Volume 30

Number 10

May 15, 1991

Inorganic Chemistry

© Copyright 1991 by the American Chemical Society

Communications

One-Dimensional Migration of ³MLCT Excitation Energy in Pd^{II}(phbpy)Cl (phbpy = 6-Phenyl-2,2'-bipyridine)

Cyclometalated complexes of d⁶ and d⁸ transition-metal ions have received a great deal of attention in recent years.¹⁻⁵ The synthesis and the crystal structure of the title compound have been described only recently.^{3,4} The structure is characterized by a one-dimensional stacking of the molecular units. Pd^{II}(phbpy)Cl (phbpy = 6-phenyl-2,2'-bipyridine) exhibits very unusual luminescence properties below 80 K, which will be reported and interpreted in this communication. The nature of the luminescent state is triplet metal-to-ligand charge transfer (³MLCT) as in $Ru(bpy)_3^{2+}$. Very efficient energy migration with an estimated hopping rate of 10¹¹ s⁻¹ occurs at 41 K. From an analysis of the decay curves this migration is shown to be highly one-dimensional (1-D), as can be expected from the crystal structure. Pd^{II}-(phbpy)Cl was prepared by stirring a solution of 350 mg (1.02 mmol) of Na₂PdCl₄ and 302 mg (1.3 mmol) Hphbpy in 50 mL of methanol for 24 h at room temperature. The yellow solid was filtered out and washed with hexane, water, acetone, and diethyl ether (yield 86%). The analytical and NMR data were consistent with the above formula. Needlelike crystals were grown from a saturated solution in DMF by slow evaporation (3 weeks).

At the top of Figure 1 the 8 K luminescence spectrum of a crystal of Pd^{II}(phbpy)Cl is shown in comparison with the 77 K spectrum of $Ru(bpy)_3^{2+}$ in a 4:1 ethanol/methanol glass.⁵ There is a striking similarity of the two spectra with the ~ 1500 -cm⁻¹ progression as a dominant feature. The first strong peak in $Pd^{II}(phbpy)Cl$ is an ~500-cm⁻¹ vibronic origin, as can be deduced from a comparison with the absorption spectra (not illustrated here).⁶ This energy is in the range of the Pd-Cl vibration. In $Ru(bpy)_{3}^{2+}$ the enabling modes are about 200 cm⁻¹.⁷ It is thus safe to assume that the nature of the luminescent states is the same for both complexes, i.e. ³MLCT.

Figure 1 also illustrates the temperature dependence of the Pd^{II}(phbpy)Cl luminescence. At 8 K most of the luminescence is intrinsic. Raising the temperature leads to luminescence from a trap with the first strong luminescence peak shifted by ~ 1400 cm⁻¹ to lower energy. At 80 K the intrinsic luminescence can no longer be observed. Thus, excitation energy migration from the originally excited Pd^{II}(phbpy)Cl molecules is transferred to traps,

- (1) Barigeletti, F.; Sandrini, D.; Maestri, M.; Balzani, V.; von Zelewsky, A.; Chassot, L.; Jolliot, P.; Maeder, U. Inorg. Chem. 1988, 27, 3644.
- King, K. A.; Watts, R. J. J. Am. Chem. Soc. 1987, 109, 1589.
- Constable, E. C.; Henney, R. P. G.; Leese, T. A.; Tocher, D. A. J. Chem. Soc., Dalton Trans. 1990, 443.
 Constable, E. C.; Henney, R. P. G.; Leese, T. A.; Tocher, D. A. J.
- Constante, E. C., Henney, R. P. G., Leese, T. A., Toener, D. A. J. Chem. Soc., Chem. Commun. 1990, 513.
 Krausz, E.; Ferguson, J. In Progress in Inorganic Chemistry; Lippard, S., Ed.; Wiley: New York, 1989; Vol. 37, p 293.
 Karlen, T. Lizentiatsarbeit, Universität Bern, 1990.
- Yersin, H.; Gallhuber, E.; Hensler, G. In Photochemistry and Photo-
- physics of Coordination Compounds; Yersin, H., Vogler, A., Eds.; Springer-Verlag: Berlin, Heidelberg, 1987; p 101.

