ion adopts a distorted octahedral geometry with the following angles: $N1-Co-N4 = 100.3^{\circ}$, $N2-Co-N3 = 176.7^{\circ}$, and $O1-\frac{1}{2}$ $Co-O2 = 71.8$ °. The large N1-Co-N4 angle, similar to that observed in $RuCl(\eta^2\text{-}SO_4)(NO)(PPh_3)_2$, reflects the strain in the contiguous four-membered ring.¹⁰ A slightly deformed tetrahedral configuration was found for the sulfate ligand with O-S-O angles of 99.4, 109.4, 112.0, and 113.4°. The exocyclic S-O bonds are about 0.07 Å shorter than the endocyclic ones. "Short-long" trans effects are seen clearly: N4-Co (1.949 (4) Å) vs O1-Co (1.974 (4) **A);** NI-Co (1.983 (4) **A)** vs 02-Co (1.950 (3) **A).** The two axial N-Co bonds are almost identical $(1.971(4)$ and $1.977(4)$ A). Finally, an interesting hydrogen-bonded network¹¹ exists betrween N4-H, water, and ClO₄. One is remained of the S_NICB mechanism¹² in which hydroxide attacks an NH_2R coordinated to Co(III).

Hydrolysis of **1** was monitored by the absorbance decrease at 548 nm observed when a 10.2 mM aqueous solution of **I** was added to 0.2 M N-ethylmorpholine buffer $(I = 1.0$ M with NaClO₄) thermostated at 25.0 °C in a stopped-flow spectrophotometer. First-order rate constants of 0.19, 0.21, and 0.22 s^{-1} were obtained at pH values of 7.24, 7.89, and 8.20, respectively. This is about 65 times faster² than $[(en)_2Co(\mu-SO_4)]_2^{2+}$, where ring strain is not a factor, and almost 10 times faster than $[(\text{trpn})Co(\eta^2 -$ OAc)]²⁺. Binding of SO_4^{-2} to $[(\text{trpn})\text{Co}(\text{OH}_2)_2]^{3+}$, followed from the 548-nm absorbance increase at pH 2.9 ($[Co] = 5.04$ mM; NaClO₄, *I* = 1.0 M; 0.023-0.24 M NaSO₄; 25°C), gave a second-order rate constant of 0.11 $M^{-1} s^{-1}$. p-Nitrophenyl sulfate, a weak ligand, was not hydrolyzed by $[(\text{trpn})Co(OH_2)(OH)]^{2+}$.

Acknowledgment. This work was supported by the National Institutes of Health and the Army Research Office. We also greatly appreciate the assistance of Professors K. *S.* Hagen and C. G. Trowbridge with the X-ray and stopped-flow analyses, respectively.

Supplementary Material Available: Details of the crystal structure determination for $[(\text{trpn})Co(\eta^2-SO_4)]ClO_4 \cdot H_2O$, including crystallographic experimental procedures, **ORTEP** drawings, and tables of crystal data (Table **SI),** atomic positional parameters (Table **S2),** bond distances (Table **S3),** bond angles (Table S4), anisotropic thermal parameters (Table *S5),* and hydrogen atom positions (Table S6) **(IO** pages); a listing of observed and calculated structure factors for $[(\text{trpn})Co(\eta^2-SO_4)]$ $ClO₄·H₂O$ (7 pages). Ordering information is given on any current masthead page.

N₄H--- OH--- "OCK
H

(see also Tables S2 and **S6** and S6 of the supplementary data): N4-0, and *O_w*-O_p (2.856 Å); *N*₄H-O_w (1.941 Å); and O_wH-O_p (1.855 Å). (12) Basolo, F.; Pearson, R. *Mechanisms of Inorganic Reactions:* John Wiley

and Sons, Inc.: New York, 1967.

