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A comprehensive and up-to-date tabulation of one-electron spin-orbit coupling parameters {d for atomic ndq systems 
of chemical relevance is provided. The results are obtained from an effective-operator analysis that projects out 
of the empirical ndq data a complete parametrization as far as eigenvalues and eigenstates of the configuration's 
multiplet terms are concerned. The only additional parameter is {A. In the language of the literature we have made 
the Coulomb analysis mathematically complete for the experimentally sufficiently known d3, d4, d5, d6, and d7 
systems. This was done 40 years ago for dZ and d8, while an extension to other dq systems has been approached 
many times ever since. Although the method is not in a simple way related to first principles, it is not merely a 
data-reduction machinery using a well-defined procedure. Thus, the model parameters for a given ndq system are 
interpretable as the multiplet-term energies and {A. Therefore, not only do the procedure's parametric results serve 
as a guide to academic overviews over the periodic table but its parameter values may also serve as reference values 
in ligand-field and magnetism contexts. The present method has an advantage in its straightforward relationship 
with current methods for obtaining {A values, uiz. the use of the Land6 interval rule or of the Slater-Condon- 
Shortley model. The paper includes a discussion of the present model in relation to the Slater-CondonShortley 
framework, which no longer can be considered a conventional physical model but still can be used pragmatically 
with considerable success. Sets of mutually orthogonal operators have served our analyses both as a conceptual and 
a practical tool. It is, however, demonstrated that the use of orthogonal sets of operators does not imply that their 
associated parameters will be uncorrelated, but it makes the correlation analysis more transparent. The general 
conclusion is that all ndq systems of chemical relevance are parametrizable, quite accurately and in a chemically 
useful way. 

1. Introduction 

In an assessment of the role of spin-orbit coupling in the analysis 
of experimentally found magnetic susceptibilities and ESR spectra 
for metal complexes, a knowledge of the spin-orbit coupling 
parameters of the corresponding gaseous metal ions is important. 
Two essentially different methods for empirical determination of 
the one-electron operator spin-orbit coupling parameter (1 = 
p, d, f, ...) are in current use. The first method involves the 
application of the Land6 interval rule (cf. eq 6). This rule has 
a local focus within the 111 configuration in question by being 
applied to the energy levels of individual, observed multiplet terms 
s + l L .  Therefore, this method has the advantage of being to first 
order (splitting of s + ' L  into J levels; cf. Table I) completely 
independent of two-electron operator energy sources, such as, 
e.g., interelectronic repulsion, but the disadvantage of embodying 
(in the exact J level energies), to second order, systematic errors 
from these same sources. While the Landbrule method thus 
allows each multiplet term to provide its own, local bid to the 
value for tn,, the second method, application' of the Slater- 
CondonShortley model,* has a global focus within 19. While 
the global focus is philosophically advantageous, it suffers from 
the entanglement of the spin-orbit-coupling and a multiplet- 
term description that is far from perfect. 

A recent paper,l concerned with a new parametrization of the 
interelectronic repulsion in free ion dq configurations within the 
Slater-CondonShortley (SCS) model, gave global values for 
{d as a byproduct. For first transition period dq ions, the {"d 
values (n = 3) were found to vary with the number q of electrons 
and with the external ionic charge z ,  quite regularly and just as 
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expected, irrespective of the fact that the errors associated with 
the {A parameters were in many cases as large as the parameters 
themselves. 

In the present paper we discuss these findings and introduce 
a method of parametrization based on multiplet term energy 
parameters, the so-called parametrical multiplet term (PMT) 
model. Contrary to the Slater-CondonShortley (SCS) model, 
the PMT model is mathematically free of shortcommings as far 
as the multiplet-term energy description within dq is concerned. 
It therefore allows the determination of well-defined global values 
for {A in the model denoted by PMT{. The analogous Slater- 
CondonShortley model (e.g., ref 1) thus becomes the SCS{ 
model. It is an essential property of the PMT{ model that the 
operators associated with its term energy parameters are mutually 
orthogonal3" and, in addition, orthogonal to the operator 
describing the spin-orbit coupling. 

We have previously used sets of orthonormal operators in pure 
symmetry contexts5 as well as in contexts where parametrical 
Hamiltonians were the issue, be it for the description of ligand 

of atomic energy levels,' or of the combination of both, 
known as quantitative ligand-field theory.* Along with our 
contributions to exemplifying the use of sets of mutually 
orthogonal operators, this issue has been illuminated3~~ in 
complementary ways by the atomic spectroscopic community. 
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Thus, a model, equivalent to our present PMT model, has been 
derived4 but never applied in full to experiments before. 

In the derivation of this previous form of the PMT model: its 
operators were labeled by irreducible representations of a 
hierarchyof Liegroups (the first threestagesofeq l), thussecuring 

that the operators formed a complete orthogonal set and, what 
is more important, seeing to it that the operators were pure-n- 
electron operators. However, neither do the Lie groups used, a t  
least a t  this time, belong to the vocabulary of chemistry, nor do 
the group labels of the operators seem to be revealing as far as 
conceptual connection with dq spectra is concerned. 

In this paper the PMT model has been derived by using the 
previous work on basis functionsg-'' and basic 0perators5J2-l~ 
and by referring only to the lowest member of the group hierarchy 
(l), Le., the three-dimensional rotation double group, which is 
already well-known in chemistry (section 5). By doing this, the 
parameters associated with our effective operators have inter- 
pretations that are directly related to the general symmetry 
conception of dq spectra. Moreover, we have added spin-orbit 
coupling to the PMT model to obtain our PMTfmodel (section 
7). This is the obvious thing to do and the conventional thing for 
the Slater-CondonShortley model. 

From a chemical point of view, the PMTf model for dq 
represents a most interesting stage of refinement in the analysis 
of atomic spectra because of its mathematical completeness with 
regard to multiplet term separation. Besides this atomic, 
intraconfigurational term separation, which carries over into 
chemistry through the area of ligand-field spectra (cf. here also 
the concept of nephelauxetism15J6), the PMTf model embodies 
also spin-orbit coupling, which is the only remaining dq atomic 
phenomenon, which has an acknowledged importance in chem- 
istry. 

The PMTf model can be extended with fine-structure operators 
and parameters17J8 to become complete also as far as J level 
separation is concerned. However, this extension, which for 3dq 
and 4dq systems involves eigenenergy changes only of the order 
of magnitude of 10 cm-' (0.0010 Mm-l), are, at  least at  this stage, 
rarely of chemical interest. Fine-structure interactions beyond 
spin-orbit coupling will therefore from a practical point of view 
not be further discussed in this paper although their inclusion 
will be used in the formal discussion concerning the mathemat- 
ically complete, so-called parametrical J level (PJL) model (cf. 
section 6 and, in particular, eq 21). 

This paper begins by recording the degradation of the Slater- 
CondonShortley model as a physical model and in the same 
breath to argue that its symmetry-based qualitative success and 
its energy-based quantitative success justify its revival as two 
different members SCS and SCS {of a hierarchy of mathematical 
parametrization models (section 2 and eqs 2 and 3). These models 
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are formulated in terms of semiempirical Hamiltonians embodying 
effective, parametrical operators. The nonparametrical part is 
purely symmetry-based and is developed here in terms of sets of 
mutually orthogonal operators whose matrix elements are 
coefficients to the parameters in the energy expressions. The 
paper gradually builds up the conceptual framework whose summit 
is the PJL model, which is parametrically complete but impractical 
because it contains too many parameters compared with the 
number of observed J levels (section 6). 

During the building-up process, the stage designated the 
parametrical multiplet term (PMT) model is reached (section 
5). Its Hamiltonian, f i p ~ ~ ,  being parametrically complete 
regarding both multiplet term eigenvalues and eigenstates, would 
not have been practical had it not been because of the existence 
of spin-orbit coupling. When this is included, this paper's final 
choice of parametrical Hamiltonian f i p ~ ~ r  appears. This is the 
intermediate-stage operator (cf. eqs 2 and 3), which is extremely 

useful for conceptual as well as practical reasons. At this stage 
all fine-structure operators but the spin-orbit coupling operator 
have been left out. The situation may be illustrated by the two 
truncation hierarchies of eqs 2 and 3, which are not group 
hierarchies. Here the point is to keep the spin-orbit coupling not 
only as the only fine-structure operator but also as the only effective 
one-electron operator. By that, the PMTfformalism attains the 
property of not differing in a?y essential way from the well- 
known SCSfformalism. Thus, HpMTLallows a continuous passage 
from the RussellSaunders limit of H ~ M T  through intermediate 
coupling to the jj-coupling limit. Similarly, the matrix repre- 
sentative of HpMTf in an SL basis may be transformed into a 
jj-coupling basis by rediagonali~ation~~J~~20 with respect to {A. 

The paper provides a few relevant illustrations of its formalism's 
ability to quantitatively compare its parametric expansion terms 
(cf. Table I), but the paper's main result is the comprehensive 
compilation of least-squares fitted f~ values for gaseous ndq ions. 
The regular variation of the fd values with n, q, z (ionic charge), 
and Z (atomic number) is commented on (section 10). 