Figure 1. Temperature dependence of the Pd^{II}(phbpy)Cl single-crystal luminescence. The integral of the spectra has been normalized. The broken line is the Ru(bpy)₃²⁺ luminescence in a 4:1 ethanol/methanol glass at 77 K shifted by 2720 cm⁻¹ to higher energy.

Figure 2. 8 K luminescence of a Pd^{II}(phbpy)Cl crystal excited at various wavelengths. The spectra have been normalized. The top trace depicts the 11 K luminescence of Pt^{II}(phbpy)Cl in PMMA.

and this excitation energy transfer is thermally activated.

Figure 2 shows the dependence of the luminescence spectrum of Pd^{II}(phbpy)Cl on the wavelength of excitation at 8 K. The 496.5-nm Ar⁺ ion laser line-by which the Pd(II) complex is not excited—leads to selective excitation of the trap luminescence, as can be seen by comparison with the 80 K spectrum in Figure 1. A good guess as to the nature of the trap is obtained from a comparison with the corresponding Pt^{II}(phbpy)Cl. A spectrum of this complex imbedded in PMMA (poly(methyl methacrylate)) is included in Figure 2. It is not as well resolved as in the crystal, but we can safely assign the trap to this complex, which easily substitutes for a host molecule in the crystal. The Na₂PdCl₄

Figure 3. Normalized logarithmic plot of the emission decay curves of Pd^{II}(phbpy)Cl measured at 20 000 cm⁻¹ for several temperatures. The full lines correspond to fits of the decay curves by eq 1 with $k_e = 14050$ s⁻¹. The insert shows the temperature dependence of the square of k_1 .

compound supplied by Fluka had a nominal Pt impurity level of 120 ppm. From an X-ray fluorescence analysis of our samples we conclude that the synthesis and crystallization of Pd^{II}(phbpy)Cl leads to an accumulation of Pt(II) up to an order of magnitude of 0.1%.

In Figure 3 the decay curves of the intrinsic luminescence measured at 20000 cm⁻¹ are illustrated for four temperatures. We notice a considerable increase of the decay rate between 5 and 41 K, and we attribute this to nonradiative excitation energy migration through the Pd^{II}(phbpy)Cl lattice to the traps. The decay curves are nonsingle exponentials down to 5 K. This can have several reasons, and in the present system it is most likely due to a pronounced anisotropy of the energy migration. We have one of the very rare examples of a system in which the transfer rate in one dimension significantly exceeds the rates in the other directions, thus leading to a "slowing down" in the course of the luminescence decay process. The archetype 1-D transition-metal compound is tetramethylammonium manganese(II) chloride (TMMC), in which the luminescence decay curves show a very similar behavior and to which various theoretical models of exciton migration have been applied.^{8,9} The decay curves in Figure 3 can reasonably be fitted by the function¹⁰

$$I = I_0 \exp(-k_e t - k_1 t^{1/2})$$
(1)

This function has been derived for 1-D energy migration in a lattice with an ordered distribution of impurities.¹⁰ This assumption is likely to be incorrect in our case, but it has been shown that experimental data usually do not significantly discriminate between this equation (eq 1) and treatments that assume random distributions of the impurity.^{8,9} In eq 1 k_1 is the rate constant for exciton trapping along the chain and k_e is the sum of the intrinsic decay rate k_i and a rate constant k_3 , which takes into account three-dimensional energy migration to traps ($k_e = k_i + k_i$ k_3). The curves were fitted by a least-squares procedure before taking the logarithm of the intensity. For the 5 K curve both parameters k_e and k_1 were optimized whereas for all the other curves k_e was kept at its 5 K value. The 5 K values of k_e and k_1 are 14050 s⁻¹ and 193 s^{-1/2}, respectively. The insert in Figure 3 shows the temperature dependence of the square of k_1 , which is directly proportional to the 1-D hopping rate v_1 as given by eq 2, where X_{trap} corresponds to the mole fraction of trap sites to

$$\nu_1 = \pi(k_1)^2 / [8(X_{\rm trap})^2]$$
 (2)

