Di- and Trinuclear Complexes with Sulfide-Bridged Rhenium in Very Different Oxidation States (Re^IRe^{VII}, Re^IRe^{VI}Re^I, Re^IRe^{VII}Re^I). The d⁰/d¹ **Transition in Tetrathiometalates**

Roland Schäfer,[†] Wolfgang Kaim,^{*,†} and Jan Fiedler[‡]

Institut für Anorganische Chemie der Universität, Pfaffenwaldring *55,* D-7000 Stuttgart 80, Germany, and J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czech Academy of Sciences, Dolejškova 3, CS-182 23 Prague, Czech Republic

Received November 11, 1992

Tetrathiometalates $MS_4^{\#}(M = V, Nb, Ta, n = 3; M = Mo,$ W, $n = 2$; $M = Re$, $n = 1$) have received attention in inorganic,¹⁻³ organometallic,⁴ and bioinorganic chemistry^{1a,5} and in catalysis.⁶ The presence of relatively low-lying unoccupied d orbitals $(d⁰)$ configuration) and high-lying sulfur-based molecular orbitalsla results in intense ligand-to-metal charge-transfer (LMCT) transitions in the visible region.^{1a,3} Despite relatively narrow HOMO-LUMO gaps the reversible electrochemical reduction to $d¹$ species occurs at rather negative potentials.⁷ The potentials for the reduction $d^0 \rightarrow d^1$ are least negative for the rhenium system $\text{ReS}_4^{-/2-}$ with its rather small negative charges.^{1c,3b,7} Chelate coordination of additional metal electrophiles to ReS_{4} should shift the potential for Re^{VII}/Re^{V1} to even less negative values. Trinuclear sulfido-bridged complexes $[L_nM(\mu-S)_2Re (\mu-S)_2ML_n$ ⁿ with the ReS₄² bridge were reported for ML_n = $Fe^{II}Cl₂^{1b}$ and $[Ru^{II}(bpy)₂]^{2+}.7$

In order to effect a less negative reduction potential for the Re^{VII/VI} couple, we have been coordinating the strongly polarizing⁸ $Re(CO)₃Cl$ complex fragments (Re^I, d⁶) to ReS₄- to yield dinuclear $[C1(CO)_3Re(\mu-S)_2ReS_2]$ ⁻ (I⁻) and trinuclear [Cl- (CO) ₃Re(μ -S)₂Re(μ -S)₂Re(CO)₃Cl]⁻ (II⁻) with the rhenium centers in very different oxidation states.

[†] Universität Stuttgart.

- *t* Heyrovsky Institute. (1) (a) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem. 1981, 93, 957; Angew. Chem., Int. Ed. Engl. 1981, 20, 934. (b) Müller, A.; Krickemeyer, E.; Baumann, F.-W.; Jostes, R.; Bögge, H. Chimia 1986, *40,* 310. (c) Miiller, A.; Krickemeyer, E.; Wittneben, **V.;** Bbgge, H.; Lemke, M. *Angew. Chem.* 1991, *103,* 1501; *Angew. Chem.. Inr. Ed. End.* 1991. *30.* 1512.
- (2) Greaney, M. A.; Coyle, C. L.; Harmer, M. A.; Jordan, A.; Stiefel, E. I. *Inorg. Chem.* 1989, 28, 912.
- (a) Lee, **S.** C.; Li, J.; Mitchell, J. C.; Holm, R. H. *Inorg. Chem.* 1992, 31,4333. **(b)** Ciurli, **S.;** Carney, M. J.; Holm, R. H.; Papaefthymiou, G. C. *Inorg. Chem.* 1989, 28, 2696.
- (a) Rosenhein, L. D.; McDonald, J. W. *Inorg. Chem.* 1987, 26, 3414. (4) (b) Unidentate **Re&-:** Massa, M. **A.;** Rauchfuss, T. B.; Wilson, **S.** R. Inorg. *Chem.* 1991, 30,4667.
- Müller, A.; Jostes, R.; Krickemeyer, E.; Bögge, H. *Naturwissenschaften*
1987, *74*, 388.
- Chianelli, **R. R.;** Pecoraro, T. A.; Halbert, T. **R.;** Pan, W.-H.; Stiefel, E. I. J. *Coral.* 1984, 86, 226.
- (7) Schäfer, R.; Kaim, W.; Moscherosch, M.; Krejcik, M. *J. Chem. Soc.*, *Chem. Commun.* 1992, 834.
- (8) (a) Vogler, C.; Kaim, W. *Z. Noturforsch.* 1992,47b, 1057. **(b)** Kaim, W.; Kohlmann, **S.** *Inorg. Chem.* 1990, 29, 2909.

