H/D Exchange Reactions of an Iridium Dithiol Complex

Philip G. Jessop and Robert H. Morris*

Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Received March 19, 1993

Intramolecular protonation of a hydride ligand by an acidic co-ligand (LH in eq 1) to give an η^2 -dihydrogen ligand is a reaction with very few examples.¹ This reaction and the reverse are

$$M(LH)(H)L_n \rightleftharpoons M(\eta^2 \cdot H_2)L_{n+1}$$
(1)

important to the mechanisms of hydrogenation,^{2,3} hydrogenolysis,4-7 hydroformylation8 and (Fe,Ni) hydrogenase9,10 reactions. Such reactions have been postulated to explain intramolecular H/D exchange reactions in $[IrH(Ci)(NH_3)_2(PEt_3)_2]PF_6^{11}$ and $[IrH(H_2O)(bq)(PCy_3)_2]^+$ (bqH = 7.8-benzoquinoline).¹² We report a new exchange reaction involving an unprecedented chelating 1,3-propanedithiol ligand¹³ in the complex $[Ir(H)_2(HS(CH_2)_3SH)(PCy_3)_2]BF_4$ (1, Cy = C_6H_{11}).¹⁴ The acidic thiol protons of 1 (p $K_a \approx 9$) exchange much more rapidly than the hydride ligands with deuterium from MeOD. This allows a unique opportunity to measure the rate constant for intramolecular H/D transfer between thiol and hydride, a process which likely proceeds via an unobserved η^2 -HD complex.

Complex 1 was prepared by the action of 1,3-propanedithiol and HBF₄ Et₂O on IrH₅(PCy₃)₂,^{15,16} probably via the known complex $[Ir(H)_2(\eta^2 - H_2)_2(PCy_3)_2]BF_{4.12}$

$$Ir(H)_{5}(PCy_{3})_{2} + HBF_{4} + HS(CH_{2})_{3}SH \rightarrow [Ir(H)_{2}(HS(CH_{2})_{3}SH)(PCy_{3})_{2}]BF_{4} + 2H_{2} (2)$$

The formulation of 1 was determined by NMR spectroscopy and confirmed by FAB/MS and X-ray crystallography.¹⁷ The virtual triplet for the α -carbons of the Cy groups shows that the PCy₃ ligands are trans.¹⁸ The presence of a proton on each sulfur atom was established by the observation of (a) a ν (S-H) vibration in the IR spectrum and (b) a pseudoquintet in the ¹H NMR spectrum

- (1) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155.
- (2)
- Bianchini, C.; Meli, A.; Peruzzini, M.; Frediani, P.; Bohanna, C.; Esteruelas, M. A.; Oro, L. A. Organometallics 1992, 11, 138. Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez, D. R. A.; Sola, E.; Valero, C.; Werner, H. J. Am. Chem. Soc. 1989, 111, 7431-7437
- Wochner, F.; Brintzinger, H. H. J. Organomet. Chem. 1986, 309, 65. (5) Guo, Z. Y.; Bradley, P. K.; Jordan, R. F. Organometallics 1992, 11,
- 2690-2693 (6) Folga, E.; Ziegler, T.; Fan, L. New J. Chem. 1991, 15, 741-748
- Albeniz, A. C.; Schulte, G.; Crabtree, R. H. Organometallics 1992, 11, 242-249
- Versluis, L.; Ziegler, T. Organometallics 1990, 9, 2985. Zimmer, M.; Schulte, G.; Luo, X. L.; Crabtree, R. H. Angew. Chem., Int. Ed. 1991, 30, 193-194.
- (10) Moura, J. J. G.; Teixeria, M.; Moura, I.; LeGall, J. In Bioinorganic Chemistry of Nickel; Lancaster, J. R., Ed.; VCH: New York, 1988; pp 191 - 224
- (11) Koelliker, R.; Milstein, D. J. Am. Chem. Soc. 1991, 113, 8524.
- (12) Crabtree, R. H.; Lavin, M.; Bonneviot, L. J. Am. Chem. Soc. 1986, 108, 4032.
- (13) There are several examples of complexes containing one thiol ligand:
 (a) Darensbourg, M. Y.; Longridge, E. M.; Payne, V.; Reibenspies, J.; Riordan, C. G.; Springs, J. J.; Calabrese, J. C. Inorg. Chem. 1990, 29, 2721 and references therein. (b) Sellmann, D.; Lechner, P.; Knoch, F.; Moll, M. J. Am. Chem. Soc. 1992, 114, 922 and references therein. (c) Stephan, D. W. Inorg. Chem. 1984, 23, 2207 and references therein.
- (14) The existence of a related, unstable complex [IrH₂(H₂S)₂(PPh₃)₂]⁺ has been proposed: (a) Mueting, A. M.; Boyle, P. D.; Wagner, R.; Pignolet, L. H. *Inorg. Chem.* 1988, 27, 271. (b) Crabtree, R. H.; Davis, M. W.; Mellea, M. F.; Mihelcic, J. M. *Inorg. Chim. Acta* 1983, 73, 223.
 (15) All manipulations were done under Ar with dry solvents. IrH₃(PCy₃)₂
- was prepared by the literature method: Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977, 141, 205.