2. Breakdown of the Slater-Condon-Shortley Framework as 
a Physical Theory and Its Revival as a Pragmatically Used 
Parametrical Model 

Slater-CondonShortley (SCS) theory came into chemistry 
mainly through its association with ligand-field theory. The 
concept of a, ligand field is in a strict sense concerned with 14 
systems having q = 1 .  However, by ligand-field theory being 
combined with the SCS framework for atoms and atomic ions, 
the basis for parametric ligand-field theory, valid for all q values, 
was established from the beginning.21 This was how the 
parametrical SCS model obtained its placement in transition metal 
chemistry. 

The SCS framework was originally introduced as a physical 
theory of interelectronic repulsion2 whose radial parameters Fk 
could in principle be calculated if the radial functions of the 1 
orbitals were known. However, this was not so in the first 30 
years of the existence of the theory and during this time SCS 
theory established itself by its superb applicability as a semi- 
empirical, Le., parametrical model, in particular for fq and dq 
atomic spectra. 

Around 1960 the first Hartree-Fockestimates of Fkparameters 
for dq systems were made. They invariably came out high,22,23 
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10-20%, relative to the empirically determined values. This did 
not, however, seriously make people loose confidence in SCS 
theory. Later, it was pointed out24 that SCS theory violated the 
virial theorem and that the multiplet term energy differences 
were sometimes dominantly caused by nuclear attraction rather 
than interelectronic repulsion. Recently, detailed computational 
analysis at  the Hartree-Fock level further discredited SCS theory 
by quantifying the importance of the inner shellsZS in determining 
the energy differences2GZ8 between the 14 multiplet terms, which 
the parametrical application of SCS theory had associated with 
pure  configuration^.^^ Thus, the link between SCS theory and 
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differences of d9 is still not known. However, this effect on the total 
energy of the ground state is now super-computer estimatable. For He, 
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first principles of physics has been irreversibly broken. This 
situation must be realized as a fact. 

With SCS theory having been realized as unsound in this sense, 
there is another fact, which, a t  least in chemistry, is equally 
important to remember: the series of experimentally established 
levels previously classified as components of the multiplet terms 
of pure dq configurations are still there, observable as ever. In 
other words, the J levels of the multiplet terms whose number and 
kind are predictable on the basis of dq configurations are in fact 
to be found by the analysis of atomic spectra. Moreover, the 
amazingly good quantitative accomplishments of the pragmat- 
ically used SCSt model in parametrizing energy level differences 
within fq and dq remain. 

In a previous paper’ we let these accomplishments justify an 
attempt at  a revival of SCS theory as a parametrical model. We 
reformulated the SCS model in terms of a set of mutually 
orthogonal operators that are effective operators acting on dq. 
However, we observed that the numerical results obtained for the 
one-electron spin-orbit coupling parameters had extremely large 
relative standard deviations. This observation was the original 
background for the present work. 

3. Configurations, Multiplet Terms, and Levels: Structure 
and Fine Structure 

It is necessary at  the outset briefly to discuss the concept of 
an 19 configuration (1 = s, p, d, f ) .  Actually, the symbol 14 may 
be used in two different ways: in a pure symmetry sense and in 
a chemical or classificatory sense. In both cases the symbol 1Q 
carries its group-theoretical contents including the Pauli principle 
restrictions on equivalent electrons. In real, atomicsystems, pure 
14 configurations are never found since they are always to a greater 
or lesser extent mixed with other  configuration^.^^ Moreover, 
different radial functions apply to different multiplet terms of an 
1q configuration. This fuzzyness of the 1q concept has, however, 
no effect on the qualitative features of the observed energy levels, 
and this is why the concept of an 14 configuration is so highly 
useful for classification purposes. For gaseous V3+, for example, 
the experimental fact that the ground level is 3F2 may be associated 
with the classificatory statement that this ion is a d2 system. This 
statement is analogous to the chemical statement that vanadium 
of oxidation number +3 in compounds is a 3d2 system though the 
d orbitals of this expression are in fact molecular orbitals and the 
actual net charge on V may be about + 1 rather than +3. Besides 
the d parentage, the important point is that the superscript in 3d2 
is an integer’o while the net charge is not. 

A bridge may be built between a genuine 14 configuration that 
is split up into terms and levels and mixed with other configurations 
by genuine, quantum mechanical, one- and two-electron operators 
and a classificatory 14 configuration that remains unmixed but 
is acted upon by effective operators modeling or imaging the 
experimentally found energy levels that are classified as 14 levels. 
These effective operators may be n-electron operators (n 5 4). 

The (“,“) states that make up an lq configuration form 
energetically separated groups of states, known as Russell- 
Saunders terms s+lL. Each such term contains ( 2 s  + 1)(2L + 
1) states. Thedegeneracy of thestates within the terms is partially 
lifted by spin-orbit coupling which splits some terms into 
subgroups of states, known as levels or sometimes J levels. The 
levels are labeled by their total angular momentum quantum 
number J and by a Russell-Saunders term parentage so that the 
full symmetry labeling of a level within a given 1‘1 is written either 
SLJ or m+lLJ. As a secondary consequence of the spin-orbit 
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coupling, 2S+1LJlevels of different S and L but of the same J may 
mix. This mixing of fractions of multiplet terms makes fuzzy the 
term part of U+lL, while J remains a valid symmetry symbol and 
J a good quantum number. Consequently we shall sometimes 
use the symbol (=+lLJ, for J levels that do not necessarily have 
a pure term parentage (cf. Table I). 

The bookkeeping based upon the number of states Ns for a 
complete 14 configuration can be written as in eq 4, where the 

dummy indices h and i comprise all the terms and all the levels 
of 14, respectively, i.e., all the terms and levels allowed by the 
Pauli principle for the system of q equivalent 1 electrons. It should 
be noted that sh and Lh do not vary independently because of this 
antisymmetry restriction. 

In the cases where an 14 configuration contains more than one 
RussellSaunders term with the same S and L, an unambiguous 
labeling of the terms requires an additional quantum number, 
which is usually chosen as the seniority number'1.72 u. The full 
label for a term is then vSL or Y ' L .  For all terms of dZ and for 
most terms of the other dq, the seniority label is redundant. For 
these terms the three-dimensional rotation double group in the 
form S G ( 3 )  @ S&(3) suffices for an unambiguous double- 
representation labeling of multiplet terms. 

In view of the problems concerning the fundamental physics 
(cf. section 2), weshall, as regards the splitting of lq into multiplet 
terms, talk about the structure of 14 and, as regards its further 
splitting into J levels, talk about its fine structure. 

4. Spin-Orbit Coupling Operator on 19 Multiplet Terms 

The fine structure is for chemically relevant oxidation numbers 
of 3d9 and 4dq metal ions much smaller' than the structure. Even 
for the heavier 5dq systems the structure dominates the fine 
structure' for normal, chemical oxidation numbers, z. Because 
of these facts, it is useful to consider the effect of the spin-orbit 
coupling part of the Hamiltonian from the viewpoint of the 
multiplet terms =+lL, i.e., to use an SL basis. By so doing, it 
is possible mathematically to divide the energy contributions of 
the spin-orbit coupling into two parts: the first-order contribution, 
linear in {,,I, and the rest of the contributions, which is the sum 
of all higher order terms caused by all the nondiagonal matrix 
elements within 14. The first-order contribution gives rise to the 
true splitting of =+lL into =+lL, while the rest causes a mixing 
of different =+'LJ levels having the same J value, thus resulting 
in a mixing that is restricted to involve a fraction of the =+1L 
terms. Up to andincluding the first-order spin-orbit contribution, 
it is a symmetry property that the energies h(lq,vSLJ) of the 
levels associated with a particular 1q multiplet term Y ' L  can be 
written as in eq 5. The Land6 interval rule of eq 6 derives from 
eq 5 and applies exactly to the energy level differences within the 
pure term.73 In eq 5 the symbol < J ( J +  1)> denotes the average 
value of J(J + 1) among the states of Y ' L .  This value is 

(71) Racah,G.Phys. Rev. 1943,63,367-382. Theseniorityuisanadditional 
symmetry-based label but, in principle, never a good quantum number 
when it is nontrivial. It has the symmetry basis that P,W+IL gives 
IP+Z,B+lL when 12,'s is added to it. For example, d5:D is the term 
formed by adding d2,IS twice tod1,2D. The intermediate term d3,iD has 
a partner, labeled df,:D, which is orthogonal to iD. This partner gives 
birth to d5,iD when d2,lS is added to it. :D is the remaining 2D of ds, 
orthogonal to :D and :D of dS. 
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is compared directly with experimental splittings of multiplet terms into 
levels, these splittings are not truesplittings but involve also term mixing. 
Therefore, the Land6 rule is often found not to apply particularly well 
(cf. here the distinction between (B+IL) and =+lL in Table I). 
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h(14,vSLJ) = h(lq,vSL) + 
'/,X(lq,vSL) [J(J  + 1) - S(S + 1 )  - L(L + l ) ]  

= h(l4,vSL) + 1/2X(lQ,vsL)[J(J + 1) - (J(J  + l ) ) ]  

= h(J)  (5) 

independent of u. Equation 5 implies that the J levels ~ ' L J  are 
barycentered around the energy h(lq,vSL) of the unsplit term.74 

The expressions of eq 5 are based upon the symmetry of 14 for 
fixed q. They apply to an effective spin-orbit coupling operator 
&E acting within a Y ' L  term. By using the additional 
symmetry assumption of the connection with a varying number 
q of 1 electrons, the empirical parameter, X(lq,vSL), may be 
expressed by the one-electron spin-orbit coupling parameter, tn1. 

