Stereoselective Isomerization in Organoiridium(III) Complexes Induced by the Presence of Rigid C.N Chelating Ligands

Ingrid C. M. Wehman-Ooyevaar, Wiendelt Drenth, David M. Grove, and Gerard van Koten ,

Departments of Metal-Mediated Synthesis and Physical Organic Chemistry, Debye Institute, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Received August 6, 1992

The oxidative addition reactions of MeI and MeOTf to the square planar d^8 complexes Ir(L-C,N)(cod) (L = $1-C_{10}H_6NMe_2-8$ or $C_6H_4CH_2NMe_2-2$, cod = cycloocta-1,5-diene) are described, and the stereochemistry of the resulting Ir(III) products is determined by 2D NMR techniques. In the reaction with MeI it is possible to isolate the kinetically preferred trans-added product, before rearrangement to the thermodynamic cis-isomer takes place. Both the oxidative addition of MeI and the following isomerization proceed through a cationic intermediate, providing strong evidence for an S_N2 type of mechanism for the former and a dissociative type of mechanism for the latter.

Introduction

Over the last two decades, there has been a continuously growing interest in the use of monoanionic chelating ligands in organometallic chemistry. These ligands enhance the reactivity of the metal center, stabilize a variety of metal oxidation states, control the metal stereochemistry, and do not readily dissociate from the metal as this would require the breaking of a σ metal-carbon bond. Metal complexes based on such ligands are now becoming more and more important in homogeneous catalysis.²

In our laboratory, much work has been done on organometallic complexes based on the potentially terdentate, monoanionic chelating ligand system [C₆H₃(CH₂NMe₂)₂-2,6]⁻ (abbreviated as NCN); see Figure 1a. 1i,3 This ligand, when terdentate N,C,Nbonded to a metal, hinders rearrangements due to its rigidity and enhances the nucleophilicity of the metal center due to the presence of two hard N donor atoms and a hard, anionic C atom. Furthermore, complexes of bidentate C,N ligands related to the NCN ligand, see Figure 1b-f, have shown some special reactivity patterns or metal-reagent interactions, particularly when ligands with a fixed C,N chelate orientation, Figure 1b, are used. The increasing steric hindrance present on the N atom in the series Figure 1c < 1d < 1e, i.e. increasing ligand cone angle,⁴ is of importance, because it weakens the M-N bond. However, steric hindrance on positions that at first sight seem not so important, Figure 1f, also can have surprising effects. The characteristics of the various ligand systems became very clear in several reactions of their organometallic complexes. The reaction of [Pt(NCN)-(H₂O)]BF₄ with MeI gave, possibly after oxidative addition affording a Pt(IV) intermediate, a 1,2-methyl shift from the metal

- * To whom correspondence should be addressed.
- † Department of Metal-Mediated Synthesis. Department of Physical Organic Chemistry.
- (1) (a) Schrauzer, G. N.; Deutsch, E. J. Am. Chem. Soc. 1969, 91, 3341.
 (b) Clark, H. C.; Ferguson, G.; Jain, V. K.; Parvez, M. Organometallics 1983, 2, 806. (c) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. Organometallics 1986, 5, 2469. (d) Crespo, M.; Puddephatt, R. J. Organometallics 1987, 6, 2548. (e) Burk, M. J.; McGrath, M. P.; Wheeler, R.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 5034. (f) Byers, P. K.; Canty, A. J. J. Chem. Soc., Chem. Commun. 1988, 639. (g) Green, L. M.; Meek, D. W. Organometallics 1989, 8, 659. (h) Bianchini, C.; Meli, A.; Peruzzini, M.; Ramirez, J. A.; Vacca, A.; Vizza, F.; Zanobini, F. Organometallics 1989, 8, 337. (i) van Koten, G. Pure Appl. Chem. 1989, 61, 1681. (j) Aye, K.-T.; Canty, A. J.; Crespo, M. C.; Puddephatt, R. J.; Scott, J. D.; Watson, A. A. Organometallics 1989, 8, 1518.
- (a) Grove, D. M.; van Koten, G.; Verschuuren, A. H. M. J. Mol. Chem. Catal. 1988, 45, 169. (b) Rhodes, L. F.; Venanzi, L. M. Inorg. Chem. 1987, 26, 2692. (c) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Frediani, P.; Ramirez, J. A. Organometallics 1990, 9, 226. van Koten, G. Pure Appl. Chem. 1990, 62, 1155
- (4) Seligson, A. L.; Trogler, W. C. J. Am. Chem. Soc. 1991, 113, 2520.

