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The electrochemical and photophysical properties of d8-d8 
binuclear complexes have been extensively investigated during 
the past 15 years.' Early reports focused on photoinduced 
electron-transfer  reaction^,^-^ while more recent studies have 
delineated excited-state atom transfer as an important reactivity 
mode for these compounds.la* Additionally, d8-d8 species have 
been shown to activate small molecules via electrocatalytic cycles.6 

Many of these reactions are proposed to involve oxidized or 
reduced d848 complexes as intermediates. While d7-d8 and d7- 
d7 oxidized species have recently been isolated and character i~ed,~,~ 
the reactive nature of analogous reduced species has made their 
characterization more difficult. To date, the only spectroscopic 
evidence of a reduced d8-d8 complex comes from pulse radiolysis 
experiments with Rh2(TM4)42+ and Pt~(pop)4~-  (where TM4 = 
2,5-diisocyano-2,5-dimethylhexane, and pop2- = pyrophosphate) 
in which the metastable Rh2(TM4)4+ and Ptz(pop)s- ions were 
transiently formedS9 Efforts to generate these compounds 
electrochemically have been unsuccessful due to secondary 
reactions which lead to irreversible cathodic responses.I0.' I 
Herein, we report the reversible 1 e- electrochemical reductions 
of Ir2(dimen)d2+ in 0.1 M TBA+PF6-/CH,CN (TBA+ = n-tet- 
rabutylammonium; dimen = 1,8-dii~ocyano-p-menthane).~* The 
stabilities of Ir2(dimen)4+ and Ir2(dimen)d0 have enabled us to 
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characterize these species with UV-vis and IR spectroelectro- 
chemical methods. 

Figure 1 shows the UV-vis spectroelectrochemistry of 
Ir2(dime11)~~+ in 0.1 M TBA+PF6-/CH3CN (TBA'PF6- = 
tetrabutylammonium hexafluorophosphate). As evidenced by 
the CV recorded in the spectroelectrochemical cell', (inset, Figure 
l ) ,  Ir2(dimen)42+ undergoes two chemically reversible, le- 
reductions = -1.34 v ;  E+/oO' = -1.53 V vs AgCI/Ag 
in 1 .O M KC1). As the potential is swept through the first process, 
the initial bands at  327 nm (e = 36 600 M-I cm-I), 375 nm (e 
= 18 000 M-I cm-I), and 575 nm (e = 7300 M-' cm-I) disappear, 
and are replaced by three prominent bands at  320 nm (c = 20 900 
M-' cm-I), 595 nm (e = 12 300 M-l cm-I), and 800 nm (t = 3700 
M-1 cm-I). Further reduction of this monocation to the neutral 
Ir2(dimen)40 complex is characterized by the appearance of 
absorption peaks at  300 nm (e = 25 100 M-I cm-I) and 432 nm 
(e = 14 400 M-I cm-I). Reversing the sweep direction affects the 
opposite spectral changes. 

Analogous IR data are shown in Figure 2. Upon the first le- 
reduction, the v(CN) stretch of I r ~ ( d i m e n ) ~ ~ +  (2156 cm-') gives 
way to a broad band at  2090 cm-l that we assign to I r~(d imen)~+.  
Reduction of Irz(dimen)4+ to Ir2(dimen)40yields an IR spectrum 
with two v(CN) stretches (2058 and 1869 cm-I). The isosbestic 
points indicate clean, reversible electrochemical conversions 
between the dication, monocation, and neutral oxidation states 
of 1r2(dimen)dn+ (Scheme I) .  

Scheme I 

+e- +e- 
Ir,(dimen),'+ + Ir,(dimen),+ + Ir,(dimen); 