at 3.21 ppm (integral of 2) which disappears after addition of D_2O or CD_3OD . The pseudoquintet results from the thiol hydrogen coupling to two equivalent P atoms $({}^{3}J_{HP} = 8.1 \text{ Hz}.$ observed with homonuclear decoupling of the SCH₂CH₂CH₂S protons) and two equivalent α -methylene protons on the dithiol $({}^{3}J_{\rm HH} = 7.4$ Hz, observed with decoupling of the central methylene protons).

The p K_a of 1 is believed to be approximately 9 on the aqueous scale because 1 is deprotonated by PCy₃ (pK_a of conjugate acid is 9.7¹⁹), only slightly (2%) by CpRuH(dape) (p K_a 8.1^{20,21}), and not at all by CpRuH(dppm) (pK_a 7.1^{20,21}).²² This represents a decrease of less than one unit from that of the free thiol.²³ The very little data in the literature concerning the reduction in pK_a of thiols upon coordination suggest that metal-to-ligand backbonding, if present, prevents a large pK_a drop.²⁴

Addition of excess CD₃OD to a CD₂Cl₂ solution of 1 results in 1- d_2 , (80% D at thiol, 2% D at hydride) after 4 min. H/D exchange reactions between MeOD and hydrosulfide complexes have been reported,^{25,26} but this is the first example of such exchange with a bound thiol proton. Prolonged exposure to CD₃-OD results in the deuteration of the hydride ligands, giving $1-d_4$. No exchange occurs between 1 and CDCl₃ or CD₂Cl₂. The chemical shift of the hydride proton of $[Ir(H)(D)(L)(PCy_3)_2]$ - BF_4 (L = 1,3-propanedithiol) is upfield of that of $[Ir(H)_2(L)-$ (PCy₃)₂]BF₄ by 0.022 ppm in CD₂Cl₂, because of an isotopic chemical shift.

The rate constant, k_1 , of eq 3 for the intramolecular transfer of deuterons from the thiol to the hydride site of $1 \cdot d_2$ in CD₂Cl₂ (or the k_1 for the reverse reaction) was determined at 22°C to be $3 \pm 1 \times 10^{-4}$ s⁻¹ for three different starting concentrations of $1-d_2$.²⁷ The most likely mechanism for this process is the reversible

$$[Ir(H)(DSR)]^{+} \underset{k_{1}}{\overset{k_{1}}{\rightleftharpoons}} [Ir(D)(HSR)]^{+}$$
(3)

