0684(2)	6.7(1)
Сp	0.0483	0.1281	0.1308	

² The equivalent isotropic parameters are defined as $B_{eq} = \frac{4}{3} [a^2 B - a^2]$ $(11) + b^2B(22) + c^2B(33) + ac \cos \beta(13)$. Cp denotes the center of the **tris(trimethylsily1)cyclopentadienyl** ligand.

pressure osmometry establish a dimeric constitution of the formula $[(Si_3Cp)TiClO]₂$. ¹H and ¹³C NMR spectra show only one set of a typical pattern for the $Si₃Cp$ ligand with chemical shifts significantly different from those of **2.** Moreover, the IR spectrum lacks the strong band in the region **750-800** cm-I that is typical for the linear Ti-O-Ti unit,⁵ while a pair of absorptions of medium intensity at **670** and 624 cm-I is observed in addition to the bands due to the Si₃Cp ligand. These data suggest that complex 5 has a Ti₂(μ -O)₂ unit with nonlinear Ti-O-Ti bridges, since for a four-membered ring of idealized *Dzh* symmetry two vibrational modes $(B_{2u}$ and B_{3u}) are expected.¹⁶ A single-crystal structure determination has confirmed the structure of two edge-sharing (Si3Cp)TiCI02 tetrahedra for **5,** which can be formally regarded as the dimer of the hypothetical mononuclear oxo species $(Si₃Cp)TiCl(=O)$. By contrast, tetranuclear $[CpTiCl(\mu-O)]₄^{3a-c}$ and trinuclear $[Cp^*TiCl(\mu-O)]_3^{3c,4d}$ are formed under similar conditions by using $CpTiCl_3$ and Cp^*TiCl_3 , respectively.

Crystals of **5** suitable for X-ray structural analysis were obtained by slow recrystallization from pentane at -40 °C. The lattice contains discrete dinuclear molecules without any significant intermolecular contacts. Figure 1 shows the molecular geometry and Table **I1** lists the final atomic coordinates. Selected interatomic distances and angles are given in Table **111.** The dinuclear molecule has a crystallographically imposed center of symmetry.

Considering the $Si₃Cp$ ligand as monodentate, the geometry around titanium is essentially tetrahedral with the $Si₃Cp$ ring centrally bonded to the d^0 metal center in the familiar η^5 fashion. The distance of titanium to the centroid of the ring ligand of **2.026 A** is unexceptional, as are all other geometrical parameters of the ancillary Si₃Cp ligand.⁹ The planar Ti₂(μ -O)₂ core of C_{2h} symmetry shows only a slight distortion from a square with Ti-O distances of 1.814 (1) and **1.835** (1) **A** and with angles of **84.23** (3)^o at the titanium atom and 95.78 (3)^o at the oxygen atom. The Ti-Ti distance of **2.707 A** is unusually short as compared with that of other dinuclear titanium complexes¹⁷ and of titanium metal (3.212 Å¹⁸). The bulky Si₃Cp ligands are arranged in a trans configuration, the rings adopting a conformation relative to each other so as to minimize interannular steric repulsion between the SiMe₃ groups. All geometrical features of the central

Table 111. Selected Bond Distances **(A)** and Angles (deg) and Their Standard Deviations

Bond Distances					
$Ti-C1$	2.266(1)	$Si1-C1$	1.878(1)		
Ti-O	1.814(1)	$Si2-C3$	1.881(1)		
Ti-Oʻ	1.835(1)	$Si3-C4$	1.889(1)		
$Ti-C1$	2.361(1)	$C1-C2$	1.428(2)		
$Ti-C2$	2.324(1)	$C1-C5$	1.421(2)		
$Ti-C3$	2.374(1)	$C2-C3$	1.445(2)		
$Ti-C4$	2.390(1)	$C3-C4$	1.434(2)		
Ti-C5	2.369(1)	$C4-C5$	1.429(2)		
$Ti-Cp$	2.026	0-0	2.447(1)		
Ti-Ti	2.7071(4)				
Bond Angles					
CI-Ti-O	106.0(0)	$Si1-C1-C2$	127.3 (1)		
$Cl-Ti-O'$	104.6(0)	$Si1-C1-C5$	127.9 (1)		
$Cl-Ti-CP$	118.1	$Si2-C3-C2$	120.4(1)		
$O-Ti-Cp$	119.7	$Si2-C3-C4$	132.8(1)		
O' -Ti-Cp	118.7	$Si3-C4-C3$	131.5 (1)		
Ti-O-Ti′	95.8(0)	$Si3-C4-C5$	121.6(1)		
$C2-C1-C5$	104.8(2)	$C3-C4-C5$	106.6(2)		
$C1-C2-C3$	110.4(2)	C1-C5-C4	111.4 (1)		
$C2-C3-C4$	106.7 (2)				