(7) 
Theconstant of proportionality, k(lq,vSL), is then a number purely 
determined by symmetry. For q = 1 its value is unity and the 
one-electron parameter, {,,I , is the X of the 1' configuration (cf. 

X(Iq,vSL) = k(lq,vSL) t,,, (0 < q < 41 + 2) 

eq 6): 

h(l,+1/2) - h(ll-I/Z) = 5,,,[(21+ 11/21 (8) 

There exists a one to one relationship (eq 9) between pairs of 

k(P,vSL) = -k(14'+2-,vSL) ( 9 )  

levels lq,vSLJ and 14'+z*,vSLJ, i.e., corresponding levels of 
complementary configurations. This relationship is valid for 
ground multiplet terms as well as for excited terms. A consequence 
of eq 9 is that half-full-shell systems have no first-order spin- 
orbit splitting of their multiplet terms,75 i.e., for q = 21 + 1 ,  
k(lq,vSL) = 0 and thus X(lq,vSL) = 0. This means, on the other 
hand, that the full effect of the spin-orbit coupling operator, 
which is function basis independent, lies off the diagonal in a 
RussellSaunders basis, (IZ'+',vSL). 

Finally, it should be remarked that the symmetry relationship 
of eq 7, which provides k, only gives a formal connection between 
the 1q parameter X and the 1' parameter {,,I. In practice the value 
of either A or {,,I is empirically determined for one particular 
system, that is, for n, q, and z fixed, and the value of the remaining 
parameter then obtained from eq 7. However, the variation of 
{,,I with n, q, and z is in an effective operator model a matter of 
empiricism rather than theory (cf. section 10). 

5. Parametrical Multiplet Term Model for ode Systems 

This section will be concerned with the complete set of 
eigenstates of the classifying dq configuration. The energies of 
these eigenstates will be modeled as the eigenvalues of effective 
operators on dq. These operators can be subdivided into three 

(74) The energies of the levels with maximum and minimum Jvalues within 
a term can be found from the following expressions: 

NJ-) h(l4,vSL) + hsL 
h(l4,vSL) - hs(L + 1 )  
h(lq,vSL) - X(S + l)L 

for S 5 L 
for S 1 L 

h ( J d  = 

The expression for h(Jdn) depends on whether the spin multiplicity of 
the term is fully developed2 or not. 

(75) In our vocabulary the apparent term splitting caused by higher order 
effects of spin-orbit coupling is strictly speaking not referred to as a 
splitting. Rather it is conceived as a consequence of the mixing of J 
levels belonging to different terms but having the same J value (cf. 
Table I). 
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classes so that the effective Hamiltonian on dq embodies three 
main terms. 

H=fia"+k+W* =iE,+W+W* (10) 
In eq 10, 1 is the number-operator whose norm square'." is 
equal to the number of states, (lo), of dq (cf. also eq 4). E,  is 
the associated energy parameter wkich, with any arbitrarily chosen 
zero point for the energy, expresses the average energy of all the 
states of dq, 

b i s  an operator splitting the configuration into multiplet terms 
and mixing terms of the same S and L but different seniority. Its 
symmetry is that of the scalar representation of the group K (= 
R3 = S%(3)), which is the three-dimensional rotation group 
(Kugelgruppe (German)). This operator, which is baryctntered 
over dq, will also be named the structure operator on dq. K is the 
subject of this section. 
k' is similarly an operator splitting the multiplet terms into 

levels and mixing fractions of the terms and thus making fuzzy 
the S and L quantum numbers. Its symmetry is that of the scalar 
representation of the corresponding double group K*_( =R3* = 
SU2 = SG(3) @ S&(3) = S4(3)). The operator P will be 
named the fine-structure operator, so that k and b, taken 
together, account for the totalstructure of dq. This total structure 
will be the subject of section 6. 

The semiempiricism of the effeciive Hamiltonian approach 
finds its expression in the fact that K and P may be expressed 
in terms of energy parameters to be determined by bringing the 
model energy levels as closely as possible into coincidence with 
the observed energy levels. Fr?m a yodel-theory point of view, 
the component parameters of K and K* thus determined belong 
to a single observation set, Le., a set for which 2, z, and thus q 
are fixed. However, from a chemical point ?f view, comparison 
of the component parameters of K and K+ for a series of 
observation sets, Le., for sets with varying 2, z, and q, may be 
the major chemical va$e of the model work. 

In the SCS model, K may be expressed in terms of the spin- 
pairing energy' parameter, D, and the Racah parameter, B, while 
k' is expressed in terms of the oneelectron spin-orbit coupling 
parameter, {,,+ We may thus write' 

Bendix et al. 

where we note that thenumber of structure parameters, N,(b~:scs), 
is equal to two, independently of q. The practical SCS model 
operator is that of eq 13. 

Rscsr = BSCS + H ,  + kscs + g c s  

] E ,  + 8 3  + 8 3  + 8,s (13) 

The SCS and SCSg models may be extended to the PMT and 
PMTrmodels, all applied to dZ, as shown in eqs 14 and 15. In 

fZpM,[d2] = fi,[d21 + kpMT[d21 

= ] E ,  + + $3 + QoL(DJ-> + &sl(BJ-) 

(14) 

(15) &4,y[d2I = fiPM,[dZI + k;cs 
eq 14 the operator, b p ~ ~ [ d ~ ] ,  is a complete structure operator on 
d2and its four component operators are m)tually orthogonal and 
all effective twyelectron operators. H, is a zero-electron 
operator. Thus H p ~ ~ [ d 2 ]  of eq 14 is a linear combination of five 
mutually orthogonal operators. Actually, it is a different form 
of H p ~ ~ [ d 2 ]  which accounts for the naming, the parametrical 
multiplet term model on d2. This configuration embodies the 

five multiplet terms 'S, 3P, ID, 3F, and IG. In eq 16, the energies, 

kpM,[d2] = &('S)h('S) + &(3P)h(3P) + &'D)h('D) + 
&3F)h(3F) + 8('G)h('G) (16) 

h(S+lL), of these multiplet terms are the empirical parameters. 
+part from a change in formalism, eq 16 is due to U y l i n g ~ . ~ ~  
H p ~ ~ [ d z ]  may be imaged as a fixed vector @ p ~ ~ [ d 2 ]  in a five- 
dimensional, orthogonal vector space. This spa$e is spanned by 
either of the two sets of basis vectors { (E,)=l,  OD, OB, GoL, 
$14) or @(W, &OP), &D), & ( W ,  klW, where the latter 
set that embodies operators of mixed zero-electron and two- 
electron character consists of the operators, which (within d2) act 
non-trivially only on the states of one, single multiplet term. Going 
from eq 14 to eq 16 corresponds to a specific rotation of the basis 
frame (coordinate system) of the five-dimensional vector space 
that contains the vector image@p~~[d2] of H P M T [ ~ ~ ]  .77 It should 
be noted that f i p ~ ~ [ d 2 ] ,  like HSB, may act on any relevant dq, 
i.e., 2 I q -< 8. 

With the background now given, the parametric multiplet term 
model Hamiltonian f i p ~ ~ [ d Q ]  for general q may be explained 
almost completely by analyzing the example of q = 3 (or 7). For 
the d3 configuration, we have eq 17. Alternatively, we may write 

);l,,,[d3] = &4P)h(4P) + &4F)h(4F) + &2P)h(2P) + 
Q ( 2 ~ ) h ( 2 ~ )  + & ( 2 ~ ) h ( 2 ~ )  + & ( 2 ~ ) h ( 2 ~ )  + 

Q(:D)~(:D) + &(:D)@) + &(@,:D)~(@,:D) (17) 

it as eq 18, where in the last expression the first three terms equal 

fip,,[d31 = ] E ,  + ODD + 8 3  + 8 D J m . )  + 
QBI(B . l )  +PI'?' + P ; & + P 3 ' ? 3 + P q I i 4  (18) 

fis:scs[dq] and the first five terms fipM~[d2] for which Np(bJ is 2 
and 4, respectively. The four i operators are the coefficient 
operators additionally required for d3 for which Np(bIJ = 8. They 
make up the complete set of effective three-electron structure 
operators on dq with thep set as the associated energy parameters. 
The t operators have been given by Judd and Leavitt4 together 
with the 12 four-electron operators3 ( i  = 1, 2, ,.., 12) which 
apply to situations where q = 4,5, or 6. N,(& = 20 in all these 
cases (cf. eq 19). Our SCS operators, and & , and their 

4 4 12 

=pi + cp; i, + mx (19) 
i=O i= 1 i= 1 

respective orthogonal complements, and osL, span the same 
operator space as the Judd-Leavitt set of effective!wo-electron 
operators {&, 22, 23, 244). Similarly, our operator 1 of eq 10 is 
identical to the Judd-Leavitt operator 80. We may thus use the 

(76) Uylings, P. H. M. J.  Phys. B: At. Mol. Phys. 1984, 17, 2375-2392. 
(77) The model described by kp~r[dq] is, when q = 2, from a purely 

mathematical point of view-and, therefore, also from a data-fitting 
and data-reduction point of view-equal to the Racah-Trees mode1.72*7* 
This model has been used for a long time by the atomic spectroscopists 
using the Racah parameters A,  B, and C (or the Slater parameters P, 
P, P or Em F, and P) supplemented by the Racah-Trees parameters 
a and Therefore, from a neat data-reduction point of view k p + W ]  
is only new when q # 2 or 8. However, the Racah-Trees formulation 
of fip~r[dz] corresponds to referring its vector image to a basis-vector 
coordinate system with skew axes. This means that the norm square of 
kp+~[d2] cannot in this formulation be divided in parts referring to the 
individual parameters, since part of this norm square will lie in the 
overlap redon between the nonorthogonal operators. 

