Volume 32

Number 4

February 17, 1993

Inorganic Chemistry

© Copyright 1993 by the American Chemical Society

Communications

Spectroscopic and Structural Properties of Binuclear Platinum-Terpyridine Complexes

James A. Bailey, Vincent M. Miskowski, and Harry B. Gray*

Arthur Amos Noyes Laboratory,[†] California Institute of Technology, Pasadena, California 91125

Received August 11, 1992

Square planar d⁸ complexes show a pronounced tendency to aggregate as weakly metal-metal-bonded oligoners.¹ The most thoroughly investigated materials include infinite-chain $Pt(CN)_4^{2-}$ species² and several luminescent binuclear complexes (e.g., $Pt_2(P_2O_5H_2)_4^{4-}$ and $[LL'Ir(\mu-pz)]_2$ (LL' = (CO)₂, (CO)(PR₃), 1,5-cyclooctadiene; pzH = pyrazole)) that possess metal-metalbonded $d\sigma^*(d_{z^2})p\sigma(p_z)$ excited states.³ Mononuclear α -diimine complexes of Pt(II) (e.g., $Pt(bpy)(CN)_2$ (bpy = bipyridine)) tend to crystallize as linear chains, and the highly luminescent solid materials are more intensely colored than the monomers.⁴ These complexes exhibit luminescence spectra that occur at lower energy and have much different emission profiles than those for the $Pt(CN)_4^{2-}$ chains. It has been suggested⁴ that the solid-state emission of this type of complex is attributable to a $d\sigma^* \rightarrow \pi^*$ -(α -diimine) excited state.

We have begun an investigation of the photophysics of $d\sigma^*\pi^*$ excited states in discrete binuclear d⁸-d⁸ complexes containing polypyridyl ligands. Kostic has characterized $\{ [Pt(tpy)]_2(\mu-can) \}$ $(PF_6)_3$ (tpy = terpyridine; can = canaverine),⁵ and we have prepared related complexes with a variety of anionic N-N bridging ligands (Table I).⁶ The colors of the compounds range from light orange (1) to deep red (3, 4). In addition to UV absorptions attributable predominantly to $\pi\pi^*$ transitions, there are new visible absorption bands that, along with emission maxima, move to lower energy with decreasing Pt-Pt separation (Figure 1).7 The

Contribution No. 8696.

- (1) (a) Miller, J. S., Ed. Extended Linear Chain Compounds; Plenum Press: New York, 1982. (b) Keller, H. J., Ed. Chemistry and Physics of One Dimensional Metals; Plenum Press: New York, 1977.
- Gliemann, G.; Yersin, H. Struct. Bonding 1985, 62, 87.
 (a) Roundhill, D. M.; Gray, H. B.; Che, C.-M. Acc. Chem. Res. 1989, 22, 55.
 (b) Smith, D. C.; Miskowski, V. M.; Mason, W. R.; Gray, H. B. J. Am. Chem. Soc. 1990, 112, 3759. (c) Marshall, J. L.; Hopkins, M. D.; Miskowski, V. M.; Gray, H. B. Inorg. Chem. 1992, 31, 5034. (4) Houlding, V. H.; Miskowski, V. M. Coord. Chem. Rev. 1991, 111, 145
- and references therein. (5) Ratilla, E. M. A.; Scott, B. K.; Moxness, M. S.; Kostic, N. M. Inorg.
- Chem. 1990. 29, 918.
- (6) A related compound {[Pt(tpy)]₂(μ-guanidine)}(ClO₄)₃ (5) has been reported: Kip, H.-K.; Che, C.-M.; Zhou, Z.-Y.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1992, 1369. The relationship between the Pt-Pt separation (3.090(1), 3.071(1) Å) and the absorption spectrum (λ_{max} 483 nm) of 5 accords with our findings. Kip, Che, and co-workers have observed weak emission ($\phi = 1.27 \times 10^{-4}$) for 5 in fluid CH₃CN solution. We also have found very weak emissions from 1-4 in CH₃CN solutions.
- (7) (a) Bailey, J. A.; Gray, H. B. Acta Crystallogr. 1992, C48, 1420. (b) Bailey, J. A.; Miskowski, V. M.; Gray, H. B. Acta Crystallogr., in press.

Figure 1. Electronic spectra of 3: -, absorption at room temperature (CH₃CN solution); --, emission at 77 K (10:10:1 MeOH:EtOH:DMF glass); - - -, excitation at 77 K (10:10:1 MeOH:EtOH:DMF glass).