Figure 1. Examples of the (N),C,N ligand systems.

to the aryl ligand resulting in the new type of arenonium-metal complex [PtI(MeC₆H₃(CH₂NMe₂)₂-2,6-N,C,N)]BF₄.⁵ From the reaction of PtI(NCN) with I2 was isolated the complex PtI- $(NCN)(\eta^{1}-I_{2})$, which can be seen as an intermediate in oxidative addition reactions of dihalogens to d8 metal complexes.6 The complex cis-Pt(1-C₁₀H₆NMe₂-8-C,N)₂, containing the naphthylamine ligand (Figure 1b) with a rigid five-membered chelate ring, reacts with X_2 (X = Br, Cl) in a stereoselective oxidative addition to provide the corresponding Pt(IV) products.7 In addition to the influence of the rigidity of the ligands in Figure 1a,b, steric hindrance present on the N atom (vida infra) as well as on ortho positions of the arylring also showed important effects. In the reaction of H₂ with the sterically hindered Ir complexes $Ir(C_6H_3CH_2NMe_2-2-R-6-C,N)(cod)$ (R = CH₂NMe₂, Me, H; cod = cycloocta-1,5-diene) oxidative addition to the Ir(III) dihydride complexes initially took place.8 However, this is followed by an interesting reactivity pattern, including loss of N-coordination and C-H activation, that results in an isomerized ligand system. This particular reactivity is induced by steric hindrance of the substituent on the 6 position of the ligand aryl ring; only when the ligands shown in Figure 1a,f are present does isomerization take place. The influence of steric bulk present on the N atom can be reflected in the M-N coordination strength,

⁽a) Grove, D. M.; van Koten, G.; Louwen, J. N.; Noltes, J. G.; Spek, A. L.; Ubbels, H. J. C. J. Am. Chem. Soc. 1982, 104, 6609. (b) Terheijden, J.; van Koten, G.; Vinke, I. C.; Spek, A. L. J. Am. Chem. Soc. 1985, 107, 2891.

^{(6) (}a) van Beek, J. A. M.; van Koten, G.; Smeets, W. J. J.; Spek, A. L. J. Am. Chem. Soc. 1986, 108, 5010. (b) van Beek, J. A. M.; van Koten, G.; Grove, D. M.; Smeets, W. J. J.; Spek, A. L. To be published. van Beek, J. A. M.; van Koten, G.; Wehman-Ooyevaar, I. C. M.; Smeets,

W. J. J.; Spek, A. L. J. Chem. Soc., Dalton Trans. 1991, 883. van der Zeijden, A. A. H.; van Koten, G.; Luijk, R.; Grove, D. M.

Organometallics 1988, 7, 1556.

as was shown for the complexes MX(C₆H₃(CH₂NRR')₂-2,6-N,C,N') (M = Ni, Pt; X = halide; R, R' = Me, Et, i-Pr, t-Bu, Ph).9 For both Ni and Pt complexes, the NMe2 group is more strongly coordinated to the central metal atom than the NEt₂ group. Recently, we found that the reaction of Ir(C₆H₄CH₂-NEt₂-2-C,N)(cod) with MeI first gives oxidative addition, which is followed by C-H activation and methane elimination.10 In this case we propose that this reactivity is also a consequence of the larger steric hindrance of the NEt2 than of the NMe2 group and consequently easier Ir-N bond dissociation.