(78) Trees, R. E. Phys. Rev. 1951,83, 756-760. 
(79) Theoperator associated with ais €2; theoneasswiated with fl  is Racah's 

seniority opcrator.72 
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results of these authors to write a _general expression containing 
the complete structure operator K acting on dq (eq 19). 

Alternatively, we may formulate the expression analogously 
to those of eqs 16 and 17 

and, as we shall see in section 7:when the SCS spin-orbit coupling 
operator &{ representing K* is added to either of these 
expressions, we obtain this paper's PMT{ model for the total 
structure of dq. 

We finish this section with a few clarifying remarks. In the 
d3-eq 17, as compared with the d2-eq 16, there is the new feature 
that a few of the energy parameters have been given additional 
specifications. These are caused by the occurrence of repeated 
S+ lL  terms in d3, distinguished by seniority numbers (see the end 
of section 3). Thus h(:D) is for instance the energy of :D 
(seniority one), while h(:D,:D) is the nondiagonal element 
connecting TD and :D. Because of this nondiagonal element, the 
operator acting on d3 is more than complete as far as energies 
of multiplet terms are concerned, but the complete structure 
model's nondiagonal element also involves the nontrivial eigen- 
vector that contains information about the extent to which the 
two seniorities are mixed in the eigenstates.80 

We find it conceptually clarifying to generally think about this 
paper's PMT model as consisting of energy-completing in-spaces 
(diagonal) operators and eigenvector-completing cross-spaces 
(nondiagonal) operators. With these latter on= included, the 
PMT model applied to dq for 3 I q I 7 is structure complete but 
energy overcomplete and by that essentially different from the 
Trees-Racah model77 for dZ and d8 since these configurations do 
not give rise to such cross-space operators. 

6. Parametrical J Level Model, a Mathematically Complete 
dq Model 

In the previous section we saw that the assumption of spin-free 
energy operators acting on a classificatory ndq configuration, 
restricted only by the symmetries of the configuration's multiplet 
tfrms, led to the parametrical multiplet term model Hfmiltonian, 
Hp~T[dQ] ,  which from hereon will be abbreviated as ~ P M T .  This 
operator is structure complete in that HPMT = He" + Kcomp/ere* As 
a pcemise for arriving at this result, it was used that the eigenstates 
of H ~ M T  can be classified as multiplet terms embodying degen- 
erate function sets Jdq, vSL). 

Analogous arguments using the premise that the eigenstates 
must be further specified and classifiable as J levels embodying 
the complete basis of degenerate sets Jdq, vSLJ} lead to the 
mathematically complete parametrical J level model. Its Hamil- 

(80) For repeated terms each seniority has its own A-value (cf. eq 7), and the 
observed A-values for the d3 eigenterms fD and iD of k will be linear 
combinations of thosecorresponding topureseniorities. Thecoefficients 
of these combinations are eigenvector components. It is actually through 
the observation of spin-orbit splittings of fD and iD that the nondi- 
agonal element of k becomes determinable. This is also the factor that 
allows the codetermination of nondiagonal elements of ksimultaneously 
with fd in the regression analysis (cf. section 9). There are two papers1'J8 
in which the effective three-electron operators and four-electron operators 
have been used in spectral analysis. However, common to these papers 
is that, in their final results, they have either refrained from using the 
complete set" of structure operators or they have used the operators in 
batches'* rather than simultaneously. In either case this means that 
their additional fine-structure operators (that is, those on top of the 
spin-orbit coupling operator) may be decisive in determining eigenvector 
components of the above-mentioned kind. This is, at least in principle, 
unfortunate because these components are fundamentally defined by 
structure operators. For d4, dS, and d6 systems, the spin4rbit coupling 
operator, playing a role in the PMTf model, serves to determine thus 
five nondiagonal PMT parameters. 
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tonian of eq 21 completely accounts for the total structure of dq. 

H p J L  = Hcomplere = ri, + L m p / e t e  + Komplrte (21) 

~ P J L  acting on dq may be obtained in terms of a linear combination 
of mutually orthogonal sets of basic coefficient operators bq, 
vSLJJ{dq, v'S'L'J'I with energy parameters as coefficients. We 
illustrate the idea in eq 22 by taking d2 (and ds) as our example. 

fipJddz1 E &('S&h('SJ + &(3P0)h(3P0) + &(3P1)h(3P1) + 
&(3Pz)h(3Pz) + $('Dz)h('DJ + &(3Fz)h(3F2) + 
&(3F3)h(3F3) + $(3F4)h(3F4) + &('G4M1G4) + 
& ( ' s ~ , ~ P ~ ) ~ ( ' s ~ , ~ P ~ )  + & ( 3 ~ z , ' ~ z ) h ( 3 ~ z , ' ~ ~ )  + 
&(3pp3FJh(3pz,3Fz) + & ( ' D Z , ~ F J ~ ( ' D ~ , ~ F Z )  + 

&(3F4,1G4)h(3F4,'G4) (22) 

Here we have J = 0 and 4 (both occurring twice), J = 1 and 3 
(once), and J = 2 (three times). This gives for instance for J = 
4 the energy parameters associated with the operator sets 
11Gq}(lG4(, I3F4H3F41, I3F4}{ lG41, and 11G4){3F4(, where the last two 
sets are associated with the same parameter? J = 0 also gives 
three energy parameters. J = 2 gives six energy parameters and 
J = 1 and 3 give one energy parameter for each of them. All 
together H P J L [ ~ ~ ]  embodies 14 energy parameters, whoseoperator 
sets were counted here in a manner that counts the energy 
parameters of the total structure of d2 plus the average energy 
of the configuration without separating the three classes of 
operafors as in eq 2 1. From:he previous scion we know, however, 
that H P J L [ ~ ~ ]  consists of H P M T [ ~ ~ ]  and Klcomp/err[d2], and since 
the former contains five parameters, the latter must contain nine. 

A set of orthogonal coefficient operators spanning ~Pcomp/ere[d~] 
was found by Hansen and Judd17 by using a symmetry method 
based on Lie groups. Their operators fall into three classes: the 
spin-orbit coupling operator &(a one-electron operator), denoted 
by zu , five other operators with the same form in the rotation 
double group R3*, Le., vectors in both spin space and orbital 
space (all two-electron operators), and finally three operators of 
rank 2 in both spin and orbital space (also two-electron 
operators). * 

Parallel to what was found for the PMT model, the 5 + 9 = 
14 Liegroup operators (cf. refs 4 and 17, respectively) and our 
14 basic J-level operators of q 22 span the complete operator 
space on d2, namely, that of hm plus that of the total structure. 
They do this in terms of two sets of mutually orthogonal operators 
whose normalized basis operators are related to each other by an 
orthogonal transformation in operator space. The Liegroup 
sets4J7 have the advantages of separating operators of k type. and 
f i  type and of having the spin-orbit coupling operator explicitly 
as ?ne of its members. 

HPJL = Hcomp/ere is of course not practical since it contains more 
empirical parameters (14) than energy observables (9). Nev- 
ertheless, it is conceptually useful, as we shall now see. 

7. Parametrical Multiplet Term Model to Which Spin-Orbit 
Coupling Hm Been Added 

The model brought to practical use in this work has the purpose 
of allowing the determination of the best possible parameter values 
for the one-electron spin-orbit coupling parameter, s;d, of dq 
systems. Therefore, it was decided to try to see if the PMT model, 

(81) These classifications agree with the results directly obtainable from the 
selection rules of S and L applied to all mi2 multiplet-term levels BLJ) 
when the rank-2 operators come in additionally and belong to 11P#3F2(, 
13Pz)('P21, and 13F2H3F21. Here the latter two operator sets have m our 
scheme the property that they associate with two energy parameters, 
one associated with an operator of vector-vector type and one with an 
operator of tensor-tensor type, where those of tensor-tensor type are 
orthogonal to the spin-orbit coupling operator. 
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which, as discussed toward the end of section 5, is moreso than 
complete in parametrizing the multiplet term energies, could be 
used for this purpose. The simplest way of investigating this, 
conceptually as well as practically, would be to combine the PMT 
model, which is a pure and complete structure model, with the 
conventional SCS spin-orbit coupling operator &&. We name 
the model thus obtained the PMTC npdel. Its Hamiltonian 
operator iipMTriS given in eq 23, where Kscsl acting on the most 

- *  
' p ~ ~ r  h p ~ ~  + kit- Hm + k p ~ ~  + Kscs = fim + 

kscs + kscsl+ = ' w  + kcomplete + k& (23) 

general dq embodies & D ~ ,  and the 4 three-electronoperators 
and 12 four-electron operators of eq 19. We emphasize also the 
simple form of ~ * s c s  = & c t  (eq 12). 