Table IV. Selected Geometrical Parameters of Complexes Containing the $Ti₂(\mu$ -O)₂ Unit

titanoxane core, including the short Ti-Ti distance, are comparable with those of the few known examples of complexes with a planar $Ti_2(\mu\text{-}O)_2$ unit, viz. $[Ti(acac)_2(\mu\text{-}O)]_2^{19}$ and $K_4[Ti(O_2C_6H_4)_2(\mu\text{-}O)]_2^{19}$ O ₂]₂.9H₂O.²⁰ A more distorted Ti₂(μ -O)₂ ring has been reported for $[(\eta^5:\eta^1\text{-}C_5H_4CMe_2C_6H_4N)TiCl(\mu\text{-}O)]_2.2CH_2Cl_2^{21}$ and a puckered $Ti₂O₂$ ring has been found in the fulvene-bridged $Cp^*Ti(\mu-\eta^5:\eta^1-C_5Me_4CH_2)(\mu-O)_2TiCp^*^{22}$ Table IV summarizes the pertinent bond distances of complexes containing the $Ti_2(\mu-O)_2$ core.

The analogous titanium-oxo complexes of the related $Busi₂Cp$ ligand $[(BuSi₂Cr)TiCl₂]₂(\mu-O)$ (7) and $[(BuSi₂Cr)TiCl]₂(\mu-O)₂$ **(8)** can be prepared in a similar manner and characterized by analytical and spectroscopic methods. When an equimolar mixture of the mono(μ -oxo)-bridged complexes 2 and 7 is treated with exactly $\frac{1}{2}$ equiv of water per titanium and 1 equiv of triethylamine, the product isolated contains the cyclodititanoxane derivatives **5** and **8** and about 10% of the crossover product $(Si₃CP)(BuSi₂CP)Ti₂Cl₂(μ -O)₂ (9) according to ¹H NMR spec$ troscopy.²³ This result suggests that the formation of the second oxo bridge to give the four-membered ring proceeds in an intramolecular manner. The presence of *9* is accounted for by a water-catalyzed scrambling between **5** and **8** (vide infra) (eq **2).**

The cyclodititanoxane **5** appears to be thermally robust showing **no** sign of decomposition or rearrangement to other derivatives when the melt is heated to 200 °C for several hours. Likewise,

- (19) Smith, G. D.; Caughlan, C. N.; Campbell, J. **A.** *Inorg. Chem.* **1972,** *I!,* 2989.
- (20) Borgias, B. **A.;** Cooper, **S.** R.; Koh, **Y. B.;** Raymond, K. N: *Inorg. Chem.* **1984,** *23,* 1009.
- (21) Clark, **T.** J.; Nile, T. **A.;** McPhail, D.; McPhail, **A. T.** *Polyhedron* **1989,** *R.* -, **1904** .~- ..
- (22) Bottomley, F.; Egharevba, G. 0.; Lin, I. J. B.; White, **P. S.** *Orgam metallics* **1985,** *4, 550.*
- (23) The ¹H NMR resonances of 9 (C₆D₆, 25 °C) are sufficiently well-
separated from those of 5 and 8: δ 7.63 (s, 2 H, C₅H₂), 7.30 (s, 2 H,
C₅H₂), 1.25 (s, 9 H, CCH₃), 0.46, 0.45, 0.30, (s, 9 H, SiCH₃)

⁽¹⁶⁾ Nakamoto, K. *Infrared and Roman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986; p 159.*
Hill, J. E.; Nash, J. M.; Fanwick, P. E.; Rothwell, I. P. Polyhedron

⁽¹⁷⁾ Hill, J. E.; Nash, J. M.; Fanwick, P. E.; Rothwell, I. P. *Polyhedron* **1990,** 9, 1617.