intramolecular protonation of a cis hydride by the thiol, forming

- (16) A suspension of IrH₅(PCy₃)₂ (270 mg, 0.35 mmol) in CH₂Cl₂ (40 mL) reacted with 1,3-propanedithiol (45 µL, 0.45 mmol) and HBF4.Et2O (120 μ L, 0.41 mmol) to give a yellow solution. This was reduced in (120 μ L, 0.41 mmol) to give a yellow solution. This was reduced in volume by vacuum evaporation to 4 mL after 10 min. Addition of Et₂O (20 mL), filtration, and reprecipitation from CH₂Cl₂/Et₂O produces white flakes of 1 (73%). IR (cm⁻¹, Nujol): 2227 (m, Ir-H), 2552 (m, S-H). ¹H NMR (200 MHz, CD₂Cl₂, δ): -18.45 (t, J = 16.5 Hz, 2H, IrH), 1.53–2.07 (multi, 66H, C₆H₁), 2.48 (multi, 2H, HSCH₂CH₂CH₂SH), 2.86 (multi, 4H, HSCH₂CH₂CH₂SH), 3.21 (qn, J = 8.3 Hz, 2H, SH). ¹³C NMR (CD₂Cl₂, δ): 24.45 (s, HSCH₂CH₂CH₂CH₂SH), 26.84 (s, C δ of PCy₃), 27.69 (t, J(PC) = 4.8 Hz, C γ), 30.13 (s, C β), 31.86 (s, HSCH₂CH₂CH₂SH), 37.35 (t, J(PC) = 13.7 Hz, C α). ³¹P NMR (CD₂Cl₂, δ vs H₃PO₄): 9.6. FAB/MS: calcd for C₃₉H₇₆BF₃IrP₂S₂: C, 49.3; H, 8.1; S, 6.8. Found: C, 48.7; Calcd for C₃₉H₇₆BF₄IrP₂S₂: C, 49.3; H, 8.1; S, 6.8. Found: C, 48.7; H, 8.0; S, 7.;
- (17) Jessop, P. G.; Lough, A. J.; Morris, R. H.; Ramachandran, R. 1993, work in progress. (18) Mann, B. E.; Shaw, B. L.; Stainbank, R. E. J. Chem. Soc., Chem.
- Commun. 1972, 151
- Streuli, C. A. Anal. Chem. 1960, 32, 985.
- (20) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875
- (21) dape = $PR_2CH_2CH_2PR_2$, R = 4-C₆H₄OMe; dppm = $PPh_2CH_2PPh_2$. (22) The deprotonation of 1 is a complex reaction which requires further study
- (23) Antikainen, P. J.; Tevanen, K. Suom. Kemistil. 1962, B35, 224.
- (24)Deutsch, E.; Root, M. J.; Nosco, D. L. In Advances in Inorganic and Bioinorganic Chemistry; Sykes, A. G., Ed.; Academic Press: London, 1982; pp 269.

© 1993 American Chemical Society

an η^2 -HD complex (eq 4).²⁸ The rate constant for this reaction

would be independent of the concentration of 1, which is consistent with our observations.

Evidence for such an intermediate is the observation of H/D exchange between 1-d₄ and H₂ gas. Exposure of a CD₂Cl₂ solution

- (26) Jessop, P. G.; Lee, C.-L.; Rastar, G.; James, B. R.; Lock, C. J. L.; Faggiani, R. Inorg. Chem. 1992, 31, 4601.
- (27) The concentrations of SH and IrH protons were determined as a function of time by integration of their resonances in the 'H NMR spectra. Concentrations calculated from an integrated rate expression for the first order reactions of eq 3 were fit to the data by an iterative procedure. This treatment neglects any kinetic isotope effects; these appear to be small because the equilibrium isotope effect for eq 3 is close to 1.
- (28) A reviewer wondered whether the exchange could proceed via deprotonation of 1 by free PCy₃ to give a thiolate hydride complex which would then reductively eliminate, undergo H/D exchange and then oxidatively re-add. There is no evidence in the ³¹P NMR spectrum for free PCy₃. There is no evidence in the ¹H NMR spectrum for the dissociation of PCy₃ from 1 considering that J_{HP} couplings to hydride and SH protons are observed.

of 1- d_4 to H₂ gas results in equal increases in the intensity of the thiol proton and hydride peaks in the ¹H NMR spectrum, reaching 55% conversion after 3 h. The reverse reaction, the preparation of 1- d_4 by reaction of D₂ gas with 1, was also observed. The η^2 -H₂ intermediate would be relatively stable with respect to H₂ loss because the estimated²⁹ electrochemical half-wave potential, $E_{1/2}(Ir(IV)/Ir(III))$, of the corresponding dinitrogen complex is 1.8, within the range for stable η^2 -H₂ complexes. However its pK_a value must be less than that of 1, i.e., $pK_a < 9$; its predicted value is <11.²⁹ Related complexes, $[IrH(\eta^2-H_2)L(PCy_3)_2]^+$ (L = 2-mercaptopyridine¹⁷ or bq¹²) have been observed.

We are still searching for a system in which the M(H)(HL) and M(η^2 -H₂)(L) forms are observed simultaneously.

Note Added in Proof. Recently the existence of an equilibrium $[Rh(H)(HSR)] \rightleftharpoons [Rh(H_2)(SR)]$ has been proposed to explain D_2/H^+ exchange catalyzed by $[Rh(H)(CO)({}^{bu}S_4)]$. Sellmann, D.; Käppler, J.; Moll, M. J. Am. Chem. Soc. 1993, 115, 1830.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council for funding this work.

⁽²⁵⁾ Osakada, K.; Yamamoto, T.; Yamamoto, A. Inorg. Chim. Acta 1984, 90, L5.

⁽²⁹⁾ In fact 1 was targeted for synthesis and study on the basis of a simple model derived from Lever's additive ligand parameter method: Morris, R. H. Inorg. Chem. 1992, 31, 1471.