A Triply Bonded Dirhenium Complex Containing a Nitrosyl Ligand

The reactions of nitric oxide with multiply bonded dimetal complexes can, like those with carbon monoxide and organic isocyanides, lead to cleavage of the metal-metal bond and the formation of products in which a metal-metal interaction is **no** longer present.^{1,2} Examples include the conversions of M₀₂-

 $(PR_3)_4$ (X = Cl, Br; PR₃ = PEt₃, P-n-Bu₃, PEtPh₂) to Mo- $(NO)_{2}X_{2}(PR_{3})_{2}$ ³ Mo₂(O-*i*-Pr)₆ to Mo₂(μ -O-*i*-Pr)₂(O-*i*-Pr)₄- $(NO)_2^4$ and $W_2(O-t-Bu)_6$ to $W(O-t-Bu)_3(NO)(py)^3$. A few instances are also known where nitric oxide forms adducts with multiply bonded dimetal species, such as the case of the diruthenium complexes $Ru_2(\mu-O_2CR)_4(NO)_2$ and $Ru_2(\mu-O_2CR)_4$ N,Ph2)4(N0)2.6 Structure determinations **on** the carboxylate complexes where $R = Et$ or CF_3 show that the Ru-Ru bonds are much longer and weaker than in the parent $Ru_2(\mu-O_2CR)_4$ compounds.^{6,7} Quite different behavior is encountered with the Quite different behavior is encountered with the nitrosonium cation NO⁺, which we have found can serve as a one-electron oxidant in converting triply bonded dirhenium(I1) species to their dirhenium(III, II) congeners. $8-10$ We now describe a previously unreported reaction course in which NO+ first behaves as a one-electron oxidant, followed by the incorporation of NO into the final reaction product without a net change in the metal-metal bond order.

Solutions of the dirhenium(II) complex $\text{Re}_2\text{Cl}_4(\mu\text{-dmpm})_3$ (1; $d_{\text{mpm}} = Me_2PCH_2PMe_2$) in 0.1 M n-Bu₄NPF₆/CH₂Cl₂ exhibit two one-electron oxidiations at $E_{1/2}$ = +0.53 V and $E_{p,a}$ = +1.30 **V** vs Ag/AgCI." The reversible oxidation can be accessed both electrochemically and chemically, the latter with the use of NOPF_6 as the oxidant. A mixture of 1 (0.10 g, 0.108 mmol) and NOPF₆ (0.023 g, 0.130 mmol) in 10 mL of dichloromethane was stirred at room temperature for **15** min, the purple solution evaporated to dryness, and ethanol added to the residue to afford the microcrystalline complex $[Re_2Cl_4(\mu\text{-}dmpm)_3]PF_6(2)$, yield 0.08 g (70%). Anal. Calcd for $C_{15}H_{42}Cl_4F_6P_7Re_2$: C, 16.88; H, 3.95. Found: C, 16.36; H, 4.14. The identity of **2** was further established by its electrochemical and spectroscopic properties.¹²

A different reaction product is obtained if **1** is reacted with $NOPF₆$ by using 1:2 molar proportions of these reagents. The reaction between 1 $(0.21 \text{ g}, 0.228 \text{ mmol})$ and NOPF₆ $(0.080 \text{ g},$ 0.455 mmol) in dichloromethane (15 mL) for 4 h at room temperature led to a color change from red to purple to brown. The reaction mixture was filtered and evaporated to dryness and the residue treated with ethanol to give dark red-brown $Re₂Cl₅$ -(dmpm),(NO) **(3),** yield 0.08 g (41%). Anal. Calcd for $C_{10}H_{28}Cl_5NOP_4Re_2$: C, 14.10; H, 3.29. Found: C, 14.62; H, 3.08. This same product was formed when acetone was used as the reaction solvent in place of dichloromethane and was also formed by the reaction of 2 with 1 equiv of NOPF_6 in dichloromethane.