Pd(II) sites.¹⁰ With a trap concentration of around 0.1% we thus get a 1-D hopping rate of approximately 10¹¹ s⁻¹ at 41 K. This rate is about 10 times slower than the on-chain hopping rate in

tetramethylammonium manganese(II) chloride at room temperature.^{8,9} Recalling the one-dimensional stacked structure of the present compound, with a Pd-Pd separation of about 5.06 Å,¹¹ we find that the deduced order of magnitude of the transfer rate seems reasonable. The obtained 1-D hopping rate represents an upper limit, since k_e was kept at its 5 K value for fitting the curves at higher temperatures. Fits in which k_e was floated as well were not significantly better. For a more rigorous analysis of the decay curves a measurement of the intrinsic decay rate k_i in a dilute medium would be necessary. However, we have failed to find a suitable glass. All the glasses examined showed very large red shifts of the spectra, indicating that some changes occur in the first coordination sphere.

Nevertheless, we can get a lower limit of the one- to threedimensional hopping rate ratio on the basis of the present results. The three-dimensional hopping rate, ν_3 , can be approximated by⁸

$$\nu_3 \approx -\nu_1/2 + (\nu_1^2/4 + 0.8k_3^2/X_{\rm trap}^2)^{1/2}$$
(3)

Taking into account that $k_3 \leq k_e$, we obtain an upper limit for ν_3 of 1×10^4 s⁻¹ and a lower limit for the $\nu_1:\nu_3$ ratio of 1×10^6 at 5 K. A pronounced one-dimensionality of the energy migration is therefore established.

Acknowledgment. We thank Professor R. Giovanoli for performing the X-ray fluorescence analysis of our samples.

(11) Constable E.; Tocher, D. Private communication	n.
Institut für Anorganische, Analytische und Physikalische Chemie	Thomas Karlen Andreas Ludi
Universität Bern	Hans U. Güdel
Freiestrasse 3	
3000 Bern 9, Switzerland	
Research School of Chemistry	Hans Riesen*
The Australian National University	
GPO Box 4	
Canberra, ACT 2601, Australia	

Received July 31, 1990

Bond Angle of CaF₂ in Several Host Matrices

In 1989, we published a note¹ indicating that infrared measurements of central metal atom isotope shifts for TiF_2 isolated in an argon matrix, which had been used to calculate an FTiF bond angle of ca. 120°, were in error. In addition, we questioned "how many of the results on high temperature molecules lead to unambiguous determination of the shape of the free molecule". Since that paper, we have shown² that, in a nitrogen matrix, NiCl₂ has a bond angle of ca. 130° using infrared isotope shift data and the harmonic approximation. This is in contrast to an argon matrix² where "The isotopic shift method ... cannot reliably detect any non-linearity". It is also known that the shapes of ThCl₄,³ CsUF₆,⁴ CsNbF₆,⁵ and some pentachlorides⁶ are martrix dependent.

For the group IIa dihalides, the heavier metals in combination with the more electronegative halogens appear to give the more strongly bent structures. The experimental techniques that have

- (1)Beattie, I. R.; Jones, P. J.; Young, N. A. Angew. Chem., Int. Ed. Engl. 1989, 28, 313.
- Beattie, I. R.; Jones, P. J.; Young, N. A. Mol. Phys., in press. Beattie, I. R.; Jones, P. J.; Millington, K. R.; Willson, A. D. J. Chem.
- Soc., Dalton Trans. 1988, 2759.
- Arthers, A.; Beattie, I. R.; Jones, P. J. J. Chem. Soc., Dalton Trans. (4)1984. 711.
- Beattie, I. R.; Millington, K. R. J. Chem. Soc., Dalton Trans. 1987, (5) 1521.
- Ogden, J. S.; Levason, W.; Hope, E. G.; Graham, J. T.; Jenkins, D. M.; (6)Angell, R. M. J. Mol. Struct. 1990, 222, 109.

Auerbach, R. A.; McPherson, G. L. Phys. Rev. B 1986, 33, 6815. Knochenmuss, R.; Güdel, H. U. J. Chem. Phys. 1987, 86, 1104. (8)

Wieting, R. D.; Fayer, M. D.; Dlott, D. D. J. Chem. Phys. 1978, 69, (10) 1996.