H/D Exchange Reactions of an Iridium Ditbiol Complex

Philip G. Jessop and Robert **H. Morris***

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada **M5S 1Al**

Received March *19, 1993*

Intramolecular protonation of a hydride ligand by an acidic co-ligand (LH in eq 1) to give an η^2 -dihydrogen ligand is a reaction with very few examples.¹ This reaction and the reverse are

$$
M(LH)(H)L_n \rightleftarrows M(\eta^2 \cdot H_2)L_{n+1}
$$
 (1)

important to the mechanisms of hydrogenation, $2,3$ hydrogenolysis, 4-7 hydroformylation⁸ and (Fe,Ni) hydrogenase^{9,10} reactions. Such reactions have been postulated to explain intramolecular H/D exchange reactions in $[IrH(Ci)(NH_3)_2(PEt_3)_2]PF_6^{11}$ and $[IrH(H_2O)(ba)(PCv_3)_2]^+$ (bqH = 7,8-benzoquinoline).¹² We report a new exchange reaction involving an unprecedented chelating 1,3-propanedithiol ligand¹³ in the complex $[\text{Ir(H)}_2(\text{HS}(CH_2)_3\text{SH})(PCy_3)_2]\text{BF}_4$ (1, $Cy = C_6H_{11}$ ¹⁴ The acidic thiol protons of 1 (p $K_a \approx 9$) exchange much more rapidly than the hydride ligands with deuterium from MeOD. This allows a unique opportunity to measure the rate constant for intramolecular H/D transfer between thiol and hydride, a process which likely proceeds via an unobserved *q2-* HD complex.

Complex **1** was prepared by the action of 1,3-propanedithiol and $HBF_4·Et_2O$ on $IrH_5(PCy_3)_2$,^{15,16} probably via the known

complex
$$
[Ir(H)_2(\eta^2-H_2)_2(PCy_3)_2]BF_4
$$
.¹²
\n $Ir(H)_5(PCy_3)_2 + HBF_4 + HS(CH_2)_3SH \rightarrow [Ir(H)_2(HS(CH_2)_3SH)(PCy_3)_2]BF_4 + 2H_2$ (2)

The formulation of **1** was determined by NMR spectroscopy and confirmed by FAB/MS and X-ray crystallography.¹⁷ The virtual triplet for the α -carbons of the Cy groups shows that the PCy₃ ligands are trans.'* The presence of a proton **on** each sulfur atom was established by the observation of (a) a $\nu(S-H)$ vibration in **theIRspectrumand(b)apseudoquintet** in the IHNMRspectrum

- (1) Jessop, P. G.; Morris, R. H. *Coord.* Chem. *Rev.* **1992, 121,** 155.
- (2) Bianchini, C.; Meli, A.; Peruzzini, M.; Frediani, P.; Bohanna, C.; Esteruelas, M. A.; Oro, L. A. *Organometallics* 1992, *11*, 138.
(3) Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez, D.
R. A.; Sola,
- 743 1-7437.
- (4) Wochner, F.; Brintzinger, H. H. *J. Organomet.* Chem. **1986,309,65.** (5) **Guo, Z.** Y.; Bradley, P. K.; Jordan, R. F. *Organometallics* **1992,** *11,*
- (6) Folga, E.; Ziegler, T.; Fan, L. *New* J. Chem. **1991,** *15,* 741-748. 2690-2693.
- (7) Albeniz, **A.** C.; Schulte, G.; Crabtree, R. H. *Organometallics* **1992,** I *I,* 242-249.
-
- **(8)** Versluis, L.; Ziegler, T. *Organometallics* **1990, 9,** 2985. **(9)** Zimmer, M.; Schulte, **G.;** Luo, X. L.; Crabtree, R. H. *Angew.* Chem., *Int. Ed.* **1991,** *30,* 193-194.
- (10) Moura, J. J. **G.;** Teixeria, M.; Moura, I.; LeGall, J. In *Eioinorganic Chemistry* of *Nickel;* Lancaster, J. R., Ed.; VCH: New York, 1988; pp 191-224.
- (11) Koelliker, R.; Milstein, D. *J. Am. Chem. SOC.* **1991,** *113,* 8524.
- (12) Crabtree, R. H.; Lavin, M.; Bonneviot, L. *J. Am.* Chem. *SOC.* **1986,108,** 4032.
- (13) There are several examples of complexes containing one thiol ligand: (a) Darensbourg, M. Y.; Longridge, E. M.; Payne, V.; Reibenspies, J.; Riordan, C. **G.;** Springs, J. J.; Calabrese, J. C. *Inorg.* Chem. **1990, 29,** 2721 and references therein. (b) Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. *J. Am.* Chem. *SOC.* **1992,114,922** and references therein. (c) Stephan, D. W. *Inorg. Chem.* **1984, 23,** 2207 and references therein.
- (14) The existence of a related, unstable complex $[IFH_2(H_2S)_2(PPh_3)_2]^+$ has
been proposed: (a) Mueting, A. M.; Boyle, P. D.; Wagner, R.; Pignolet,
L. H. Inorg. Chem. 1988, 27, 271. (b) Crabtree, R. H.; Davis, M. W.;
Melle
- (15) All manipulations were done under Ar with dry solvents. IrH₅(PCy₃₎₂ was prepared by the literature method: Crabtree, R. H.; Felkin, H.; was prepared by the literature method: Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205.