Experimental Section

All reactions were carried out under an atmosphere of dry argon, (NEt_4) [Cl(CO)₃ $Re(\mu-S)$ ₂ ReS_2], (NEt₄)(I). A mixture of 0.224 g (0.5)

mmol) of $(NEt_4)(ReS_4)^9$ and 0.18 g (0.5 mmol) of $Re(CO)_5Cl^{10}$ was heated to reflux for 3-4 h in 25 mL of acetonitrile. The color change from purple to blue-green was accompanied by precipitation of a small amount of dark material. Filtration from the precipitate, concentration of the remaining solution to about 5 **mL,** and column chromatography on silica/acetonitrile gave a solution from which pure (NEt₄)(I) could be obtained as blue-green microcrystals in 74% yield (270 **mg)** after evaporation and drying.

Anal. Calcd for $C_{11}H_{20}CINO_{3}Re_{2}S_{4}$ (750.39): C, 17.61; H, 2.69; N, 1.87. Found: C, 17.62; H, 2.47; N, 1.68. IR: MeCN, 2038 (vs), 1936 (s), 1912 (s) cm⁻¹; Me₂CO, 2040 (vs), 1930 (s, br) cm⁻¹; Me₂CHOH, 2032 (vs), 1914 **(s,** br) cm-I.

 $(NEt_4)[Cl(CO)_3Re(\mu-S)_2Re(\mu-S)_2Re(CO)_3Cl]$, (NEt₄)(II). A mixture of 0.112 g (0.25 mmol) of (NEt₄)(ReS₄) and 0.18 g (0.5 mmol) of Re(C0)sCI was heated to reflux for 3 h in 25 **mL** *of* 1,2-dichloroethane. The color change from purple to green was accompanied by precipitation of a small amount of dark material. Following filtration and removal of the solvent the crude product was chromatographed **on** a silica column using acetonitrile as eluent. After eluation of the clearly separable dinuclear ion I-, fractions of pure II- were collected, the solvent was removed, and the dark-green product was recrystallized from 2-propanol to afford 100 **mg** (37%) of the tetraethylammonium salt.

Anal. Calcd for $C_{14}H_{20}Cl_2NO_6Re_3S_4$ (1056.08): C, 15.92; H, 1.91; N, 1.33. Found: C, 16.02; H, 1.90; N, 1.22. IR: MeCN, 2040 (vs), 1937 **(s),** 1909 **(s),** 1880 (w) cm-I; 1,2-dichloroethane, 2040 (vs), 1940 **(s,** br) cm-I; MeZCHOH, 2040 (vs), 1940 **(s,** br) cm-L. IR spectroelectrochemistry (MeCN/0.1 M Bu₄NPF₆): isosbestic points at 2016, 1996, 1942, and 1930 cm-I; absorption maxima for 112- at 2013 **(s),** 1934 **(m),** 1903 **(m),** and 1880 **(sh)** cm-I.

Instrumentation and spectroscopic and spectroelectrochemical procedures were described previously. $7,11$

Results

The compounds (NEt_4)(I) and (NEt_4)(II) were characterized analytically as summarized in the Experimental Section and in Table I. Figure 1 shows the electronic absorption spectra.