Figure 2. Emission spectra of 1 at 77 K: --, CH₃CN solution; --, CH₃CN/1% DMF; ---, CH₃CN/1% MeOH.

solid-state luminescence spectra at ambient temperature for all these complexes exhibit featureless bands (Figure 1) that blueshift slightly at 77 K (Table I); the excited-state lifetimes fall between 1 and 2.5 μ s. The 77 K glassy solutions of 2-4 show similar luminescence profiles. Terpyridine vibrations (1300-1700 cm⁻¹) are enhanced in the resonance Raman spectra of 1-4,

© 1993 American Chemical Society

Table I. Structural and Spectroscopic Data for $[Pt(tpy)]_2(\mu-L)^{3+}$ Complexes

N-N	d(Pt-Pt) (Å)	abs $\lambda_{\max} \ (nm)^{a,b}$	emission λ _{max} (nm)	lifetime τ (µs)	excitation λ_{max} (nm) ^{b,c}	Raman $\Delta \nu \ (\mathrm{cm}^{-1})^d$
μ-pyrazole (μ-pz) (1)	3.432(3) ^e	430 (2520)	630, 630 ^g			1338
			592*	1.1*		1480
			472, ⁱ 513 ⁱ		410 ⁱ	
			542, ⁱ 585 ⁱ			
μ-azaindole (μ-az) (2)	3.13(2)/	460 (2050)	690 [/]		497 ⁱ	1338
			6788			1481
			639 ⁱ	2.50		1570
						1606
μ -diphenylformamidine (μ -dpf) (3)	3.049(3)	490 (3390)	712/		515/	1338
		(,	7108			1482
			670/	2.51/		1572
			0,0			1606
µ-arginine (µ-can) (4)	2 998(2)*	488 (3700)	730/	<0.02/	520/	1338
	2.770(2)	400 (5700)	7158	1 4/	520	1486
			600/	2 34/		1572
			070	2.34		1606

^a DMF solutions (CH₃CN solution for 3) at room temperature. Molar absorptivity in parentheses. ^b Lowest energy feature. ^c Monitor lowest energy emission. ^d DMSO solution at room temperature; 442-nm He/Cd laser. ^e Reference 7a. ^f Solid at room temperature. ^g Solid at 77 K. ^h CH₃CN solution at 77 K. ⁱ 10:10:1 MeOH:EtOH:DMF glass at 77 K. ^j Reference 7b. ^k Reference 5. ^l Solid at 10 K.

thereby confirming that a tpy orbital is involved in the low-energy electronic transition.⁸

The emission spectra of the pyrazolyl-bridged complex (1) in a frozen acetonitrile solution and in the solid state are similar in appearance (λ_{max} 592 nm); however, in frozen DMF or CH₃CN/ 1% DMF (DMF = dimethylformamide) solution or a 10:10:1 EtOH:MeOH:DMF glass, the emission blue-shifts and is highly structured (Figure 2). Since similarly structured emission bands are observed for Pt(tpy)(NH₃)^{2+,9} Zn(tpy)Cl₂,¹⁰ Ir(tpy)₂^{3+,11} [Pt-(bpy)en](ClO₄)₂ (bpy = bipyridine; en = ethylenediamine),⁴ and terpyridine⁹ itself, this feature is attributed to a tpy-localized ³($\pi\pi^*$) transition. The striking result is that very small changes in solvent composition can cause the observed emission to change from the broad, poorly structured ³(d $\sigma^*\pi^*$) to the highly structured ³($\pi\pi^*$) system. Apparently, the energy of the ³(d $\sigma^*\pi^*$) state depends strongly on the nature of the solvent, as expected for a state with MLCT character.

The fluid solutions of these new complexes in EtOH/MeOH/ DMF do not show any significant emission intensity at room temperature,⁶ and there is essentially complete quenching of otherwise highly emissive glassy solutions when they are warmed through their glass transition temperature. This constitutes yet another distinction from the $d\sigma^*p\sigma$ excited states of complexes such as $Pt_2(P_2O_5H_2)_4^{4-}$, which are relatively long-lived in fluid solution.^{3a}

It is apparent that the orbital configuration of the lowest energy electronic excited state in complexes 1-4 depends on the metalmetal separation. For shorter Pt-Pt distances, the lowest state is ${}^{3}(d\sigma^{*}\pi^{*})$; as the distance between the platinum atoms increases, the ${}^{3}(d\sigma^{*}\pi^{*})$ energy increases. At sufficiently large Pt-Pt separations, the ${}^{3}(d\sigma^{*}\pi^{*})$ state will move above ${}^{3}(\pi\pi^{*})$. Interestingly, the μ -pyrazolyl complex 1, which displays both $d\sigma^{*}\pi^{*}$ and $\pi\pi^{*}$ emission spectra, is very near this crossover.

Acknowledgment. We thank Virginia Houlding for measuring the solid-state lifetimes of compound 4 (Table I) and Chi-Ming Che for helpful discussions. J.A.B. acknowledges an NSERC (Canada) Postdoctoral Fellowship. This work was supported by the National Science Foundation and the Office of Naval Research.

⁽⁸⁾ Attempts to determine v(Pt₂) (expected to be well below 100 cm⁻¹) have thus far been unsuccessful.

⁽⁹⁾ Bailey, J. A.; Miskowski, V. M.; Gray, H. B. Unpublished results.

⁽¹⁰⁾ Ohno, T.; Kato, S.; Kaizaki, S.; Hanazaki, I. Inorg. Chem. 1986, 25, 3853.

 ⁽¹¹⁾ Ayala, N. P.; Flynn, C. M., Jr.; Sacksteder, J. N.; Demas, J. N.; Degraff, B. A. J. Am. Chem. Soc. 1990, 112, 3837.