To check this latter proposal, we have now studied the reaction of MeI with the iridium complexes Ir(L-C,N)(cod) (L = 1-C₁₀H₆- NMe_2 -8 (Figure 1b); $L = C_6H_4CH_2NMe_2$ -2 (Figure 1c)). The ligand [1-C₁₀H₆NMe₂-8] is included in this investigation because it is far more rigid than [C₆H₄CH₂NMe₂-2]⁻. This rigid skeleton keeps the nitrogen in the coordination sphere of the metal center and should, thereby, hinder possible reactivity patterns which would lead to a straightforward stereoselective isomerization process. Furthermore, differences in Lewis basicities of these two amine ligands may also play a role in the reactivity patterns. 4,9

Experimental Section

General Methods. Syntheses were carried out using standard Schlenk techniques under an atmosphere of purified nitrogen. All solvents were dried and distilled under nitrogen prior to use. Li(1-C₁₀H₆NMe₂-8-C,N)(OEt₂)¹¹ and Ir(C₆H₄CH₂NMe₂-2-C,N)(cod) (2)¹² were prepared by literature methods. 1H, 13C, and 2D NMR spectra were recorded on a Bruker AC 200 spectrometer, using standard pulse sequences for COSY and NOESY measurements.13 Mixing times of 1 s were used for the NOESY measurements. Conductivity measurements were carried out by using a Philips PW 9512/00 microcell with a Consort K720 conductometer. Elemental analyses were obtained from the Section Elemental Analyses of the Institute for Applied Chemistry TNO, Zeist, The Netherlands.

Synthesis of [IrCl(cod)]₂. [IrCl(cod)]₂ was prepared by a slightly modified procedure of that reported by Osborn et al.14 IrCl₃·3H₂O (6.4 g; 18.2 mmol) was first dissolved at 45 °C in 90 mL of a mixture of EtOH/H₂O (2:1). Then 0.41 equiv (0.83 g) of solid hydroquinone and cod (7.5 g; 69.3 mmol) was added to the dark red solution. During reflux a gentle stream of nitrogen was passed over the reaction mixture in order to remove the evolving HCl. After the standard workup procedure, 14 [IrCl(cod)]₂ was obtained as a red powder (5.2 g; 85% yield).

Synthesis of Ir(1-C₁₀H₆NMe₂-8-C₇N)(cod) (1). To a red solution of [IrCl(cod)]₂ (1.4 g; 2.09 mmol) in C₆H₆ (25 mL) was added at room temperature in 30 min a yellow solution of Li(1-C₁₀H₆NMe₂-8-C,N)- (OEt_2) (0.97 g; 3.9 mmol) in C_6H_6 (25 mL). The red suspension was stirred for 1 h and then filtered. The solid was extracted with two portions of C₆H₆ (10 mL each). The combined benzene layers (filtrate and washings) were evaporated to dryness. The residue was washed twice with pentane (10 mL) and dried in vacuo to afford 1 as a red powder (1.79 g; 91% yield).

Anal. Calcd for C₂₀H₂₄IrN: C, 51.04; H, 5.14; N, 2.98. Found: C, 51.26; H, 4.96; N, 2.97.

(a) van Beek, J. A. M.; van Koten, G.; Ramp, M. J.; Vrieze, K.; Goubitz, K.; Zoutberg, M. C.; Stam, C. H.; Smeets, W. J. J.; Spek, A. L. Inorg. Chem. 1991, 30, 3059. (b) van Beek, J. A. M.; van Koten, G.; Dekker, G. P. C. M.; Wissing, E.; Zoutberg, M. C.; Stam, C. H. J. Organomet. Chem. 1990, 394, 659

(10) Wehman-Ooyevaar, I. C. M.; Luitwieler, I. F.; Vatter, K.; Grove, D. M.; Horn, E.; Spek, A. L.; van Koten, G. To be published.

(11) (a) Jastrzebski, J. T. B. H.; van Koten, G.; Goubitz, K.; Arlen, C.; Pfeffer, M. J. Organomet. Chem. 1983, 246, C75. (b) Wehman, E. Jastrzebski, J. T. B. H.; Ernsting, J. M.; Grove, D. M.; van Koten, G. J. Organomet. Chem. 1988, 353, 133, 145.

(12) van der Zeijden, A. A. H.; van Koten, G.; Luijk, R.; Nordemann, R. A.; Spek, A. L. Organometallics 1988, 7, 1549.
(13) (a) Croasmun, W. R.; Carlson, R. M. K. Two-Dimensional NMR Spectroscopy, Applications for Chemists and Biochemists; VCH: Weinheim, Germany, 1987. (b) Benn, R.; Gunther, H. Angew. Chem., White Chem. Int. Ed. Engl. 1983, 22, 350. (c) Ernst, R. R.; Bodenhausen, G.; Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Oxford Science Publications: Oxford, U.K., 1987

(14) Bezman, S. A.; Bird, P. H.; Fraser, A. R.; Osborn, J. A. Inorg. Chem. **1980**, 19, 3755.