We may write the complete Hamiltonian acting on dq in the 
following form 

'complete = HPJL = HPMTf + 'PMTf (24) 
where the residual operator kpMTf for instance for d2 is the sum 
of the eight fine-structure operators remaining after the spin- 
orbit coupling operator, ZJ = &&, has been remoyed from the 
Hansen-Judd set of nine operators contained in K*,,/ete[d2] 
(cf. end of section 6). For general dq, the symbol kpMTfsimilarly 
denotes the residual operator defined by eq 25. For the SCS 

(25) 
A I  

RPMTr Kcomplele - = GJL - eft 
model we then have eq 26, where the right-hand side operators 
are orthogonal being pure fine-structure and structure operators, 
respectively. 

' S C S f  = ' P M T f  + 'SCSL (26) 

The model hierarchies, already given in the expressions (2) 
and (3), can now be fully appreciated by reference to eqs 21,23, 
13, 12, and 11. 

8. Experimental J Level Data Sets for ndq: helidnary 
Analysis 

An experimental energy level data set for an ndq system consists 
of energies of J levels whose J labels have been identified and for 
which some zero point of energy, usually that of the ground level 
of the atomic species in question, has been chosen. In the whole 
of the conceptual part of this paper, only complete data sets for 
ndqsystems will be discussed. This means that if the degeneracies 
of all the observed J levels, 25 + 1 ,  are introduced, the number 
of states Ns = ( y ) ,  is obtained (cf. eq 4). 

It is useful from the beginning to set up the data in an Ns X 
Ns diagonal matrix Gxp, where each J level is repeated W + 1 
times. The trace of this matrix is NsEw. The norm square' 

(one might call it the area) of the matrix is the sum 
of the squares of its elements, and if E, is subtracted from every 
element in advance, the norm square of the resulting traceless 
matrix <fx,Jfxp> may be called the area of the total structure 
or the sum square splitting6 of the dq configuration. All these 
quantities are exactly and apriori calculable quantities, directly 
from the data. The relationship between this presentation of 
data and the presentation based upon the complete, symmetry- 
based model HPJL of section 6 is given by eq 27. However, the 

( ~ e ~ p / ~ e ~ p  ) = ( fipJLIfipJL ) (27) 

right-hand side of eq 27 is not practictl since there is no way the 
exact parameter values contained in H p j ~  can be found. This is 
where the usable models come in, be it SCSt, PMTS; or others. 
We may generalize eq 24 by writing 

'complete = H m d e l  + ' m d e l  (28) 

Bendix et al. 

or by subtraction of Ha 

f i p j L  - ii, = ( ' d e ,  - ' w )  + ' m d e /  (29) 
which shows that adel is always barycentered. If h p j ~  is 
expressed in terms of a complete set of mutually orthogonal 
operators and &,,,del in terms of the same set truncated according 
to choice, we have using eqs 27 and 28 

( jipJLIjipIL. ) = ( ~ c x p t ~ c x p  ) = ( f imde/ I 'mde/  ) + 
( ' m d e / I ' d e / )  (30) 

and the last equality of eq 30 is as practical as this effective- 
operator theory can be. As we shall discuss in the next section, 
the quantity <kde&,,del> is the so-called variance in a 
conventional adaptation of model to experiment. We may thus 
view <a&> as the roof that we aim at approaching optimally 
from below by varying the parameters embodied in the expression 
<H-,e@-,el> while seeking to minimize the variance. 

In this paper we have used for comparisons with experimental 
data only three of the mapy possible modelton dq (2 I q I 8). 

is either equal to H S C S ~  of eq 13 or H p ~ p [ d q ]  of eq 23, 
or when in a few cases the data is incomplete, H p ~ ~ r [ d ~ ]  of eq 
15 is used to act on dq for 3 I q 17.82  

9. Adaptation of Effective Hamiltonians to Experimental 
Data by Parameter Fitting: Approximate Invariance of S;a on 
Extension of fim to f i p m  

This section is concerned with a few special features of an 
otherwise standard nonlinear least squares proced~re83$*~ whose 
purpose is to fit the parameters embodied in our effective dq 
Hamiltonians so that their eigenvalues match the corresponding 
J level energy data as closely as possible. If we decide to measure 
this closeness in terms of areas and define it as the following 
minimum difference, <kdel(kmdel> = <End&-> - <Ijmodd 
f i d e l >  (cf. eq 30), then we have under one special condition a 
complete analogy with the conventional least-squares expression 
for the variances' (cf. here eq 4) 

whereiand krefer tolevelsandstates,respectively. Thiscondition 

(82) With reference to footnote 80, it should be noted that while the 
nondiagonal PMT model parameters are determined mainly by the 
diagonal elements of the spin-orbit coupling in the vSL eigenbasis, the 
determination of diagonal PMT parameters associated with unobserved 
terms must be based upon nondiagonal effects of the spin-orbit coupling 
in this eigenbasis. This means that the parameters of unobserved terms 
become very little well-defined. 

(83) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. 
Numerical Recipes. The Art of Scientific Computing. Cambridge 
University Press: Cambridge, U.K., 1986; Chapter 14. 

(84) The overall quality of the fit is here measured by means of the root mean 
square parameter d, [x',/E,(W, + 1)]1/2 (cf. eq 16.1 of ref 85). This 
quantity measures the simple root mean square difference between 
experimental and calculated stateenergies or, equivalently, the weighted 
average difference between J level energies. Unlike the usually used 
error or standard deviation a,,, d, compares directly with the difference 
between one experimental eigenenergy and its calculated value, since 
d, does not involve the number of degrees of freedom v of the problem. 
The relation between a, and d, is a, = d , [No / (No7  NP)]V (cf. ref 
86) where No is the number of observables and Np IS the number of 
fitting parameters (Le., Y = No- Np).  Following common practice, the 
parameter covariance matrix has been scaled by x ~ , / Y  corresponding to 
the model being acceptable on a 50% statistical confidence level. 

(85) Judd. B. R. Reo. Prop. Phvs. 1985.48.907-954. 
(86j Uylings, P. H. M.; Ra&&, A. J. J.1 Wyart, J. F. J.  Phys. E At. Mol. 

Phvs. 1984.17.4103-4126. 
(87) Uilings e? ULu use a slightly different formulation based upon so-called 

normalized weight factors. Our xw2 (cf. eq 3 1)  is multiplied by NJN, 
and is then called R2. However, since the reciprocal of their unscaled 
covariance matrix is also multiplied by the factor NOIN,, the two 
approaches end up giving identical results when the respective unscaled 
covariance matrices are multiplied by x2,/v and RZ/w to give identical 
conventional covariance matrices. 
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Table I. Analyses of the 3d8 Energy Level Data4 of Ni2+ (g), with 
All Energy Quantities in Units of pm-l (1 pm-l = 104 cm-l)' 

parametrical 
Slater-Condon- multiplet 
Shortley model term model 
calcd energies exptl energies calcd energies 

SL terms J levels J levels SL terms 
5.4029 5.4104 I'Slo 5.2532 5.2532 5.2456(53) 
2.2239 2.2259 jlGj4 2.3109 2.3109 2.3089ii8j 

1.7525 {'PI0 1.7231 1.7204 
1.6926 1.7263 (3P); 1.6978 1.6946 1.6612(21) 

1.7038 (jP)2 1.6662 1.6691 
1.4836 1.4475 (ID12 1.4032 1.4026 1.4350(30) 

0.2325 (3F)z 0.2270 0.2269 
0.1063 0.1400 (3F)3 0.1361 0.1357 0.1023( 12) 

0.0030 ('F)4 0.0000 0.0003 
u, = 0.0664 
d, = 0.0495 
fu 0.0675(228) 0.0668(8) 

uw = 0.0024 
d, = 0.0014 

a In the middle columns the experimental energy levels have been 
assigned the symbols (=+'L)J, the braces being used to signify that though 
J is a good quantum numbcr, the RussellSaunders term symbol w+lL 
is fuzzyfied. For example ('S]o is mainly 'SO, but it is amalgamated with 
a small amount of 3P0. From this middle column we obtain (&d&,) 
= 111.385 pm-2 and (fxdGp) = 55.158 pm-2 (cf. section 8). In the 
left-hand columns are the energy values of terms and levels, respectively, 
calculat-d by use of the SACS!: model. Here we have in units of pm-2 
(&ar(Kscsr) = 54.502, (K._scs@k.sr) = 0.546, and (&a&ar)  = 
xZr = 0.110 adding up to (&d&,). In the right-hand columns, the 
levels and terms of the PMT!: model are to be found. Here we have in 
units of pm-2 (KpmI(kppMTf) = 54.624, ( P p M T P p M T f )  = 0.535, and 
( k p M T & M r f )  = 0.0001 again adding up to (fdf,). It is seen that 
going from Hs-pr to H p M T r  mainly results in a transfer of area from R 
to a keeping K* roughly constant. So the parameter value for is 
hardly changed while its error is decreased by a factor of 28, following 
the reduction in uw when going from the SCSt to the PMT!: model. 

is that the weightinga8 of the J level data points be (2J+1). This 
weighting has at  least three additional advantages. (1) It serves 
as a preparatory means for the consistent introduction of ligand 
fields or an external magnetic field into the model. (2) It allows 
an operator analysis of the residual operator according to eq 25 
and its analog for other models. (3) The parameter, E,, will be 
uncorrelated with the other parameters when the observed space 
is complete. Under this condition E, can either be calculated 
directly from the data before the regression analysis is made or 
E, can be found in the analysis itself. 