⁽¹⁸⁾ Wykoff, R. **W.** *G. Crystal Structures;* Interscience: New York, 1963; **Vol.** I, p 11.

when pure 5 and 8 are mixed in C_6D_6 , there is no crossover observed at room temperature even after 1 week. Only when the mixture is heated to 50 °C for 5 days can a slight scrambling (ca. **30%)** be detected. We found subsequently that traces of water catalyze the scrambling reaction at this temperature, and after **¹**week a nearly statistical amount of the three complexes **5, 8,** and **9** (molar ratio **1:1:2)** is obtained.24

The degradation of the ring structure in **5** to give first the linear derivative **2** and finally the mononuclear trichloride **1** can be easily achieved by reaction with excess of trimethylchlorosilane and hydrogen chloride in ether. **On** the other hand, further hydrolysis of **5** by treating it with excess water and base or with aqueous ammonia results in virtually complete decomposition to give an insoluble white precipitate of titanium oxide hydrate. However, a minute amount of pale yellow crystals can be isolated from such reaction mixtures irreproducibly, which according to elemental analysis and FD mass spectrometry appears to be the chloride-free cluster $[(Si₃Cr)Ti]₄(\mu-O)₆$ with an adamantane-like cage structure. In keeping with this formulation and in analogy to the structurally completely characterized complex $(Cp^*Ti)_4(\mu-O)_6$ ^{4c} the IR spectrum exhibits a broad strong band at **770** cm-I. Apparently, the nucleophilic substitution reaction of the chloride ligands in **5** cannot compete with the degradation of the Si₃Cp ligand, which is destabilized by the presence of good π -donating oxo ligands.

Discussion

In summary, we have synthesized and structurally characterized a new cyclodititanoxane with a planar $Ti_2(\mu\text{-O})_2$ core.²⁵ The controlled hydrolysis of the trichloride **1** to give **5** rather than other higher nuclearity ring or cage compounds clearly reflects the pronounced steric bulk of the $Si₃Cp$ ligand, since analogous reactions with less sterically hindered ancillary ligands such as Cp and Cp^* yield tetra- and trinuclear titanoxane derivatives.^{3,4} The steric bulk of the peripheral substituents obviously blocks further condensation and aggregation reactions. Although the ubiquitous linear or almost linear Ti-O-Ti unit seems to be favored by the π -donating effect of the oxygen atom at the electron-deficient titanium centers, a certain thermodynamic stability has to be attributed to the $Ti_2(\mu\text{-O})_2$ unit. We speculate in the absence of molecular orbital calculations that population of states with some *transannular* bonding interactions between the titanium atoms might be involved.26 **On** the basis of differing Ti-0 distances, the formulation of the $Ti_2(\mu$ -O)₂ unit as containing Ti-O double bonds has been implied for the complexes *[(q5:7'-* $C_5H_4CMe_2C_6H_4N)TiCl(\mu-O)]_2^{21}$ and $Cp^*Ti(\mu-\eta^5;\eta^1 C_5Me_4CH_2(\mu-O)_2TiCp^*²²$ Considering both structural data and chemical behavior, however, we do not believe that formula B significantly contributes to the bonding of the four-membered ring in **5.27**

- **(24)** The statistical distribution does not necessarily need to reflect the equilibrium mixture. Cf.: Garrou, **P.** E. *Adu. Organomet. Chem.* **1984,** *23, 95.*
- (25) Collis, **R. E.** J. *Chem.* **Soc.** *A* **1969,** 1895.
- (26) (a) Kahn, O.; Briat, B.; Galy, J. J. Chem. Soc., Dalton Trans. 1977,
1453. (b) Shaik, S.; Hoffmann, R.; Fisel, C. R.; Summerville, R. H.
J. Am. Chem. Soc. 1980, 102, 4555. (c) Köhler, F. H.; Hetendanz, N.; Mllller, *G.;* Thewalt, U. *Organometallics* **1987,** *6,* **1 15.**
- (27) For organotransition-metal complexes with both terminal and bridging
oxo groups see: (a) Nugent, W. A.; Mayer, J. M. Metal Ligand
Multiple Bonds; Wiley: New York, 1988. (b) Holm, R. H. Chem. Rev.
1987, 87, 1401. (c) H J.: Kusthardt, U.; Okuda, J. *Polyhedron* **1988,** 6, **1165.**