Both complexes undergo reduction to a dianion; however, UV/ vis and IR spectroelectrochemistry showed that the less symmetrical complex I- is slowly decomposing after the first oneelectron reduction **on** the time scale of about 1 min. The second reduction steps were found irreversible for both I- and II-.

The persistent reduced form II^{2-} was studied by UV/vis, IR, and EPR **spectroelectrochemistry.** Reduction of 11- in 0.1 M $Bu₄NCIO₄$ solutions of acetonitrile, acetone, or 1,2-dichloroethane in an EPR capillary did not produce a signal, even after cooling to 3 K. The UV/vis spectrum of $II²$ shows slightly shifted absorption bands in relation to those of 11-; IR vibrational spectra show similarly small changes **on** reduction of 11- (Table I).

Discussion

The typical fac configuration at the $Re(CO)$ ₃ centers in I- and II^{\nightharpoonup} is apparent from the carbonyl vibrational pattern $(A_1, \text{ split})$ E due to lowered symmetry);^{8b} the trinuclear ions are chiral.

Successive coordination of $Re(CO)$ ₃Cl to ReS_4 ⁻ in complexes I-and II-leads to the expected^{4a,8b} systematic shift of the potentials for reversible reduction to the dianions from -1.58 via -1.16 (I^{\star}) to -0.74 V vs $\text{FeCp}_2^{0/+}$ for IIⁿ⁻ (Table I). The second reduction which is still fairly reversible^{3b,7} for $\text{ReS}_4^{-/2-}$ becomes strongly irreversible for the rhenium(1) chloride complexes because of the

0 1993 American Chemical Society

⁽⁹⁾ Miiller, A.; Krickemeyer, E.; Bbgge, H. *Z. Anorg. Allg. Chem.* 1987, 554, 61

⁽¹⁰⁾ Abel, E. W.; Wilkinson, G. J. *Chem. Soc.* 1959, 1501.

^{(11) (}a) Kaim, W.; Ernst, **S.;** Kasack, V. *J. Am. Chem. SOC.* 1990,112,173. **(b)** Krejcik, M.; Danek, M.; Hartl, F. J. *Electroonol. Chem.* 1991,317, 179. (c) Fees, J.; Kaim, W.; Moscherosch, M.; Matheis, W.; Klima, J.; Krejcik, M.; Zalis, **S.** *Inorg. Chem.* 1993, 32, 166.

Table I. Electrochemical and Spectroscopic Data for Rhenium(VI1) [and Rhenium(VI)] Complexes

	Res_{4} [ReS ₄ ²⁻] ^a	I-	II ⁻ $[II^{2}$ ⁻ $]$
Cyclic Voltammetry ^b			
E(ox)	$+0.17$ (ir)	$+0.77$ (ir)	$+0.85$ (ir)
$E(\text{red}_1)$		$-1.58(70; 0.96) -1.16(83; 0.82)$	$-0.74(70; 0.94)$
$E(\text{red}_2)$	-2.46 (95: 1.00) -1.65 (ir)		-1.40 (ir)
Spectrophotometry ^c			
λ (LMCT ₁)	509 ^d [486] ^e	611	730s,h [630]
ϵ (LMCT ₁)	12700 [7900]	5300	5000 [4400]
$\Delta \nu_{1/2}$ (LMCT ₁)	1360 [2500]	2600	2240
λ (MMCT)		500 sh	600 sh
λ (LMCT ₂)	313 [326]	382	387' [370 sh]
ϵ (LMCT ₂)	24300 [14 900]	9700	9200
Infrared Spectroscopy			
ν_{23}	490 [439]*	457	456 [421] [/]
		435	