Synthesis of trans-IrI(Me)(L-C,N)(cod) (L = 1-C₁₀H₆NMe₂-8 (3a); $L = C_6H_4CH_2NMe_2-2$ (4a)). To a red solution of Ir(L-C,N)(cod) (1, $L = 1-C_{10}H_6NMe_2-8$ (0.44 g; 0.93 mmol); 2, $L = C_6H_4CH_2NMe_2-2$ (0.36 g; 0.8 mmol) in toluene (10 mL) was added 1 equiv (58 and 52 μ L, respectively) of freshly distilled Mel. A solid began to precipitate after 30 min of stirring. The yellow suspension was stirred for another 2 h and then filtered. The solid was washed with pentane (5 mL) and dried in air to afford 3a (4a) as an off-white powder (3a, 0.46 g (81% yield); 4a, 0.42 g (91% yield)). The addition of MeI has been carried out both at -70 °C and at room temperature, providing the same result.

Anal. Calcd for C₂₁H₂₇IIrN (3a): C, 41.18; H, 4.44; N, 2.29; I, 20.72. Found: C, 41.28; H, 4.56; N, 2.34; I, 20.55. Calcd for C₁₈H₂₇-IIrN (4a): C, 37.50; H, 4.72; N, 2.43; I, 22.01. Found: C, 37.44; H, 4.78; N, 2.39; I, 21.92.

Conversion of 3a (4a) to cis-IrI(Me)(L- C_1N)(cod) (L = 1- $C_{10}H_6$ - NMe_2-8 (3b); $L = C_6H_4CH_2NMe_2-2$ (4b)). Complex 3a (4a) (3a, 0.07) g(0.11 mmol); 4a, 0.06 g(0.1 mmol)) was dissolved in CH₂Cl₂ (5 mL). After 45 min of stirring at 35 °C the yellow solution was evaporated in vacuo to dryness, affording 3b (4b) quantitatively as a yellow powder (3b, 0.07 g; 4b, 0.06 g).

Synthesis of $[Ir(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)][OTf]$ (5). Method a. Freshly distilled MeOTf (24 μL; 0.21 mmol) was added at -50 °C to a red solution of 1 (0.1 g; 0.21 mmol) in toluene (25 mL). The temperature of the solution was raised in 4 h to room temperature during which time the solution became yellow. The solvent was removed in vacuo. The yellow residue was washed with pentane (2 × 5 mL) and dried in air to afford 5 as an off-white powder (0.1 g; 79% yield).

Anal. Calcd for C₂₂H₂₇F₃IrNO₃S: C, 41.63; H, 4.29; N, 2.21. Found: C, 40.26; H, 4.16; N, 2.09.

Method b. To a yellow solution of 3a (0.061 g; 0.1 mmol) in THF (20 mL) was slowly added at room temperature a solution of AgOTf (0.026 g; 0.1 mmol) in THF (5 mL). After 10 min of stirring, the resulting yellow suspension was filtered and the yellow filtrate evaporated to dryness. The brownish residue was washed with Et_2O (2 × 5 mL) and dried in air to afford 5 as an off-white powder (0.038 g; 60% yield).

Reaction of 1 with 4-Tolyl Iodide. To a red solution of 1 (0.055 g; 0.12 mmol) in toluene (5 mL) was added a solution of 4-tolyl iodide (0.026 g; 0.12 mmol) in toluene (3 mL) at -50 °C. After being stirred for 1 night at -20 °C, the red solution was evaporated in vacuo to dryness to afford a red powder. ¹H NMR in C₆D₆ showed this powder to be an unreacted 1:1 mixture of 1 and 4-tolyl iodide.

Reaction of 1 with MeI in MeCN. To a suspension of 1 (0.30 g; 0.64 mmol) in MeCN (30 mL) was added freshly distilled MeI (40 µL; 0.64 mmol) at -10 °C. After stirring of this mixture for 3 h, during which time the temperature was raised to 25 °C, the resulting yellow solution was evaporated to dryness in vacuo. The yellow solid was washed once with pentane (10 mL) and dried in vacuo to afford 0.35 g of an off-white powder. ¹H NMR in CDCl₃ at room temperature showed this powder to be a 1:1 mixture of 3a,b.