There is a close analogy between the dimeric titanium oxo complexes described here and the recently reported cyclodimetalloxanes of group 14 elements $(R_2E)_2(\mu$ -O)₂ (E = Si, Sn). The structurally characterized derivatives, $(R_2Si)_2(\mu-O)_2$ (R = mesityl²⁸) and $(R_2Sn)_2(\mu-O)_2$ (R = CH(SiMe₃)₂²⁹), both contain bulky ligands and have striking structural similarities to the titanoxane derivatives. Thus, an unusually close *transannular* contact between the metalloid atoms E^{30} is observed and the four-membered ring forms a lozenge with only slightly different **E-0** bond lengths. Finally, there is apparently also a comparatively short uranium(IV)-uranium(IV) bond in $[(Si_2Cp),U]_2(\mu O$ ₂.³¹

Experimental Section

General Consideration. All operations were performed under an inert atmosphere of nitrogen using standard Schlenk-line techniques. THF and diethyl ether were distilled from sodium benzophenone ketyl. Pentane and hexane were purified by distillation from sodium/potassium alloy. Triethylamine was distilled from $CaH₂$ and stored over molecular sieves. $Si₃CpH₁$ ⁷ BuSi₂CpH_i⁸ TiCl₃(THF)₃,³² and (Si₃Cp)TiCl₃¹⁰ were synthesized as described in the literature. 'H NMR and IyC NMR spectra were recorded in C₆D₆ at 25 °C on a JEOL GX 400 spectrometer. IR spectra were obtained **on** a Nicolet *5* DX **FT** IR spectrometer using KBr pellets. Electron-impact mass spectra were taken at **70** eV on **a** Varian MAT 311 A instrument and field desorption mass spectra on a Finnigan MAT 90 mass spectrometer. Melting points were determined in capillary tubes under nitrogen and are uncorrected. Elemental analyses were performed by the Microanalytical Laboratory of the Anorganisch-chemisches Institut der TU Miinchen.

 $[(Si₃Cr)TiCl₂]₂(\mu-O)$ (2). A mixture of water (9 μ L, 0.5 mmol) and triethylamine (140 μ L, 101 mg, 1.0 mmol) in 5 mL of THF was slowly added dropwise with vigorous stirring to a solution of $(Si₃C_p)TiCl₃ (435$ **mg,** 1.0 **mmol)** in ether **(20** mL) at room temperature. After the completion of the addition, all volatiles were removed in vacuo, the residue was extracted with pentane **(3 X** 10 mL), and the extracts were filtered. The yellow filtrate was concentrated and slowly cooled down to -78 \degree C to give dark yellow crystals: yield 360 mg (88%); mp 159 °C. ¹H NMR: 6 **7.65** (s, **2** H, C5H2), **0.47 (s, 18** H, SiCH,), **0.43 (s, 9** H, SiCH,). "C('HJ NMR: *6* **148.83, 146.55, 140.13** (ring-C), **1.27, 0.25** (SiCH,). IR (cm-I): **2961** mw, **2903** w, **1250 s, 1098 s, 985** m, **929 ms, 839** vs, **762 s, 745 s, 640** w, **632** w, **451** m, **398 ms.** E1 MS *(m/e,* relative intensity): **818** (M'. *5%),* **803** (M' - CH,, 100%). Anal. Calcd for C28HJBC1\$i6Ti2: C, **41.17;** H, **7.16;** C, **17.36.** Found: C, **41.21;** H, **7.25;** CI, **16.92.**