at 3.21 ppm (integral of 2) which disappears after addition of D_2O or CD_3OD . The pseudoquintet results from the thiol hydrogen coupling to two equivalent P atoms $(^3J_{HP} = 8.1 \text{ Hz}$, observed with homonuclear decoupling of the $SCH_2CH_2CH_2S$ protons) and two equivalent α -methylene protons on the dithiol $(^{3}J_{\text{HH}} = 7.4 \text{ Hz}$, observed with decoupling of the central methylene protons).

The pK_a of 1 is believed to be approximately 9 on the aqueous scale because 1 is deprotonated by PCy_3 (pK_a of conjugate acid is 9.7¹⁹), only slightly (2%) by CpRuH(dape) (p K_a 8.1^{20,21}), and not at all by $CpRuH(dppm)$ (p K_a 7.120,21).²² This represents a decrease of less than one unit from that of the free thiol.²³ The very little data in the literature concerning the reduction in pK_a of thiols upon coordination suggest that metal-to-ligand backbonding, if present, prevents a large pK_a drop.²⁴

Addition of excess CD_3OD to a CD_2Cl_2 solution of 1 results in $1-d_2$, (80% D at thiol, 2% D at hydride) after 4 min. H/D exchange reactions between MeOD and hydrosulfide complexes have been reported,^{25,26} but this is the first example of such exchange with a bound thiol proton. Prolonged exposure to CD₃-OD results in the deuteration of the hydride ligands, giving **l-d4.** No exchange occurs between 1 and CDCl₃ or CD₂Cl₂. The chemical shift of the hydride proton of $[Ir(H)(D)(L)(PCy₃)₂]$ -BF₄ (L = 1,3-propanedithiol) is upfield of that of $[Ir(H)₂(L)$ - $(PCy_3)_2]BF_4$ by 0.022 ppm in CD_2Cl_2 , because of an isotopic chemical shift.

The rate constant, k_1 , of eq 3 for the intramolecular transfer of deuterons from the thiol to the hydride site of $1-d_2$ in CD₂Cl₂ (or the k_1 for the reverse reaction) was determined at 22 \degree C to be $3 \pm 1 \times 10^{-4}$ s⁻¹ for three different starting concentrations of **1-d₂.²⁷** The most likely mechanism for this process is the reversible

$$
[Ir(H)(DSR)]^+ \underset{k_1}{\overset{k_1}{\rightleftharpoons}} [Ir(D)(HSR)]^+
$$
 (3)

intramolecular protonation of a cis hydride by the thiol, forming

- (16) A suspension of $IrH_5(PCy_3)_2$ (270 mg, 0.35 mmol) in CH₂Cl₂ (40 mL) reacted with 1,3-propanedithiol (45 μ L, 0.45 mmol) and HBF₄·Et₂O (120 **pL,** 0.41 mmol) to give a yellow solution. This was reduced in volume by vacuum evaporation to 4 mL after 10 min. Addition of Et₂O
(20 mL), filtration, and reprecipitation from CH₂Cl₂/Et₂O produces
white flakes of **1** (73%). IR (cm⁻¹, Nujol): 2227 (m, Ir-H), 2552 (m, Ir*H*), 1.53–2.07 (multi, 66H, C₆H_{II}), 2.48 (multi, 2H,
HSCH₂CH₂CH₂SH),2.86(multi,4H,HSCH₂CH₂CH₂SH),3.21(qn, S-H). ¹H NMR (200 MHz, CD₂Cl₂, δ): -18.45 (t, J = 16.5 Hz, 2H, J = 8.3 Hz, 2H, SH). ¹³C NMR (CD₁Cl₃, *b*): 24.45 **(s,**
HSCH₂CH₂CH₂SH), 26.84 (s, C*b* of PCy₃), 27.69 (t, J(PC) = 4.8 Hz, CY), 30.13 **(s,** CB), 31.86 **(s,** HSCH2CH?CH>SH), 37.35 (t, J(PC) = 13.7 Hz, Ca).)'P NMR (CD?CI2,6 vs H3P04): 9.6. FAB/MS: calcd 13. / Hz, Ca). ³¹P NMK (CD₂Cl₂, *b* vs H₃PO₄): 9.6. FAB/MS: calcd
for C₃₉H₇₆¹⁹³IrP₂S₂, 863; observed, 863 (M⁺), 584 (M⁺ – PCy₃); Anal.
Calcd for C₃₉H₇₆BF₄IrP₂S₂: C, 49.3; H, 8.1; S, 6.8 Calcd for C₃₉H₇₆BF₄IrP₂S₂: C, 49.3; H, 8.1; S, 6.8. Found: C, 48.7; H, 8.0; S, 7.5.
- (17) Jessop, P. **G.;** Lough, A. J.; Morris, R. H.; Ramachandran, R. 1993, work in progress. (18) Mann, B. E.; Shaw, B. L.; Stainbank, R. E. J. Chem. *SOC., Chem.*
- *Commun.* **1972,** 151.
- (19) Streuli, C. A. *Anal.* Chem. **1960, 32,** 985.
- (20) Jia, **G.;** Morris, R. H. J. *Am. Chem. SOC.* **1991, 113,** 875.
- (21) dape = $PR_2CH_2CH_2PR_2$, R = 4-C₆H₄OMe; dppm = $PPh_2CH_2PPh_2$. (22) The deprotonation of **1** is a complex reaction which requires further study.
- (23) Antikainen, P. J.; Tevanen, K. *Suom. Kemistil.* **1962,** *835,* 224.
- (24) Deutsch, E.; Root, M. J.; Nosco, D. L. In *Advances* in *Inorganic ond Eioinorganic Chemistry;* Sykes, A. **G.,** Ed.; Academic Press: London, 1982; pp 269.