The diamagnetic nitrosyl complex **3,** which is the first triply bonded dimeta1 species to contain a NO ligand, shows a single intense $\nu(NO)$ mode at 1750 cm⁻¹ in its IR spectrum (Nujol mull). Its $H NMR$ spectrum (recorded in CDCl₃ at room temperature) exhibits a broad resonance (unresolved multiplet) at δ +4.13 $(P-CH_2-P)$ and multiplets at $\delta +2.46, +2.00$, and $+1.60$, in an intensity ratio of ca. 1:1:2, which are assigned to CH_3 -P. The resonance at **6** +1.60 is composed of two overlapping multiplets. Overall, these results indicate the presence of four inequivalent pairs of CH₃-P groups in the structure of 3. The cyclic voltammograms of solutions of 3 in 0.1 M $n-Bu_4NPF_6/CH_2Cl_2$ show a

- (3) Nimry, T.; Urbancic, M. A.; Walton, R. A. *Inorg. Chem.* **1979**, 18, 691. (4) Chisholm, M. H.; Cotton, F. **A.;** Extine, M. W.; Kelly, R. L. *J. Am.*
- *Chem. Soc.* 1918, *100,* 3354. *(5)* Chisholm, M. H.; Cotton, F. **A,;** Extine, M. W.; Kelly, R. L. *Inorg.*
- **Chem. 1979**, *18*, 116.
Lindsay, A. J.; Wilkinson, G.; Montevalli, M.; Hursthouse, M. B. J.
- (6) Lindsay, A. J.; Wilkinson, G.; Montevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 2723.
(7) Quelch, G. E.; Hillier, I. H.; Guest, M. F. J. Chem. Soc., Dalton Trans. 1990, 3075.
-
- *(8)* Cotton, F. **A.;** Dunbar, K. R.; Falvello, L. R.; Tomas, **M.;** Walton, R. A. J. *Am. Chem. Soc.* 1983, *105,* 4950.
-
- (9) Dunbar, K. R.; Walton, R. A. *Inorg. Chem.* 1985, 24, 5.
(10) Costello, M. T.; Derringer, D. R.; Fanwick, P. E.; Price, A. C.; Rivera,
M. I.; Scheiber, E.; Siurek, E. W., III; Walton, R. A. *Polyhedron* 1990, *9,* 573.
- (11) Anderson, L. B.; Cotton, F. A.; Falvello, L. R.; Harwood, W. S.; Lewis,
- D.; Walton, R. A. *Inorg. Chem.* **1986**, 25, 3637.

(12) Cyclic voltammogram (0.1 M n-BuNPF₆/CH₂Cl₂): $E_{1/2}$ (red) = +0.54

V and $E_{p,a}$ = +1.28 V vs Ag/AgCl. IR spectrum (Nujol mull): 840

s cm⁻¹ (ν (P-F) of

⁽IO) Taura, T. *Inorg. Chim. Acra,* 1989, *158,* 33.

⁽I I) The following distances pertain to the hydrogen-bonded network

⁽I) Cotton, F. **A.;** Walton, R. **A.** *Muliple Bonds Between Meral Atoms;* Wiley: New York, 1982.

⁽²⁾ Walton, R. A. *ACS Symp. Ser.* 1981, *No. 155,* 207.

Figure 1. ORTEP view of the structure of $Re_2Cl_3(dmpm)_2(NO)$ (3) with the hydrogen atoms of the dmpm ligands omitted. The thermal ellipsoids are drawn at the 50% probability level. Some representative and important distances **(A)** and angles (deg) are as follows: Re(l)-Re(2) = 2.379 (1), Re(1)-Cl(11) = 2.622 (4), Re(1)-Cl(12) = 2.373 (6), Re- $(1)-P(11) = 2.431 (6), Re(1)-P(12) = 2.455 (6), Re(1)-N(1) = 1.68$ (3), Re(2)-Cl(21) = 2.461 (6), Re(2)-Cl(22) = 2.406 (6), Re(2)-Cl(23) $= 2.408$ (6), Re(2)-P(21) = 2.446 (6), Re(2)-P(22) = 2.414 (6), N- $(1)-O(1) = 1.28$ (3); Re(2)-Re(1)-Cl(11) = 158.2 (1), Re(2)-Re(1)- $Cl(12) = 112.1 (2), Re(2)-Re(1)-P(11) = 98.2 (2), Re(2)-Re(1)-P(12)$ $= 98.5$ (1), Re(2)-Re(1)-N(1) = 75.3 (6), Re(1)-Re(2)-Cl(21) = 152.9 (2), Re(1)-N(1)-O(1) = 174 (1), P(11)-Re(1)-P(12) = 162.7 (2), $P(21)-Re(2)-P(22) = 107.7$ (2).