From ref 7. From cyclic voltammetry in acetonitrile/O.l M Bu₄NClO₄ at 100 mV/s scan rate. Potentials in V vs FeCp₂^{0/+}; peak potentials (in mV) and peak current ratios i_a/i_c in parentheses. ir: irreversible process, peak potential given. ^c In acetonitrile solution. **Wavelengths** λ **(in nm) and molar extinction coefficients** ϵ **(in M⁻¹ cm⁻¹)** at the absorption maximum, band widths at half-height $\Delta v_{1/2}$ in cm⁻¹. *d* Isosbestic points at 540, 497, 322, and 301 nm. ϵ Additional bands at **589 nm (** ϵ **2000) (triplet LMCT) and at 874 (1100), 950 (1300), and 1046 nm (950): (ligand-field transitions (d** \rightarrow **d; ref 7)).** ℓ **590 nm in 1046 nm (950): (ligand-field transitions (d** \rightarrow **d; ref 7)).** ℓ **590 nm in 2-propanol. g 719 nm in 2-propanol.** * **Isosbestic points at 67 1,596,540,** and 422 nm. ^{*i*} Additional band at 346 nm (ϵ 10 900). *^j* In d₃-acetonitrile **solution.** *k* **Isosbestic point at 471 nm. Isosbestic point at 434** nm.

Figure 1. Absorption spectra of $(NEt_4)(I)$ $(-)$ and $(NEt_4)(II)$ $(-)$ in **acetonitrile.**

characteristic loss of Cl^{-8b} indicating some ground-state charge shift from $\text{ReS}_4^{\pi-}$ to the Re¹ center.

Electrochemical oxidations of the complexes occur irreversibly for all three complexes (Table I). Although irreversibleoxidation processes around $+0.8$ V vs FeCp₂^{0/+} may be expected both for the Re(I) center of bound $Re(CO)_3Cl^{8b}$ and for the sulfido ligands of ReS₄⁻, the sequence in Table I suggests that the sulfide oxidation occurs more easily.

In agreement with the relatively small difference of about **1.5** V between the oxidation and reduction potentials of 11-, the LMCT In agreement with the relatively small difference of about 1.5
V between the oxidation and reduction potentials of II-, the LMCT
transitions $p(S) \rightarrow d(Re^{VII})$ and the now possible MMCT V between the oxidation and reduction potentials of H^+ , the LMCT
transitions $p(S) \rightarrow d(Re^{VII})$ and the now possible MMCT
transitions $Re^{I} \rightarrow Re^{VII}$ should occur at rather long wavelengths. Complexes I⁻ and II⁻ show the familiar^{1a,4a} long-wavelength transitions $\text{Re}^{1} \rightarrow \text{Re}^{v_{11}}$ should occur at rather long wavelengths.
Complexes I⁻ and II⁻ show the familiar^{1a,4a} long-wavelength
LMCT transition LMCT₁ (t₁ \rightarrow e) shifted by about 3300 cm⁻¹
(I₂) and **(I-)** and 6000 cm-l(IJ-) relative to ReS4- (Table I), **in** agreement with theanodicshiftsof the reduction potentials and corresponding to a successive stabilization of the unoccupied d orbitals of ReV". The small monoanionic ReS_4 - exhibits the narrowest band and thus a rather large ϵ value at the band maximum (Table I). The spectra of both I- and II- are clearly accompanied (Figure 1) by broad low-intensity features at slightly higher energies than the $LMCT₁$ band; we tentatively attribute these bands to the MMCT

transition ($Re^{I} \rightarrow Re^{VII}$) occurring between nonbonded and very differently ligated metal centers.

In comparison to the rhenium complexes, the previously reported d^6/d^0 and $d^6/d^0/d^6$ di- and trinuclear complexes $[(CO)₄Mo(\mu-S)₂MoS₂]²⁻$ and $[(CO)₄Mo(\mu-S)₂Mo(\mu-S)₂Mo (CO)_4$ ²⁻ show much more negative reduction potentials, less positive oxidation potentials, and slightly higher energies of the positive oxidation potentials, and slightly higher energies of the

long-wavelength absorptions in acetonitrile (565 and 675 nm).^{4a}

The second intense LMCT transitions LMCT₂ (t₂ \rightarrow e)^{14,12} in

the near-UV region of the rhenium complexes shift less uniformly in the series of Table I. The complex 11- shows two intense bands in that spectral region the assignments of which are not yet clear (Figure 1).