Reaction of 3a with Bu₄NBr. A solution of Bu₄NBr (0.75 g; 2.3 mmol) in CH₂Cl₂ (15 mL) was added to 3a (0.35 g; 0.6 mmol). After being stirred for 1 night, this solution was evaporated invacuo to afford a sticky residue. Upon addition of pentane (25 mL), a white solid precipitated. This was filtered off and the yellow filtrate was evaporated in vacuo to give a pale yellow powder. ¹H NMR showed this product to be a 1:1.7 mixture of 3b (cis-MeI) and cis-IrBr(Me)(1-C₁₀H₆NMe₂-8-C,N)(cod) (3c). ¹H NMR for 3c (CDCl₃): δ 7.7–7.1 (m, 6, C₁₀H₆), 5.28 (q, 1, =CH), 4.4–4.0 (m, 3, =CH), 3.51 (s, 3, N(CH₃)), 3.11 (s, 3, N(CH₃)), 0.67 (s, 3, $Ir(CH_3)$), aliphatic cod-H from 3.5 to 1.

NMR Experiments. In a typical experiment, a solution of one of the iridium complexes (10-15 mg) was made in ca. 0.5 mL of the requisite solvent. Depending on the type of experiment, an equimolar amount or an excess of the reagent was added to this solution. For the lowtemperature experiments, the tube and solution were cooled to -60 °C prior to adding the reagent.

Quantitative Kinetic Experiments. The ¹H NMR spectra of solutions of complexes 3a or 4a in CD2Cl2 were studied as a function of time at 5 °C. Initial concentrations of 3a and 4a vary from 7.3×10^{-4} to 2.9 \times 10⁻¹ M. Integration showed that the decrease of the Ir-Me resonance of 3a and 4a corresponded with the increase of the Ir-Me resonance of

van der Zeijden, A. A. H.; van Koten, G.; Nordemann, R. A.; Kojic-Prodic, B.; Spek, A. L. Organometallics 1988, 7, 1957. Purcell, F. K.; Kotz, J. C. Inorganic Chemistry; W. B. Sanders Co.:

Philadelphia, PA, 1977; p 619.

Table I. 1H NMR Data for Complexes 1-5a

complex	aryl H	-NMc2	$=$ CH(cod) b	-CH ₂ -(cod)	Ir-R
Ir(1-C ₁₀ H ₆ NMe ₂ -8- <i>C</i> , <i>N</i>)(cod) (1) ^c	7.22 (d), 7.38 (m), 7.50 (d), 7.58 (dd)	3.19 (s)	3.78 (s), 3.87 (s)	1.53-1.96 (m), 2.05-2.43 (m)	
$Ir(C_6H_4CH_2NMe_2-2-C,N)(cod) (2)^{c,d}$	6.95 (d), 6.99 (t), 7.16 (d), 7.24 (d)	2.68 (s)	3.75 (s), 3.79 (s)	, ,	
$IrI(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod) (3a)^{col}$	6.65 (d), 7.21 (t), 7.3-7.45 (m), 7.59 (dd)	3.09 (s), 3.86 (s)	4.06 (t), 4.74 (q), 5.05 (t), 5.6 (dt)	1.7-1.93 (m), 2.27-2.57 (m), 2.77 (q), 3.03 (m), 3.51 (m)	1.4 (s)
$[Ir(Me)(1-C_{10}H_6NMe_2-8-C,N)(CD_3CN)(cod)][I]$ (3a') ^{c,a}	6.77 (d), 7.23 (t), 7.41 (t), 7.49 (m), 7.57 (d)	3.18 (s), 3.28 (s)	4.39 (t), 5.11 (m), 5.4 (t)	1.739 (m), 2.28-3.03 (m)	0.91 (s)
$IrI(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)$ (3b)	7.19 (t), 7.39 (m) 7.54 (m), 7.66 (d)	3.36 (s) 3.76 (s)	3.95 (t), 4.04 (dt) 4.69 (t), 5.51 (q)	1.2-1.94 (m), 2.5 (m) 3.28 (m), 3.72 (m)	1.13 (s)
$IrI(Me)(C_6H_4CH_2NMe_2-2-C,N)(cod) (4a)^{c.s.f}$	6.49 (d), 6.81 (t), 6.93 (t), 7.08 (d)	2.26 (s), 3.27 (s)	4.24 (m), 4.37 (t), 5.15 (m)	1.55 (m), 1.83 (m), 2.2-2.27 (m), 3.1 (t), 3.45 (m)	1. 43 (s)
$IrI(Me)(C_6H_4CH_2NMe_2-2-C_7N)(cod) (4b)s$	6.99 (d), 7.1–7.45 (m)	2.74 (s), 3.29 (s)	3.79 (dt), 4.56 (t), 4.78 (t), 5.46 (q)	1.73 (m), 2.06 (m), 2.45 (m), 2.86 (m), 3.41 (m)	0.95 (s)
$[IrMe(1-C_{10}H_6NMe_2-8-C,N)(cod)][OTf]$ (5a)	7.12 (d), 7.23 (m), 7.43 (m), 7.67 (dd)	3.22 (s), 3.45 (s)	4.7 (m), 5.18 (m), 5.43 (q)	1.68-2.82 (m), 3.18 (m)	0.99 (s)
$[Ir(Me)(1-C_{10}H_6NMe_2-8-C_rN)(CD_3CN)(cod)][OTf]$ (5a')	7.32–7.64 (m), 7.72 (d)	3.11 (s), 3.52 (s)	4.46 (m), 5.63 (q)	1.39 (m), 1.79 (m), 2.1 (m), 2.48-2.9 (m)	0.58 (s)
$Ir(OTf)(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)$ (5b)	6.99 (br), 7.28 (m), 7.47 (m), 7.7 (dd)	3.09 (s), 3.38 (s)	4.52 (m), 4.63 (tr), 4.74 (m), 5.55 (q)	1.4 (m), 1.7–2.8 (m), 2.97 (m)	0.69 (s)