-= -c 

According to the M O  scheme developed for d8-ds complex- 
es,14,15 reduction of Ir2(dimen)42+ by one electron should result 
in the population of a low-lying pz u orbital, yielding a 2AI, ground 
state (dz~u)2(dz2u*)2(pzu)' electronic configuration) with a formal 
metal-metal bond order of l / 2 .  Qualitatively, this enhanced 
metal-metal interaction is expected to shift the d9u* - p,u 
transition of Ir2(dimer1)~+ to lower energy than the corresponding 
band of I r l ( d i m e ~ ~ ) ~ ~ + .  Our data support these predictions. 
Following the work of Che, Gray, and co-w~rkers ,~  we assign the 
intense 595-nm absorbance in the UV-vis spectrum of IrZ(di~nen)~+ 
(Figure 1) to the Laporte-allowed 2Al, - 2A2u (d,zu* -c plu) 
transition. Both the shapeI6 and bathochromic shift of this band 
are consistent with a stronger metal-metal interaction in the 
monocation relative to the dicationic ds-ds parent. From the 
single v(CN) stretch observed in the IR spectrum of I r~(d imen)~+ 
we conclude that the basic square planar geometry of IrZ(dime11)~2+ 
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Figure 1. UV-vis spectroelectrochemical reduction of Irz(dimen)2+ in 
0. I M TBA+PF6-/CH$N. Absorbance spectra a re  plotted as a function 
ofapplied potential (vs Pt  pseudoreferenceelectrode). Data werecollected 
a t  a sweep rate of 5 mV/s. 

remains intact upon le- reduction, and that the additional electron 
is delocalized over both metal centers on the IR time scale.” 

The spectroscopy of the neutral, 2e- reduced complex, however, 
is inconsistent with a simple (dlzu)2(dZzu*)2(pIu)2 electronic 
configuration. The two u(CN) stretches observed in the IR 
spectrum of Ir2(dimen)40 indicate that a significant asymmetry 
in the Ir-Ir core accompanies the addition of a second electron 
to Ir2(dimen)4*+. One interpretation is that Ir2(dimen)d0 is a 
mixed-valent, Ir(+)-Ir(-) complex;19 the stretch at  2058 cm-I 
arisesfrom theCNRgroupscoordinated toIr(+), whilethestretch 
at  1869 cm-1 originates from the C N R  groups bound to Ir(-). 
Assignment of the Ir2(dimen)d0 electronic structure as formally 
d8-dlo (rather than d8-dS-pz) suggests that the local symmetry 
at  the d8 iridium center remains square planar while the ligands 
at  the dIo metal distort toward a tetrahedral geometrya20 The IR 
spectroscopy of Ir2(dimen)40 in 1,2-difluorobenzene2’ implies that 
CH3CN (as well as other coordinating solvents) may bind to the 
neutral complex.22~23 

Although we have not been able to confirm the mixed-valent 
nature of Ir2(dimen)d0 by crystallographic means, we note that 
the flexibility and large range of bridging distances available to 
the dimen ligand are compatible with an unsymmetrical struc- 
t ~ r e . ~ ~  We also note that the potential difference between the 
two le- reductions ( A E O ’  = (E0‘2+/+ - Eor+p = 0.19 V) is 
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Figure 2. IR spectra recorded during the  reduction of Ir2(dimen)d2+ in 
0.1 M T B A + P F C / C H ~ C N  (a) during a potential sweep past the E 2 + / + O ‘  

couple, and (b) during a potential sweep past the E+po’  couple. 

considerably smaller than t.hat predicted by purely electrostatic 
 consideration^.^^ As with other transition metal complexes that 
undergo multiple oxidation state changes at  a discrete (or nearly 
discrete) thermodynamic potential,28 the small Mor value 
observed for Ir2(dimen)a2+ implies that a large geometry change 
is involved in the net 2e- transfer depicted in Scheme I. The 
structural change stabilizes Ir2(dimen)d2+ and/or Ir2(dimen)d0 
relative to Ir?(dimen)4+, resulting in a smaller separation between 
E0’2+l+ and Eor+p  than would otherwise be observed. The 
reversibility of both processes on the CV time scale suggests these 
structural changes are rapid. 

Finally, a d8-dI0 electronic description of Ir~(dimen)~O is 
supported by the observations of Eisenberg et al. concerning the 
solution chemistry of Rh(dppe)2 (where dppe = 1 ,Zbis(diphen- 
ylpho~phino)ethane).~~ In polar solutions and/or a t  low tem- 
peratures, Rh(dppe)2 is unstable, yielding solutions that exhibit 
N M R  and UV-vis spectra and reactivity patterns consistent with 
a disproportionated Rh(dppe)2+ (dE)/Rh(dppe)z- (d10) ion pair. 

As expected, these low-valent reduced species are highly 
reactive. Preliminary data suggest Irz(dimen)4+ undergoes 
oxidative addition reactions with CH2C12. A complete report 
concerning the spectroscopy, structure, and reactivity of 
Ir2(dimen),p+ will be presented elsewhere. 
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