Let us now consider our numerical results for the spin-orbit 
coupling parameter, fd. Table I contains the detailed results of 
the application of the SCSf model to the data for NiZ+. Table 
I1 contains a collection of best-fit SCS f-model spin-orbit coupling 
parameter values for 3d, 4d, and 5d transition metal ions. The 
3d part of the table is an updating and augmentation of Table 
I1 of ref 1 -88 For those metal ions for which new and more complete 
energy level data have appeared in the literature after the extensive 
collections by Sugar and Corliss,33+ we have used the new 
data4Za6 in the calculations. 

From Table I1 it can be seen that the SCSf model errors on 
fd are typically around 200 cm-'(0.020 pm-1) for the chemically 
interesting metal ions of the first transition period. This means 
that the errors are of the same order of magnitude as the ld 
values themselves. The results of Table I suggest that a 
shortcoming of the SCS model is the model's inability to describe 
with sufficient accuracy the energies, h(=+'L), of the multiplet 
terms. 

Extending the SCSfmodel so as to make it become the PMTf 
model reduces the errors on the best-fit fd values by a factor of 
10-50. In view of such a drastic reduction, one might have 

(88) This weighting is now common practice in atomic spectroscopy, and it 
was also our proclaimed intention in the previous pper.1 We later 
found that a programming error had led us to use a weighting of (U + 1)Zrather than (U+ 1). This, unfortunately, led tosZighrZy incorrect 
parameter values in ref 1. 
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expected a major change also in the fd value itself. However, 
this is not found, as it can be seen by comparing the two sets of 
fdvalues of Table 11. Such an approximateconstancy of parameter 
values has previously3 been attributed to the orthogonality of the 
operators associated with the different parameters in the fits. 
This is, however, only an incomplete description. 

An analysis of the origin of the approximate equality of the 
fdvalues obtained when adapting theSCStand thePMTfmodels 
reveals two conditions for the invariance. The first one is the 
approximate lack of correlation between the spin-orbit coupling 
parameter and the parameters necessary to extend the SCS model 
to make it become the PMT model. The second condition, which 
only is important if the first one is met, is that the model eigenbasis 
is not significantly perturbed by the additional parametric terms. 
This latter conditionis firmly connected with thedegreeof linearity 
on going from SGSf to PMTf though it is also important that 
the area, <&@sat>, is already small before extension of the 
Hamiltonian (cf. Table I). 

We now discuss these problems in a little more detail turning 
ourselves gradually toward the spin-orbit coupling's special 
properties. From fitting theory it follows that, in a giuen basis, 
the parameters associated with two different operators are 
mutually completely uncorrelated provided the diagonal part of 
theoverlap between the matrix representatives of the two operators 
isvanishing. This condition for obtaining uncorrelated parameters 
is not necessarily fulfilled by the orthogonality of the two operators 
since the operator overlap is the sum of a diagonal and a 
nondiagonal part. However, in the limit of small nondiagonal 
contributions, the correlation is, of course, also small. This is 
probably the reason the operator overlap has become established 
as the quantity that determines the correlation between param- 

Consider now an SL basis. As a consequence of eq 5, the 
spin-orbit coupling is barycentered within each multiplet term. 
This ensures a vanishing diagonal overlap between the spin-orbit 
coupling and any of the SCS or PMT model operators describing 
the term separations. In an SL basis the spin-orbit coupling 
parameter and the term-energy parameters are therefore un- 
correlated, and were we-for the sake of the argument-to fit 
a value for f' in this fixed basis, then this value would be 
independent of whether the SCS or the PMT parametrization 
was used. I t  is, however, important to note that fitting in a fixed 
basis is a hypothetical situation and that the standard procedure 
here and elsewhere is to vary the basis to make it at  any stage 
of the iteration the eigenbasis of the Hamiltonian containing the 
so far optimized parameter values. 

For actual atomic dq systems, the eigenbases are not pure SL 
bases and accordingly the spin-orbit coupling parameter and the 
structure parameters are correlated. The loss of diagonal 
orthogonality compared with the SL situation may be looked 
upon as an effect of the nondiagonal spin-orbit coupling matrix 
elements, which cause the barycentration of the J levels within 
each fuzzyfied multiplet term {=+IL) to break down. If the spin- 
orbit coupling is small, as for the 3dq and 4dq metal ions, then 
the eigenbases of these systems are, however, not too far from 
being pure SL bases. Therefore, the spin-orbit coupling pa- 
rameter and the structure parameters will only be weakly 
correlated. The second condition necessary to ensure the 
invariance of the spin-orbit coupling parameter on extending the 
SCSf model to the PMTf model is fulfilled since both the SCS 
and PMT models have the S L  basis as their eigenbasis and the 
spin-orbit coupling matrix elements are small in comparison to 
the term energy differences. 

For certain metal ions too many J levels are lacking in the 
observed dq spectra for the PMTf model to be applicable. In 
these cases the model invariance of f' discussed above has the 
important practical implication that one may use the SCSf-model 
fd values from Table I1 with the well-founded hope that they are 

eters.3,17,18,76.85.86 
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Table 11. Empirical Values (in Units of pm-l) for the One-Electron S p i n a r b i t  Coupling Parameter, {d, Referring to Gaseous Ions of ndq 
Configurations" 

Bendix et al. 

s c  Ti V Cr Mn Fe c o  Ni cu 
~ 

3d1 
3d2 

3d3 

3d4 

3d5 

3d6 

3d7 

3d8 

3d9 

~~ 

0.0079a3 0.015334 0.025035 0.037636 
0.00S2( 1)33 0.01 18(2)34 0.0206(3)35 0.0319(4)36 
0.0049(97) 0.0120(150) 0.0214(172) 0.0336(199) 
0.0044(4)33 0.0089(2)34S 0.0169(3)s5 0.0274(4)36 
0.0020(307) 0.0282(186) O.OlSO(190) 0.0254(226) 

fJ4 0.0132(1 1)359c 0.0229(5)369c 
0.0078(4) 0.0086(281) 0.0228(197) 

0.0178(19)369c 
0.0297(228) 

b36 

P5 
i 

0.0S4037 
0.0466( 5)42 
0.0492(223) 
0.0408(6)37 
0.0398(259) 
0.0351(8)4c 
0.0344(233) 
0.031 5 (  16)37*c 
0.041 5(215) 
0.0257(14)37S 
0.0441(226) 

b37 

0.073438 
0.0649(6)43 
0.0683(240) 
0.0578(9)38 
0.0590(285) 
0.0505(8)38 
0.0487(263) 
0.0464( 14p8 
0.0583(205) 
0.0427(5)45C 
0.0488(208) 
0.0356(4)38 
0.0372( 165) 

b38 

0.098039 
0.0873(7)39 
0.0907 (266) 

8 9  
0.0700( 16y9 
0.0684(279) 
0.0656(19)3g 
0.0662(235) 
0.0619(10)39*c 
0.0669( 23 3) 
0.0533(S)46 
0.0545( 169) 
0.0466(5)39-c 
0.0 149( 27 3) 
0.038939 

0.1271@ 

b@ 

d@ 

0.0863(334) 
0.0888(24)@ 
0.0948(237) 
0.0858( 12 )"~~  
0.088 l(256) 
0.0749(7)4" 
0.0752( 186) 
0.0668(9)" 
0.0675(228) 
0.0603" 

Po 

0. 162441 

b41 

e41 
0.1 163(30)'I 
0.1191(251) 
0.1 139(16)41S 
0.1 130(273) 
0.1009(9)~~ 
0.0999(202) 

0.0934(237) 
0.082941 

0.091 1(12)41 

Y Zr Nb  Mo Tc Ru Rh Pd Ag 
4d1 0.029047 0.0500'8 0.074849 0. 103450 e51 e51 e51 e5 I e51 
4d2 0.0208(4)51~c 0.0409(2)s2 0.0646(2)53 0.0921(2)50 