^a Recorded in CDCl₃ at room temperature unless otherwise stated; δ in ppm relative to external TMS. ^b Broad resonances. ^c Recorded in CD₂Cl₂. ^d From ref 12; $-CH_2$ -NMe₂ resonance δ = 4.02 ppm. ^e Recorded at 233 K. ^f $-CH_2$ -NMe₂ resonance δ = 3.76 (d) and 5.14 (d) ppm, diastereotopic protons, ²J(¹H, ¹H) = 14.0 Hz. ^g $-CH_2$ -NMe₂ resonance δ = 3.54 (d) and 4.34 (d) ppm, diastereotopic protons, ²J(¹H, ¹H) = 14.6 Hz.

3b and 4b, respectively. Isomerization progress was followed by the decrease of the former resonance.

Interpretation of Figure 5: The slopes of the lines are equal to $\partial\%$ -[A]/ $\partial t = \partial(100[A]/[A]_0)/\partial t = (100/[A]_0)\partial[A]/\partial t$ (A is trans-added MeI complex; [A]₀ is the concentration of A when t = 0). Because the conversions are not large (the largest conversion in Figure 5 is that of 3a (7.3 × 10⁻⁴ mol dm⁻³), from 75% to 35%), to a first approximation the slopes of the lines can be taken to represent the initial rates. For 4a (considered as starting material A) the slopes and their derived rates are as follows:

[A], mol dm ⁻³	$\partial \%[A]/\partial t$, s ⁻¹	$\begin{array}{l} \partial [A]/\partial t = \\ (\partial \% [A]/\partial t)([A]_0/100), \\ \text{mol dm}^{-3} \text{ s}^{-1} \end{array}$			
290×10^{-3}	0.0044	12.76 × 10 ⁻⁶			
10×10^{-3}	0.0148	1.48×10^{6}			
7.4×10^{-3}	0.0305	2.22 × 10 ⁻⁶			

Assuming that the rate of the reaction is given by the equation

$$\partial[A]/\partial t = k[A]^n$$
 (k is the rate constant)

then the slope of the line of $\log(\partial [A]/\partial t)$ against $\log [A]$ affords n. Using

the above data, n = 0.54, i.e experimentally the isomerization is of half-order in A. Using this equation and the data of the three concentrations gives an average value of k of 21×10^{-6} mol^{0.5} dm^{-1.5} s⁻¹. Similar calculations for the concentrations of **3a** give a value of 8×10^{-6} mol^{0.5} dm^{-1.5} s⁻¹ for k.