(Si₃Cp)TiCl₂(OMe) (3). In 20 mL of methanol was suspended (Si3Cp)TiCIy **(435** mg, 1.0 **mmol)** and the mixture refluxed until all of the solid dissolved. The mixture was cooled down slowly to -40 °C to afford well-formed orange-yellow crystals: yield **410** mg **(95%);** mp **106** H, SiCH,), **0.27 (s, 9** H, SiCH,). "C('HJ NMR: 6 **142.52, 139.89, 138.89** (ring-C), **71.82** (OCH,), **0.96, -0.38** (SiCH,). IR (cm-I): **2956** mw, **2917** w, **1249 s,** 11 **15** vs, **1102 s, 999** m, **932 m, 835** vs, **755 m, 630** mw, **594** mw, **491** w, **395 ms. E1** MS *(m/e,* relative intensity): **430** (M+, 4%), 415 $(M^+ - CH_3, 100\%)$. Anal. Calcd for C₁₅H₃₃Cl₂₀Si₃Ti: C, **41.66;** H, **7.69;** CI, **16.39.** Found: **41.59;** H, **7.36;** CI, **16.08.** [•]C. ¹H NMR: δ 7.38 (s, 2 H, C₅H₂), 3.95 (s, 3 H, OCH₃), 0.35 (s, 18

(Si₃Cp)TiCl₂(H₃CCOCHCOCH₃) (4). A solution of $(Si_3Cp)TiCl_3$ (500 mg, **1.15 mmol)** in pentane **(30** mL) was treated with 2,4-pentanedione (1 **18** pL, 1 **15** mg, 1.15 **mmol)** at **room** temperature and then with triethylamine **(160** pL, **116** mg, **1.15 mmol).** A white precipitate rapidly formed, and the color of the mixture turned darker. After being stirred for **30** min, the reaction mixture was filtered and the filtrate concentrated and cooled to -78 °C to give orange-red crystals: yield 450 mg **(78%);** mp **121** "C. 'H NMR: 6 **7.33 (s, 2** H, CsH2), **5.02 (s,** 1 H, COCHCO), **1.63 (s,** 3 H, CH,CO), **0.52 (s, 18** H, SiCH3), **0.28 (s, 9** H, SiCH,). ')C('H) NMR: 6 **190.96** (CO), **148.36, 144.17, 141.27** (ring-C),

- (28) Fink, M. J.; Haller, K. J.; West, **R.;** Michl, J. *J. Am. Chem.* **Soc. 1984, 106,** 822. Michaelczyk, M. J.; Fink, M. J.; Haller, K. J.; West, **R.;** Michl, J. *Organometallics* **1986,** *5,* **531.**
- (29) Edelman, M. A.; Hitchkock, **P.** B.; Lappert, M. F. *J. Chem. Soc., Chem. Commun.* **1990, 11 16.**
- **(30)** The short Si-Si distance in 1,3-cyclodisiloxanes is a matter of on-going debate; **see,** for example: Grev, **R. S.;** Schaefer, H. F., **111.** J. *Am. Chem. SOC.* **1987,109,6571.** Somogyi, A.; Tamas, J. J. *Phys. Chem.* **1990,94, 5554.**
- (31) Blake, P. C.; Lappert, M. F.; Taylor, **R.** *G.;* Atwood, J. L.; Zhang, H. *Inorg. Chim. Acta* **1987, 139, 13.**
- (32) Manzer, **L.** E. *Inorg. Synth.* **1982, 21,** 135.

102.61 (COCHCO), **25.32** (CH,CO), **1.20, -0.49** (SiCH,). **IR** (cm-l): **2953 ms, 2899** w, **1564 s, 1534 s, 1333** w, **1291** mw, **1249 s. 1106** m, **1031** m, **983** m, **931 m, 895** m, **842** vs, **761 ms, 641** mw, **630** mw, **462** m, **432** m. *E1* MS *(m/e,* relative intensity): **500** (M', **2%), 485** (M' - CHI, 5%), 464 (M⁺ - Cl, 100%). Anal. Calcd for C₁₉H₃₆Cl₂O₂Si₃Ti: C, **45.68;** H, **7.26;** CI, **14.19.** Found: C, **45.58;** H, **7.50;** CI, **14.09.**