reversible oxidation at $E_{1/2}$ = +0.95 V and an irreversible reduction at $E_{p,c} = -0.82 \text{ V} \text{ vs } \text{Ag}/\text{AgCl}.$

The X-ray crystal structure of **3** was determined **on** a crystal grown by the slow diffusion of hexane vapor into a dichloromethane solution of the complex.¹³⁻¹⁵ The important features of the structure are shown in Figure 1. The complex, which contains a linearly bound nitrosyl ligand $(Re(1)-N(1)-O(1)$ = 174 (1)^o), is formed from 1 through loss of one dmpm ligand. The remaining dmpm ligands are bound such that there is a rarely encountered cis, trans disposition of phosphorus donor atoms at the two metal centers;¹⁶ the angles $P(22)-Re(2)-P(21)$ and $P(12)-Re(1)-P(11)$ are 107.7 (2) and 162.7 (2)^o, respectively.

- Dark red crystals of 3 are orthorhombic, space group *Iba2* (No. 45). (13) with $a = 14.278$ (3) Å, $b = 23.966$ (3) Å, $c = 13.880$ (3) Å, $V = 4749$ (3) Å³, $Z = 8$, $d_{\text{rad}} = 2.383$ g/cm³. X-ray data were collected at 20 °C on a 0.38 × 0.17 × 0.13 mm crystal for 1743 independent reflections having 4 < 28 < 45' **on** an Enraf-Nonius diffractometer using graphite-crystal-monochromated Mo K α radiation $(\lambda = 0.71073$ A). Lorentz and polarization corrections were applied to the data. The structure was solved by the use of the Patterson heavy-atom method, which revealed the positions of the Re atoms. The remaining non-hydrogen atoms were identified in succeeding difference Fourier syntheses. Hydrogen atoms of the dmpm ligands were included at fixed positions. An empirical absorption correction was applied,¹⁴ but no correction for extinction was made. The non-hydrogen atoms of the dirhenium complex were refined anisotropically; corrections for anomalous scattering were applied to these atoms.¹⁵ The final residuals were $R = 0.036$ (R_w) = 0.047) and GOF = 1.399 for 1427 data with $I > 3\sigma(I)$. Refinement in the other enantiomorph gave $R = 0.040$ ($R_w = 0.052$) and GOF = 1.544.
- Walker, N.; Stuart, D. *Acta Crystallogr., Sect. A: Found. Crystallogr.* 1983, *A39,* **158.**
- (15) Cromer, **D.** T. *International Tubles for X-ray Crystallography:* Kynoch: Birmingham, England, 1974: Vol. IV, Table 2.3.1. (b) For the scattering factors used in the structure solution *see:* Cromer, D. T.: Waber, J. T. *Ibid.* Table 2.28.
- (16) See, for example, the case of the isomer $mer, fac\text{-}Mn_2(CO)_{6}(\mu\text{-}dmpm)_{2}$. A cis, trans coordination is more common with a pair of bridging Ph2PCH2PPh2 ligands. Lemke, **F.** R.; Kubiak, C. P. *Inorg. Chim. Acta* 1984, *113,* 125 and references cited therein.