Conductivity Experiments. In a typical experiment, the conductivity was measured on colorless solutions ($ca. 1 \times 10^{-3} \,\mathrm{M}$) of 3 and 5 in CH₂Cl₂ (either with or without MeCN), either at room temperature or at -40 (± 5) °C. For comparison [N(CH₂Ph)Et₃][Cl] was measured in the same system and this gave a molar conductivity value, Λ_{M} , of 17.2 cm² Ω^{-1} mol⁻¹.

Results

A. Synthesis and Structure of Ir(1- $C_{10}H_6NMe_2$ -8- C_1N)(cod) (1). The complex Ir(1- $C_{10}H_6NMe_2$ -8- C_1N)(cod), 1, is obtained as a red powder in 91% yield from the reaction of 2 equiv of Li(1- $C_{10}H_6NMe_2$ -8- C_1N)(OEt₂) with [IrCl(cod)]₂; see eq 1.

$$2 \text{ Li}(1-C_{10}\text{H}_6\text{NMe}_2\cdot8-C,\text{M}_1(\text{OEt}_2) + [\text{IrCl}(\text{cod})]_2 \xrightarrow{C_6\text{H}_6, \text{ RT}} 2 \xrightarrow{\text{IrCl}} (1)$$

Although solid 1 has some air stability, its solutions are very air-sensitive and they change color from red to blue-green on exposure to air.15 Compound 1 is soluble in benzene, toluene, and dichloromethane but is only slightly soluble in pentane, hexane, and diethyl ether. Compound 1 is characterized by ¹H and 13C NMR spectroscopy (see Tables I and II) and elemental analysis. The ¹H NMR spectrum shows a singlet for the -NMe₂ group and two broad resonances for the olefinic protons of the cycloocta-1,5-diene ligand. The ¹³C NMR spectrum also shows one resonance for the -NMe2 group and two resonances for the olefinic carbon atoms of the cycloocta-1,5-diene ligand. These data are consistent with a square planar Ir(I) structure, in which the 1-naphthyl system and the cycloocta-1,5-diene are present as bidentate ligands as shown in eq 1; this arrangement has also been reported for the compounds Ir(C₆H₃CH₂NMe₂-2-R-6-C,N)(cod) (R = H, CH₃, CH₂NMe₂).¹²