0.0086(210) 0.0436(168) 0.0669(83) 0.0937(67) e51 esl e5 1 e51 e51 
4d3 0.0810(3)50 

b5I dS1 651 0.0834(88) e51 e5I e51 e51 e5 1 

4d4 0.07 14(7)50*c 
b5l dS1 0.0743(146) e51 e51 e51 e5 1 e51 

4d' 0.0480(46)50*c 0.2003(5)54 
651 O.O17S(411) esl e51 e51 0.1923(71) eS1 

0.1 843(6)55sC 0.23 16(6)56vC 
e5l 0.1844(7 1) 0.2244(79) 

4d6 Po 
0.0182(21) 65' b5I 

4 d 7  0.0932( 18y1 0.121 1 (88)51 0.1690(3)57 
0.0911(113) 0.1204(260) 0.1655(68) esl 

4 d 8  0.1SS6(9)58 0.1997(8)59 
dS1 d5I 0.1504(75) 0.1937(80) 

4d9 0.093951 0.141651 0.184460 

La Hf Ta W Re os Ir Pt Au 
5d1 0.O64ls1 0.18776L 0.264362 0.348363 0 . 4 3 9 P  e5I eJ1 eS1 e5 I 
5dZ 0.0557(28)51J 0.1370(144)61S 0.2254(21)65 0.3093(13)66 

0.0860(416) 0.1673(47 1) 0.2306(164) 0.3108(91) e51 ,51 ,Sl ,51 e5 I 
5d3 0.2686(3 1y7  

gsl dsl e5I 0.2654(159) e5I e51 e51 ,51 e51 
5d4 

2' b5 PI e5 1 e51 $1 e51 e 9 
Sd5 

b51 dS1 e51 $1 e51 $1 e51 
5d6 

2' 2' e51 $1 ,5l e51 
Sd7 

21 $1 $1 e51 
5d8 

668 h69 $1 e51 
5d9 i51 0.336851 e51 

a The upper values have been obtained by using the parametrical multiplet term model, PMTf, and the lower values, by using the Slater-Condon- 
Shortley model, SCSl: All calculations were made by means of the ligand-field program LIGFIELD (J. Bendix, Proceedings of the 29th ICCC, 
Lausanne, Switzerland, 1992). The errors on the {d values are given in parentheses. The dl and d9 configurations consist of a single 2D term only, 
and for the metal ions of these configurations the value of fd was modeled without a statistical error, directly from the energy difference between 2D5/2 
and 2D3/2 (eq 8). For the lowest oxidation states of 3dq ions, the {A values may be well-determined within the models used, but less appropriate. The 
reason is that the concept of the characterizing dq configuration may become less meaningful when levels of for instance d4-k lie inside the range of 
levels of dq. The small number of observed d4 terms do not allow a determination of {d using the SCS{ model. In order to apply the PMTf model, 
the energies of one or a few missing terms have been calculated from the experimental data available by means of the PMTf[d2] model (section 5 ) .  
For d2 and d* systems, with IS missing, a reduced version of this model was used. The SCSf and/or the PMTf model description of the dq energy 
levels of this atomic species gave an unusually large usr. No experimental data apparently exist for this atomic species. f The number of missing terms 
is so large that application of the PMTf model was considered inappropriate. 8 No experimental data apparently exist for the dq levels of this atomic 
species. * The dq configuration is strongly intermingled with other configurations. The value obtained for {d was highly unrealistic. 
much better than their errors would suggest. This is what has First, however, we want to summarize the accomplishments 
been done in the past, but no justification has been attempted achieved by substituting the PMTr model for the SCSr model. 
before, other than the purely empirical one that the {d values In the SCSr  model the J level energies are, independently of 
obtainedbY using theSCSrmodelvariedsmoothlY withZ*z,and the number of electrons q, parametrized by E,,,, D, B, and (cf. 
q in spite of their large errors.' eq 13). This is a much harder task, the larger q is, since the 

10. Results and Discussion number of observable J levels is 9, 19, 34, and 37 for d2, d3, d4, 
and d5, respectively, with the usual symmetry around d5 for 4 > 

This section is mainly concerned with the variation of the 
empiricalspin-orbitcouplingparameters withinthe periodictable. 

5. For the PMT model, the number of paiameters is for ;he 
above configurations 5, 9, 21, and 21, respectively, as it can be 
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Figure 1. (a) {d values for the tripositive metal ions having d1, dZ, and d3 configurations. The dotted curves connecting the data points are visual aids. 
We emphasize how closely the directly determined {d values for the d1 systems Ti3+, Zr3+, and HP+ compare with the {d values derived by means 
of the PMTCmodel for the d2 systems V3+, Nb3+, and Ta3+ and the d3 systems Cr3+, Mo3+, and W3+. Though the principal quantum number n has 
hardly any significance as a number, it is still of dominating significance for the numerical value of {d (cf. q 34). For each n, the data points for 
q = 1 lies only just significantly to the left of the extension of the fully drawn line joining the data points for q = 2 and q = 3 (see section 10). (b) 
{M values for the metal ions of the first transition period. Data points belonging to the same 3dq configuration, i.e., having the same q value, have 
been connected by straight lines. Notice that the difference quotients (A{~jd /A2)~  increase quite smoothly with Z for all q. (c) Plot of the same data 
as shown in Figure l b  but with the data points connected by straight lines according to the ionic charge I rather than the number of electrons q. The 
difference quotients (A{3d/az), vary less smoothly with Z than those of Figure lb. 

0.5203 0.1160 0.4422 
0.2706 2.9198 29.5910 
0.0001 19 0.000044 0.01074 

Pd(PMT)(&&) 0.3145 2.7555 30.2630 
Cf. section 8. The values are in units of pm-2. 

counted from eq 19. The PMTf model has 0 f as its only 
additional operator (cf. eq 23). This means that &still has to 
account for 4, 10, 13, and 16 fine-structure energy differences, 
respectively, for the four dq configurations mentioned. 

To exemplify this discussion, we give the explicit results for the 
nd3 systems with z = 3 in Table 111. The variances using the 
SCSfand PMTfmodels are here written as areas of the respective 
residual operators for which eq 32 applies (cf. eq 26), where the 

right-hand side consists of a pure fine-structure part and a pure 
structure part, respectively. It is evident from Table I11 that 
going from SCSf to PMTf has as its essential consequence that 
most of &ar is absorbed in &al. Furthermore, it m y  be 
concluded that the fine-structure_ opera!ors additional to R s a  
= &, whose areas add up to < R P M T ~ R ~ M T ~ > ,  contribute only 
very little to reaching the roof of <a&> as compared with 
the contribution from the spin-orbit coupling operator itself (cf. 
eq 30). This is extremely satisfactory from a chemical point of 
view because it means that the experimental data for all practical 
purposes89 can be accounted for without use of fine-structure 
operators whose origin" is made somewhat obscure by the loosened 
contact between model and physics (cf. section 2). 

(89) However, if the purpose of modeling atomic energy levels is to allow 
prediction of positions of unobserved spectral lines, one may want to 
bring thevariance further down. This may bedoneeither by substituting 
fine-structure operators for one or two small structure or by 
adding extra fine-structureoperators. We would prefer thelatter choice 
as thesimpler, but thedecisionshouldbe basedoncomparisonsofspectra 
with varying n, Z, and z. 

It is a general feature (e.g. Table 111) that the PMTf model 
works better for second-row transition metal ions than for those 
of the other rows. This may be caused by the energy difference 
between nd and (n + 1)s being largest for n = 4. 

We now discuss the body of fd values, which make up this 
paper's broadly applicable results (Table 11). 

The fd values vary so smoothly with the integers 2, z, and q 
that even difference quotients of fd with respect to these integers 
reveal regularities. In a few cases, small irregularities might in 
the future turn out to be caused by incorrect premises, that is, 
wrong assignments of one or two spectral lines. 

It should at  the outset be noted that the fd values for d1 and 
d9 given in Table I1 are proportional to a simple energy difference 
between two J levels according to eq 8. These parametric results 
are thus independent of the PMTfmodel, yet they fall perfectly 
into place in Table I1 (cf. also Figure 1). 

Figure 1 visualizes thevariations of fd that are most interesting 
from an inorganic chemical point of view. In an appreciation of 
the notation for the difference quotients, the relationship of eq 
33 should be noted for the 3dq systems. 