 $[(Si₃C_p)TiCl₂(\mu-O)₂(5)$. A solution of $(S₁₃C_p)TiCl₃(435 mg, 1.0)$ mmol) in either **(15** mL) was treated with water **(18** pL, 1.0 mmol) at **room** temperature and subsequently with triethylamine **(280 pL, 200 mg, 2.0** mmol). The resulting yellow suspension was stirred for **30** min, and all volatiles were evaporated. The residue was extracted with pentane **(3 X I5** mL) and the filtrate concentrated until incipient crystallization. Over a period of a week, lemon yellow **needles** were obtained upon cooling to **-78** 'C: yield **320** mg **(85%);** mp **197** "C. IH NMR: 6 **7.62 (s, 2** H, C5H2), **0.44 (s, 18** H, SiCH,), **0.29 (s, 9** H, SiCH,). "C('H] NMR: 6 **142.97, 137.72, 136.82** (ring-C), **1.11, -0.68** (SiCH,). IR (cm-I): **2958** mw, **2896** w, **1249 s, 990** ms, **937** m, **883 m, 838** vs, **756 s, 671 s, 657** ms, **639** ms, **624 s, 474 m, 426** w. E1 MS *(m/e,* relative intensity): **762** (M', *5%),* **747** (M' - CH,, 100%). FD MS *(mle):* **762** (M'). Molecular weight (vapor-pressure osmometry in benzene): **692** *(M,* = 762.0). Anal. Calcd for C₁₄H₂₉ClOSi₃Ti: C, 44.14; H, 7.67; Cl, 9.31. Found: C, **44.48;** H, **7.91;** CI, **9.41.**

(BuSi,Cp)TiCI, *(6).* To a suspension of TiCI,(THF), **(5.93** g, **16 mmol)** in **70** mL of THF was added dropwise a solution of Li(BuSi,Cp) **(436** mg, **16** mmol) at **-95** "C. The mixture was allowed to warm up to **room** temperature and then refluxed for **2** h. The brownish green mixture was treated with carbon tetrachloride (1 mL, **1.59** g, **30** mmol) and refluxed for **4** h. The solvent was removed in vacuo, the residue extracted with pentane **(3 X 15** mL), and the filtrate concentrated and cooled to -40 'C to afford orange-red crystals: yield **2.80** g **(42%);** mp **18 H, SiCH₃**). ¹³C^{{1}H} NMR: δ 161.71, 147.72, 133.03, (ring-C), 34.49 (CCH,), **30.82** (CCH,), **0.81** (.%CHI). IR (cm-I): **2965 m, 2937** w, **2929** w, **2906** w, **1252 s, 857** vs, **759** m, **439** mw, **406** mw. **E1** MS *(mfe,* relative intensity): **418** (M', **2%), 403** (M' - CH,, 100%). Anal. Calcd for C15H29C13Si2Ti: C, **42.91;** H, **6.96;** CI, **25.33.** Found: C, **43.35;** H, **7.09;** CI, **25.16. 128** 'C. 'H NMR: 6 **7.31 (s, 2** H, **C5H2), 1.18 (s, 9** H, CH,), **0.33 (s,**

 $[(BuSi, Cp)TiCl₂]₂(\mu-O)$ (7). This compound was prepared from (BuSi2Cp)TiC13 in a manner analogous to that described to prepare **2** and isolated as dark yellow flakes: **85%** yield; mp **179** 'C. 'H NMR: 6 **7.34 (s, 2** H, C5H2), **1.25 (s, 9** H, CCH,), **0.45 (s, 18** H, SiCH,). IR (cm-I): **2963** m, **2901** w, **1250 s, 981** m, **861** m, **841** vs, **759 s, 731** vs, **670** m, **638 s, 454** in, **400** m. El MS *(m/e,* relative intensity): **784** (M', **4%), 769** (M' - CH,, **40%).** Anal. Calcd for C,0H58C140Si4Ti2: C, **43.92;** H, **7.45;** CI, **18.07.** Found: C, **45.95;** H, **7.58;** CI, **17.86.**