0 1993 American Chemical Society

an η^2 -HD complex (eq 4).²⁸ The rate constant for this reaction

would beindependent of theconcentrationof **1,** which is consistent with our observations.

Evidence for such an intermediate is the observation of H/D exchange between 1-d₄ and H₂ gas. Exposure of a CD₂Cl₂ solution

- (26) Jessop, P. *G.;* Lee, C.-L.; Rastar, G.; James, **B.** R.; Lock, C. J. L.; Faggiani. R. Inorg. *Chem.* **1992,** *31,* 4601.
- **(27)** The concentrationsof **SH** and **IrH** protons were determined asa function of time by integration of their resonances in the **IH** NMR spectra. Concentrations calculated from an integrated rate expression for the first order reactions of eq 3 were fit to the data by an iterative procedure. This treatment neglects any kinetic isotope effects; these appear to be small because the equilibrium isotope effect for *eq* 3 is close to **1.**
- **(28) A** reviewer wondered whether the exchange could proceed via deprotonation of **1** by free PCy, to give a thiolate hydride complex which would then reductively eliminate, undergo **H/D** exchange and then oxidatively re-add. There is no evidence in the 3'P NMR spectrum for free PCy,. There is no evidence in the **IH** NMR spectrum for the dissociation of PCy₃ from 1 considering that J_{HP} couplings to hydride and **SH** protons are observed.

of $1-d_4$ to H_2 gas results in equal increases in the intensity of the thiol proton and hydride peaks in the ¹H NMR spectrum, reaching *55%* conversion after 3 h. The reverse reaction, the preparation of $1-d_4$ by reaction of D_2 gas with 1, was also observed. The η^2 -H₂ intermediate would be relatively stable with respect to H₂ loss because the estimated²⁹ electrochemical half-wave potential, $E_{1/2}(\text{Ir(IV)}/\text{Ir(III)}),$ of the corresponding dinitrogen complex is 1.8, within the range for stable η^2 -H₂ complexes. However its pK, value must be less than that of **1,** Le., pKa **<9;** its predicted value is <11.²⁹ Related complexes, $[IrH(\eta^2-H_2)L(PCy_3)_2]^+$ (L $= 2$ -mercaptopyridine¹⁷ or bq^{12}) have been observed.

We are still searching for a system in which the $M(H)(HL)$ and $M(\eta^2-H_2)(L)$ forms are observed simultaneously.

Note Added in **hoof.** Recently the existence of an equilibrium $[Rh(H)(HSR)] \rightleftharpoons [Rh(H₂)(SR)]$ has been proposed to explain D_2/H^+ exchange catalyzed by $[Rh(H)(CO)(^{b_0}S_4)]$. Sellmann, D.; Käppler, J.; Moll, M. *J. Am. Chem. Soc.* **1993**, *115*, 1830.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council for funding this work.

⁽²⁵⁾ Osakada, K.; Yamamoto, T.; Yamamoto, **A.** Inorg. *Chim. Acra* **1984,** *90,* L5.

⁽²⁹⁾ In fact **1** was targeted for synthesis and study on the basis of a simple model derived from Lever's additive ligand parameter method: Morris, R. H. *Inorg. Chem.* **1992,** *31,* 1471.