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Two-dimensional nuclear Overhauser enhancement and chem- 
ical exchange spectroscopy in laboratory (NOESY)4-7 and 
rotating (ROESY)8-12 frames have become powerful methods 
for investigating molecular structures and dynamicsO4-l4 Both 
methods provide information about cross relaxation among 
spatially proximal and chemically exchanging spins. Whereas 
NOESY or its phase-sensitive version4J3J4 is not always suitable 
for differentiation of the two effects, it has been suggested that 
ROESY provides an attractive alternative to distinguish chemical 
exchange from cross-relaxation,+l4 The fundamental advantage 
of ROESY over NOESY is that spin-locked NOEs are always 
positive; Le., there is no region of W T ~  for which enhancements 
are small or zero, as in NOESY. Furthermore in the spin-locked 
experiment, cross peaks due to NOEs are inverted relative to 
diagonal peaks, whereas those due to chemical exchange are in 
phase with the d i ag~na l .~  

Only a few reports have appeared of use of 2-D methods for 
conformational and dynamic analysis of paramagnetic mole- 
c u l e ~ ~ ~ - ~ ~  including heme proteins and heme model complexes.18-22 
The lack of studies is largely due to the fact that paramagnetic 
molecules exhibit drastically enhanced relaxation rates, which 
hamper the use of the 2-D methodol~gy.l~-~~ Nevertheless, we 
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will show that ROESY provides an elegant method for unam- 
biguously establishing the existence of chemical exchange in a 
paramagnetic complex. We have chosen the bis(N-methylim- 
idazole) complex of (mono(o-dialky1amido)tetraphenylporph- 
inato)iron(III) chloride (l), where the carboxamide substituent 
is derived from 3-aza-bicyclo[ 3 . 2 . 2 ] n 0 n a n e , ~ ~ ~ ~ ~  to demon- 
strate both the power and limitations of the ROESY technique. 
NOESY and saturation transfer experiments performed at several 
temperature nicely complement the ROESY studies. 

The pyrrole protons of 1 exhibit a unique resonance pattern, 
as reported earlier.23,24 Eight individual signals are observed, 
which coalesce into two broad peaks25 at the high-temperature 
limit of the solvent (CDC13). To further investigate the exchange 
process we have acquired ROESY spectra of 1 on a 500-MHz 
spectrometer at room temperature and at -20 The ROESY 
map shown in Figure l a  clearly reveals cross peaks among the 
pairs of resonances 1,4; 2,3; 5,8; and 6,7. They have the same 
phase as the diagonal and are therefore chemical exchange cross 
peaks. No direct NOE correlations, which would be inverted 
relative to the diagonal, are detectable. This is consistent with 
the prediction that the relaxation mechanism in this paramagnetic 
complex is mainly determined by dipolar interactions of the proton 
spins with the spin of the unpaired electron and not by dipole- 
dipole interactions between proton spins.27 The dipolar inter- 
actions between protons and theunpaired electron thus effectively 
quench cross-relaxation in the rotating frame. Chemical ex- 
change, resulting from hindered rotation of the axial ligand on 
the same side of the porphyrin plane as the carboxamide 
substituent, is still rapid on the NMR time scale at -20 OC and 
is the dominant contribution to the magnetization transfer.28To 
determine whether the observed cross-correlations might be 
overshadowed by homonuclear Hartmann-Hahn artifacts,10*2+31 
HOHAHA experiments were also performed, but no cross peaks 
were detectable under any experimental condition. 
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Figure 1. (a) ROESY spectrum of 1 in CDCI3 a t  -20 "C, recorded a t  500 MHz. Cross peaks are observed between resonances 1,4; 2,3; 5,8; and 6,7, 
which have the same phase as the diagonal. (b) NOESY spectrum of 1 in CDCI, a t  -15 OC, recorded a t  300 MHz. In addition to the same sets of 
cross peaks observed in the ROESY spectrum shown in Figure l a ,  additional cross peaks are observed between peaks 5,6 and 7,8. 
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Figure 2. Proposed model for the assignment of pyrrole proton peaks of 
1, which is consistent with both chemical exchange and N O E  cross peaks 
observed in the NOESY spectrum shown in Figure lb. In this revised 
model (peaks 6 and 7 reversed from the original24), N O E  cross peaks 
arise from cross-relaxations that occur between protons in pyrrole rings 
A and D and rings B and C. As proposed p r e v i o u ~ l y , ~ ~  chemical exchange 
occurs as both the carboxamide and axial ligand switch from being 
positioned over pyrrole ring A to being over B. 

In spite of the short T I  relaxation times of the complex (3-5 
ms at -25 OC),32933 NOESY spectra were successfully obtained 
at +20, 0, -15, -20, and -25 OC, with optimized mixing times 
of 30, 25, 20, 15 and 10 ms, re~pectively.~~ The NOESY map 
at -1 5 OC, shown in Figure 1 b, reveals the same cross-correlations 
asdoes the ROESY spectrum (Figure la). Additionalcross peaks 
are also observed between resonances 5,6 and 7,8. These cross 
peaks must be due to NOE cross-relaxations between protons 
that are in close proximity, since they become relatively more 
pronounced at lower temperatures, where chemical exchange is 
suppressed. Unfortunately, NOE correlations are not observed 
among other resonances, due to the significantly shorter T I S  of 
signals 1 4 ,  which may render cross peakintensities undetectable, 
as discussed previously by La Mar'* and Bertini.**** Strong 
paramagnetically-induced relaxation precludes observation of any 
cross peaks below -25 OC. 

To determine whether the correlations observed among the 
resonances 5,6 and 7,8 are due to NOE cross-relaxations between 
protons within the same pyrrole ring, we acquired COSY spectra 
of 1. However, no couplings were observed, due to the short T2 
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relaxation times of the complex1sJ*J9 (3.0-4.4 ms at 25 OC35) 
and/or the fact that the protons that give rise to the 5,6 and 7,8 
cross-correlations in the NOESY spectrum are in different pyrrole 
rings, facing each other on either side of phenyl rings, as suggested 
in Figure 2. This model for the electron densities at the pyrrole-H 
positions is slightly revised from that proposed earlier,24 in which 
the assignments of resonances 6 and 7 are reversed. On the basis 
of the model shown in Figure 2, COSY cross-correlations are 
expected among the pairs of resonances 1,5; 2,7; 3,6; and 4,8, 
while NOE cross peaks are expected between resonances $6; 7,8; 
14;  and 2,3. Although we have been unable to observe any COSY 
cross-correlations, the observation of NOE cross peaks between 
resonances $6 and 7,8 areconsistent with therevisedmodelshown 
in Figure 2.36 

Saturation transfer experiments, performed from +25 to -30 
OC, are consistent with the ROESY and NOESY results. At the 
lowest temperatures, irradiation of resonances that are related 
through chemical exchange has no effect on the intensity of 
exchange related resonances, whereas when the temperature is 
raised, irradiation results in remarkable reduction of signal 
intensity, as shown in Figure 3 (supplementary material). 

These studies show that the ROESY experiment can be used 
to verify the existence of chemical exchange in paramagnetic 
complexes such as model hemes. Furthermore, for the investi- 
gation of chemical exchange, the ROESY experiment provides 
an attractive alternative to NOESY and saturation transfer 
experiments carried out at several temperatures. These exper- 
iments give the same information, but are more time-consuming, 
since they must be performed at several temperatures, and 
experimental parameters must be optimized at each temperature. 
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