 $[(BuSi_2Cp)TiCl₂(\mu-O)₂(8)$. This compound was synthesized by using (BuSi,Cp)TiCI, following an analogous procedure as described for the preparation of **5** and obtained as pale yellow crystals: yield **75%;** mp **238** H, SiCH,). "C('HJ NMR: *6* **151.94, 139.19, 129.13** (ring-C), **33.45 (CH,), 30.76** (CCH,), **1.20** (SiCH,). IR (cm-I): **2960 m, 2904 w, 1250** $^{\circ}$ C. ¹H NMR: δ 7.35 (s, 2 H, C₅H₂), 1.26 (s, 9 H, CCH₃), 0.47 (s, 18

s, 877 ms, 850 vs, **759** ms, **668** vs, **638 s, 450** m. **E1 MS** *(mle,* relative intensity): 728 (M⁺, 12%), 713 (M⁺ - CH₃, 100%). Anal. Calcd for C30HS8C1202Si4Ti2: C, **49.37;** H, **8.01;** CI, **9.72.** Found: C, **49.21;** H, **7.96;** CI, **9.41.**

X-ray Structure Determination. Crystal data for $[(Si₃Cr)TiCl]₂(\mu-O)₂$ **(5)** are listed in Table I. The compound, obtained as lemon yellow crystals by **slow** cooling of n-pentane solution, crystallizes in the monoclinic space group $C2/c$ (No. 15; systematic absences *hkl* $(h + k = 2n)$ $+ 1$, *hol* ($l = 2n + 1$; $h = 2n + 1$), $0k0$ ($k = 2n + 1$)). Cell constants were obtained from least-squares refinement by using a set of **42** reflections in the range **60.30** < **20** < **84.90.** Data collection was performed on an Enraf-Nonius CAD-4 four-circle diffractometer with graphitemonochromated Cu K α radiation. An ω -scan mode in the range 2.0° < θ < 60.0° was chosen with variable scan width (1.10 + 0.30 tan θ)° \pm **25%** before and after each reflection for background determination. From **3475** measured reflections, **73** reflections with negative intensity were rejected. After merging, **3062** independent reflections with *I* > 0.01 were used and **298** parameters were refined by full-matrix least-squares. The intensity data were corrected for Lorentz and polarization effects and for a small linear decay $(16.2h = -3.3\%)$. An absorption correction was applied. The structure was solved by using direct methods techniques and difference Fourier synthesis and refined with anisotropic thermal parameters for the non-hydrogen atoms. All hydrogen atoms were located and refined isotropically. Refinements converged with unweighted and weighted agreement factors $R(F_o) = 0.043$ and $R_w(F_o) = 0.047$, respectively. The refinement finished with a shift/error ratio of ≤ 0.001 in the last cycle, and the residual electron density yielded **+0.52** and **-0.40** e/A3, respectively, near the heavy atom Ti. All calculations were performed on $VAX11/730$ and $VAX8200$ computers using the STRUX-II³³ and **SDP** systems.34

Acknowledgment. Generous support by the Volkswagen-Stiftung and the Bund der Freunde der TU Munchen is gratefully acknowledged. We thank Prof. W. A. Herrmann for his continued interest.

Supplementary Material Available: Listings of final positional parameters, thermal parameters, bond lengths and angles, and selected least-squares planes (and distances of atoms from these planes), stereodrawings of the molecule and unit cell, and a table of all crystal data and refinement parameters (18 pages); a listing of observed and calculated structure factor amplitudes **(I7** pages). Ordering information is given **on** any current masthead page.

⁽³³⁾ Schmidt, R. E.; Birkhahn, M.; Massa, W.; Kiprof, P.; Herdtweck, E. **STRUX-11.** Program System for Crystallographic Data Analysis. Universitat Marburg, **1980,** and Technische Universitat Miinchen, **1985-1 987.**

⁽³⁴⁾ Frenz, B. A. The Enraf-Nonius CAD **4** SDP System. In *Computing Crystoiiogruphy;* Delft Univcrsity Press: Delft, Holland, **1978; pp 64-7** 1,