2- 18 = z + (33) 

Figure la  visualizes the values of fd for the tripositive ions of 
dl, d2, and d3configurationsfrom the three transitionmetal series. 
The fd-variation with the principal quantum number n dominates 
the issue. Equation 34 thus holds as a rule of thumb. Figure la  

{,d:{M:{sd 1:3:10 (34) 

also illustrates the values of the unit-denominator difference 
quotients (Afd/A2&3 within the early parts of each of the three 
transition series. These difference quotients, obtained from the 
dZ and d3 PMT model data, are for n = 3,4, and 5 equal to 68, 
164, and 432 cm-1, respectively. The fd values for d1 obtained 
by a linear extrapolation of these model data are 138, 482, and 
1822 cm-l, which are to be compared with the directly observed 
and, therefore, model-independent values for dl of 153,500, and 
1877 cm-1. The deviations are small, and moreover, it is gratifying 
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Figure 2. Dependence of the spin-orbit coupling parameter {M on the 
ionicchargez. For a particular metal ruincreases toa good approximation 
linearly with z .  One observes that going from one end of the transition 
period (Sc) to the other (Cu), the slope characterizing this linear 
dependence increases smoothly. The observation based on this figure has 
served as an impetusw to the six-parameter model of eq 40. The reason 
why-for a particular metal-the dependence of {M on the ionic charge 
is not perfectly smooth is that the different integer values of z correspond 
to different dq configurations. Each dq configuration appears to have its 
own small individual characteristics. Thus one observes, for example, 
that the r3d values for all d6-configuration systems lie above the straight 
lines of the figure. The chemical problem of estimating the {M value for 
a fractional value of z should therefore not be solved by using an 
interpolation based upon the present approximately straight lines but 
rather by parabolic interpolation on the {3d us z curve for the dq 
configuration in question (cf. Figure Ib  together with eq 33). 

that their systematics agrees with the rest of Table 11 (cf. also 
Figure lb,c). We finally note that the (d3-d2)-differencequotients 
(A{,,,JAZ)z-3 for n = 3, 4, and 5 ,  normalized by division by 
[{d(dz) + {d(d3)]/2, are 0.28,0.23, and 0.17, a fact from which 
we learn that the pronounced increase in the absolute values of 
{d with n (eq 34) is moderated as far as the difference in {d 
values for different configurations with the same n is concerned. 
For example, while the ratio {3d(cr3+)/{5d(w3+) = I/IO (eq 34), 
thedifferenceratio [{3d(Cr3+) - {3d(v3+)]/[ljd(W3+) - {sd(Ta3+)] 

We now want to use Figure 1 b,c to illustrate how {3d depends 
on our independent chemical variables, i.e., the element (Z) and 
the oxidation number (z). Let us with this purpose in mind focus 
attention upon a triangle of neighboring data points. This triangle 
shall further be specified by having one side of constant q, one 
of constant z, and finally one of constant Z. The energy cycle 
relationship (35) is most easily seen by looking at  such a triangle 

= (274 - 206)/(2686 - 2254) 1/6. 

using Figure 1 b, and the relationship (36) is a consequence of eq 
33. The difference quotients of eq 35 are always positive and the 
two sides of eq 36 accordingly negative. Let us illustrate the (3.3 
dependencies described in eqs 35 and 36 by choosing the example 

Bendix et al. 

of the triangle (f3d(Cr3+);{3d(Mn3+);{3d(Mn4+)~ or, in a {3d(Z,Z) 
notation, ({3d(24,3);{3d(25,3);{3d(25,4)~. The Aq = 0 step from 
&(24,3) to {3d(25,4) can be made in a way that follows either 
the left- or the right-hand side of eq 35. The left-hand (Aq = 
0) route is direct and corresponds to (AZ,Az) = (1,l). The right- 
hand-side route means a division of it into two steps. First, one 
goes from {3d(24,3) to {3d(25,3), thus making the step (AZ,Az) 
= (l,O), and then from {~(25,3) to {3d(25,4), i.e., making the 
step (AZ,Az) = (0,l). In terms of the actual numbers associated 
with our present example, eq 35 reads as follows: 134 = 77 + 
57 cm-l. 

It is generally true for the 3d period that the following 
inequalities hold 

(2)q>(g)z>(%) A z z  (37) 

and as a rough rule of thumb for the average 3d situation, one 
may write 

although the ratiovalues (A{~/AZ)q/(A{3d/hz)zvary some and 
have extremum values of 2.4 and 4.4. For the 5d period the ratio 
corresponding to that of eq 38 is close to 2:l:l and for the 4d 
period in between. These results lead to the following pronounced 
rule 

c3d(Z,Z) < c3d(Z + 132 - 1) (39) 
but there are many examples in the 3d period where the more 
transcendent rule Ijd(Z,z) = {3d(Z + l,z - 2) is valid. It applies 
for instance to C++-MnZ+, Mn3+-Fe+, Mn5+-Fe3+, Fe3+-Co+, 
Fe6+-Co4+, and Co4+-Ni2+. There are even some extreme 
examples where the rule {3d(Z,Z) < {3d(Z + 1,z - 2) is valid: 
Mn4+-Fe*+, Fe4+-Co2+, FeS+-Co3+, CoS+-Ni3+, Co7+-Nis+, and 
NiS+-CuS+. 

In summary, {d values are, at  least for n = 3 and 4, both in 
an absolute and in a relative sense more dependent on the atomic 
number of the species in question than on its charge although {d 
increases with both of these chemical parameters. 

We finally note the empirical model of eqs 40 and 41, which 

s;d(z,z)/cm-' = ( P l 2  + P,Z + P3)z + (P4Z2 + P,Z + Pa) 
(40) 

Pl = 0.94856; P2 = -38.320; P3 = 414.05; 
P4 = 6.2017; P, = -236.63; P6 = 2260.7 (41) 

x2/v = 2.83 (42) 

conveniently summarizes the 3dq PMT{-model results of Table 
I1 in terms of six parameters. The modeling that is specifiedg0 
in eqs 40-42 is based upon the observation that {3d, for a given 
element, roughly increases linearly with z (Figure 2). 

11. Conclusion 
The Hamiltonian, fip,Lon dq, of the parametrical J level model 

is a mathematically complete sum of effective, parametrical 
operators. It consists of two sets of operators: the structure 
operators that separate the states of the configuration into 
multiplet terms and mix seniority numbers and the fine-structure 

(90) The values of the six parameters E'. given in eqs 41 were obtained by 
a nonlinear least-squares fitting', of the expression (40) to the 48 PMTb 
model ZXvaluesofTableII. Each jjdvalueentered thecalculation with 
a weight of l / a2 ,  where u is its error (cf. Table 11). The 3dl and 3d9 
results of Table I1 were given a finite weight corresponding to u = 0.0010 
pm-I, which is the value that gives a minimum d (cf. note 84). This 
root mean square difference between the PMTr model values of 
Table I1 and the JM values calculated by means of eqs 40 and 41 is d 
= 0.0017 pm-1. 
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operators that split the multiplet terms into J levels and mix 
these. I?€*,‘ is not practical, but when truncated by the leaving 
out of all fine-structure operators but the spin-orbit coupling 
operator &{, this paper’s practical Hamiltonian, H p M T f ,  is 
obtained. ThushpMTf, which has been shown to bea parametrical 
extension of the conventional parametrical Slater-Condon- 
Shortley model, is mathematically complete with regard to 
structural splitting of dq and takes spin-orbit coupling to account 
for all further spGtting observed. 

The operator, H ~ M T ~ ,  is the best possible model Hamiltonian 
for semiempirical determination of the one-electron spin-orbit 
coupling parameter, {d. It has been applied here for the first 
time on d3, d4, d5, d6, and d7 gaseous metal ions.80 A comprehensive 
compilation of numerically91 extremely well-defined {d values 
for all ndq systems of chemical interest for which sufficient 
experimental data are available has been provided (Table 11). 
We emphasize that I?€p~~[dq]  for 3 I q I 7 is much more complex 
than );pMT[d2]. Therefore, in view of the model’s problems with 

(91) The fact that the fitted ualues for fd are numerically well-defined does 
not reveal anything about the well-definedness of the concept of the 
one-electron spin-orbit coupling parameter {,,j in this many-electron dq 
context. As mentioned in section 3, the PMT model is not based upon 
a pure do configuration but rather upon a classifying dq configuration. 
Since the spin-orbit coupling operator is a one-electron operator, the 
degree of theoretical well-definedness of its associated parameter .td 
might well depend on the goodness of the independent particle model 
(Hartree-Fock model) for the system under consideration since this is 
a measure of the degree of purity of the dqconfiguration. This problem 
was, however, not this paper’s problem (cf. section 2). Rather the paper 
was concerned with the determination of well-defined ualues for fd, 
which is probably the closest one can get to what is needed as a reference 
in ligand-field and electron spin resonance contexts. 
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first principles (cf. section 2), we find it remarkable that the l;d 
values obtained for 3 I q I 7 compare so smoothly with those 
obtained for d* (and d992 and especially with the model- 
independent values for d1 (and d9) (cf. eq 8). We finally remark 
that H p M T f  accounts for the atomic do energy level data by using 
only one fine-structure parameter, namely {d. Moreover we stress 
that the model handles the data so well that little room is left for 
fitting additional fine-structure parameters (cf. Table III).93 

In conclusion, the theoretically well-defined as well as oper- 
ationally well-suited parametrical multiplet term model provides 
the hitherto best atomic model platform from where to view 
transition metal chemistry and analyze its data in ligand-field 
and magnetism contexts. This statement applies to energy 
parametrization as well as eigenfunction specification within the 
characterizing dq configuration. In forthcoming papers, the 
model’s structure parameters will be discussed and it will be 
shown how the PMT model and/or the PMTCmodel can be used 
to add ligand fields and/or external magnetic fields. 
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(92) Our results for d2 and d8 agree to the last decimal point with previously 
published results.86 The only exception is the h(%) parameter for Nil+ 
(cf. Table I). Here ref 86 appears to have used a different value for the 
experimental energy level IS, than we have. 

(93) We do find, however, that there are some systematic trends left in the 
residual operator R p M T f .  