While this molecule possesses no crystallographically imposed symmetry, there is a virtual plane of symmetry containing the NO ligand and the atoms $C(11)$, $Cl(12)$, $Re(1)$, $Re(2)$, and $Cl(21)$ that bisects the angles $P(22)-Re(2)-P(21)$ and $P(12)-Re(1)-P-$ (1 1); this is shown in Figure S1, which is an **ORTEP** representation of the structure as viewed down the Re-Re axis. If we treat the nitrosyl ligand as being formally **NO',** then **3** can be considered as a derivative of $Re₂⁴⁺$. The Re-Re bond distance of 2.379 (1) \AA accords with this being a Re \equiv Re bond, although it is longer than the comparable distance in $Re_2Cl_4(\mu$ -dmpm)₃ (2.3157 (4) **A),** a complex that also contains two axial Re-C1 bonds." This bond lengthening is probably a consequence of a weakening of the π and/or δ components of the Re=Re bond through Re \rightarrow $NO(\pi^*)$ back-bonding. Indeed, the Re(1)-N(1) bond distance of 1.68 **(3) A** appears to be somewhat shorter than the Re-N bond distances normally associated with mononuclear mononitrosyl complexes of rhenium halides,¹⁷ although, in view of the relatively large esd's associated with the nitrosyl unit in the structure determination of **3,** this difference may not be significant. However, the relative shortness of the Re-Cl bond that is trans to the nitrosyl ligand may support the occurrence of some degree of Re \rightarrow $NO(\pi^*)$ back-bonding since this could enhance any $Cl(p_{\pi}) \rightarrow$ Re(d) contribution to the Re(1)-Cl(12) bond as well as the *u*bonding interaction. The disparity in the axial and equatorial Re-CI bond distances at Re(1) (2.622 (4) and 2.373 (6) **A,** respectively) is comparable to that seen in $Re_2Cl_4(\mu\text{-dmpm})_3$.¹¹ However, a much smaller difference exists between the Re-C1 bonds about $Re(2)$; in particular, the axial bond $Re(2)-Cl(21)$ is surprisingly short (2.461 (6) **A).** Although the reason for this is not obvious, it may reflect a disparity in charges at the two Re centers that renders Re(2) more positively charged and therefore leads to a shortening of this axial bond.

The formation of $\text{Re}_2\text{Cl}_5(\mu\text{-dmpm})_2(\text{NO})$ (3) from $\text{Re}_2\text{Cl}_4(\mu\text{-dmpm})_2(\text{NO})$ $d_{m,p}$ (1) is unusual in that it requires the loss of a dmpm ligand from the latter complex. Since **1** is normally very stable and shows little tendency to undergo ligand dissociation, it is apparently the attack of NO⁺ upon the more reactive oxidized species $[Re₂Cl₄(\mu-dmpm)₃]$ ⁺ that leads to the formation of 3. However, this is obviously a complex reaction since some proportion of the dirhenium species must be sacrificed to provide the extra chloride ligand that becomes incorporated into the final product **3. In**terestingly, when the reaction is carried out in the presence of added chloride ion (as in [(Ph,P),N]CI) we observed **no** discernible increase in the yield of 3, implying that free Cl⁻ is not required. The mechanism and scope of this reaction are under further investigation, and attempts are being made to prepare other multiply bonded dimetal complexes that contain the NO ligand.

Acknowledgment. Support from the National Science **Foun**dation, through Grant No. CHE88-07444 to R.A.W. and Grant No. CHE86-15556 for the purchase of the microVAX **I1** computer and diffractomer, is gratefully acknowledged. We also acknowledge the National Institutes of Health (Grant No. RR-01077) and the National Science Foundation (Grant No. 87- 14258) for funds for the purchase of the NMR spectrometers.

Supplementary Material Available: **A** listing of atomic positional parameters for the structure of Re₂Cl₅(dmpm)₂(NO) (Table S1) and a figure (Figure SI) showing a view of the structure down the Re-Re axis *(5* pages). Ordering information is given **on** any current masthead page.

⁽¹⁷⁾ For example, in the structures of $(Et_4N)[Re(NO)Cl_4(py)], (Et_4N)$ -
[Re(NO)Br₄L] (L = EtOH or MeCN), and [Re(NO)F(CO)-
(PPh₃)₃]ClO₄ the Re-N distances occur in the range 1.72 (2)-1.76 (2) **A.** (a) Ciani, G.; Giusto, D.; Manassero, M.; Sansoni, M. *J. Chem. Soc., Dalton Trans.* 1975,2156. (b) Ciani, G.; Giusto, D.; Manassero, M.; Sansoni, M. *J. Chem.* **Soc.,** *Dalton Trans.* 1978,798. (c) Cameron, T. **S.;** Grundy, K. R.; Robertson, **K.** N. *Inorg. Chem.* 1982, 21,4149.

Department of Chemistry	Irene Ara
Purdue University	Phillip E. Fanwick
West Lafayette, Indiana 47907	Richard A. Walton*

Received January 15, 1991