The absorption spectrum of $II²$ shows a slight hypsochromic shift of the long-wavelength LMCT band relative to nonreduced 11-, an effect which was observed similarly for the parent couple $Res_4^{-/2-}$ (Table I).⁷ Unfortunately, both the low-intensity ligand f_1 , an effect which was observed similarly for the parent couple
ReS₄-/2- (Table I).⁷ Unfortunately, both the low-intensity ligand-
field (d \rightarrow d) transitions of the d¹ system and the expected triplet charge-transfer transitions are not as clearly visible for 112- as for the small, pentaatomic parent ion ReS_4^{2-7}

IR spectroelectrochemical results lend further evidence to the notion that the central ReS_4 group of II^* is the primary site of electron addition. For the peripheral tricarbonylrhenium(1) groups there are only small low-energy shifts of the CO stretching bands which affect mainly the high-energy feature. Such small shifts of **27** cm-1 or less (see Experimental Section) are typical for "remote reduction".^{8b} In contrast to these small effects for the carbonyl groups, the Re^{vII, v1}-S stretching frequencies are shifted to a stronger extent (Table I), viz., by 51 cm⁻¹ in $\text{ReS}_4^{-/2-7}$ and by 35 cm^{-1} in $II^{-/2}$, where the coordination-induced shift and the effect of reduction combine to weaken the central Re-S bonds.

The failure to obtain an EPR signal of 112- even at **3** K is not unexpected. Whereas $[(bpy)_2Ru(\mu-S)_2Re(\mu-S)_2Ru(bpy)_2]^2+$ showed an EPR spectrum typical for hexavalent rhenium at low temperatures, the parent $\text{Re} S_4{}^{2-}$ was EPR silent.⁷ Rapid relaxation is quite likely for an approximately tetrahedral $d¹$ center with a Jahn-Teller state,¹³ especially in the case of a $5d¹$ system with large spin-orbit coupling constants of the contributing atoms.

The chemical persistence of the Re(V1) tetrathiometalate oxidation state at less negative potentials and the large electrochemical stability constant¹⁵ $K_c(Res_4^{2-}) = 10 \exp(\Delta E/0.059 \text{ V})$ $= 10^{14.9}$ raise the question whether other tetrathiometalates with a $d¹$ configuration can be obtained. Since we have recently reported for the first time that WS_4^2 is reducible (as is MoS_4^2), 7.14 albeit at the very negative potential of $E[WS_4^{2-1/3-}] = -3.16$ V vs $\text{FeCp}_2^{0/4}$ in dry DMF,⁷ we can extrapolate in the 5d¹ series via $E[\text{Re}S_4^{-1/2}] = -1.58$ V (Table I) that the as yet unknown OsS₄- should exist below $E \approx 0$ V vs FeCp₂^{0/+}; i.e., the paramagnetic Os(VI1) form may be a stable oxidation state.16

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm, Cooperation with CSAV), the Volkswagenstiftung, and the Fonds der Chemischen Industrie.

- (14) Kony, M.; Bond, A. M.; Wedd, A. G. *Inorg. Chem.* **1990**, 29, 4521. **(15)** Stability toward disproportionation $2Re^{VI} \neq Re^{VII} + Re^{V}$.
- **(16) OsS42- was recently proposed as a conceivably stable new tetra**thiometalate.^{3a}

⁽¹²⁾ *See* **MO diagram in: Miiller, A.; Jostes, R.; Schmitz, K.; Krickemeyer, E.; BOgge, H.; Bill, E.; Trautwein, A.** *Inorg. Chim. Ada* **1988, 149, 9. (13) McGeehin, P.; Henderson, B.; Benson, P. C.** *Proc. R. Soc. London A*

^{1975, 346, 497.}