B. Reactions of 1 with RX. Oxidative addition reactions of electrophiles RX to square-planar d8 organometallic complexes

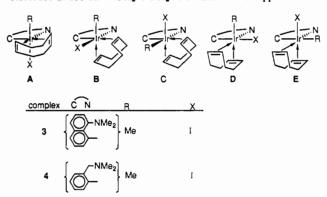
⁽¹⁷⁾ In a similar way as for MeI, oxidative addition reactions of 1 and 2 with benzyl bromide and α-bromo-m-xylene were carried out affording off-white or yellow powders in ca. 90% yield, which were according to ¹¹H and ¹³C NMR the products cis-IrBr(CH₂Ph)(L-C,M)(cod) (L = 1-C₁₀H₄-NMe₂-8 (6) and C₆H₄CH₂NMe₂-2 (7)) and cis-IrBr(CH₂C₆H₄Me-3)-(1-C₁₀H₆NMe₂-8-C,N)(cod) (8). Data for 6 are as follows. ¹¹H NMR (CDCl₃) (δ): aryl-H, 7.73 (t), 7.63 (d), 7.47 (m), 7.24 (d), 7.09 (d); -NMe₂, 3.56 (s), 3.23 (s); =-CH(cod), 5.46 (q), 4.49 (t), 4.14 (t), 3.61; -CH₂-(cod), 3.55, 2.65-2.25 (m), 1.87 (m), 1.6 (m); Ir-CH₂-, 3.99 (d, ²/(H,H) = 8.5 Hz), 2.58 (d, ²/(H,H) = 8.5 Hz). ¹³C NMR (CDCl₃) (δ): aryl-C, 1.55.5, 14.7., 138.7, 137.5, 135.3, 130.6, 128.7, 128.0, 127.4, 127.2, 125.0, 123.7, 122.3, 116.5; -NMe₂, 56.1, 53.2; =-CH(cod), 104.5, 100.7, 86.5, 77.3; -CH₂-(cod), 37.2, 30.3, 27.4, 26.2; Ir-CH₂-, 22.4. Data for 7 are as follows. ¹H NMR (CDCl₃) (δ): aryl-H, 7.65 (d), 7.35 (m), 7.26 (t), 7.06 (br s); -NMe₂, 3.07 (s), 2.63 (s); ar-CH₂-N, 4.31 (d, ²/(H,H) = 14.6 Hz); -CH(cod), 5.45 (q), 4.84 (t), 4.24 (t), 3.63; -CH₂-(cod), 3.26 (m), 2.6-2.15 (m), 2.0 (t), 1.9-1.4 (m); Ir-CH₂-, 3.98 (d, ²/(H,H) = 8.5 Hz), 2.34 (d, ²/(H,H) = 8.5 Hz), 13C NMR (CDCl₃) (δ): aryl-C, 148.1, 143.0, 138.2, 134.0, 128.7, 127.6, 127.2, 123.8, 123.2, 122.7; -NMe₂, 54.5, 51.2; ar-CH₂-N, 75.5; -CH(cod), 102.9, 97.3, 84.8, 76.1; -CH₂-(cod), 35.4, 30.5, 28.0, 26.9; Ir-CH₂-, 23.8. Data for 8 are as follows. ¹H NMR (CDCl₃) (δ): aryl-H, 7.74 (dd), 7.66 (t), 7.46 (m), 7.23 (d), 7.0 (br s), 6.88 (s); -NMe₂, 3.55 (s), 3.24 (s); -CH(cod), 5.46 (q), 4.55 (t), 4.14 (t), 3.6; -CH₂-(cod), 2.6-2.1 (m), 1.86 (m), 1.58 (m), 1.5-1.1 (m); Ir-CH₂-, 3.95 (d, ²/(H,H) = 8.5 Hz), 2.55 (d, ²/(H,H) = 8.5 Hz). During the oxidative addition reactions of the benzyl bromides to the Ir(I) complexes no trans-added products were detected. We are currently carrying out quantitative mechanistic investigations into th

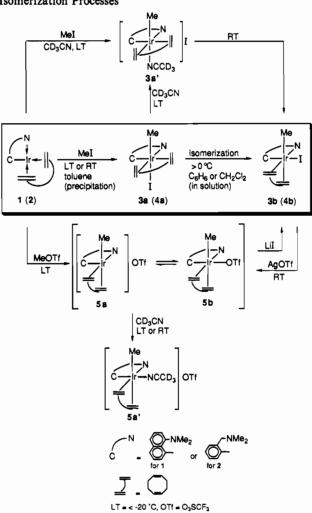
⁽¹⁸⁾ Kang, J. W.; Maitlis, P. M. J. Organomet. Chem. 1971, 26, 393.

Table II. 13C NMR Data for Complexes 1-5a

	aryl							
complex	C(1), C(2)	C(3), C(4)	C(5), C(6)	C(7), C(8)	C(9), C(10)	-NMe ₂	=CH(cod)	-CH ₂ -(cod) Ir-R
$Ir(1-C_{10}H_6NMe_2-8-C,N)(cod)$ (1)	165.5, 131.4	124.0, 127.8	126.8, 124.5	112.8, 159.1	144.5, 134.9	51.6	56.9, 76.0	31.3, 31.9
$Ir(C_6H_4CH_2NMe_2-2-C,N)(cod) (2)^b$	166.8, 151.5	125.2, 128.9	121.4, 133.9			50.2	57.2, 74.5	30.9, 32.0
$IrI(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod) (3a)^c$	156.5, 126.5	122.1, 128.1	127.2, 125.6	117.0, 147.5	142.0, 134.9	52.8, 68.4	77.4, 81.9, 96.6, 101.6	26.4, 30.4, 9.0 33.3, 33.9
$IrI(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)$ (3b)	155.5, 129.6	128.0, 127.7	122.2, 125.5	116.5, 141.6	138.3, 135.3	54.4, 60.3	76.1, 80.6, 99.9, 100.1	27.0, 27.3, -2.8 30.2, 42.4
$IrI(Me)(C_6H_4CH_2NMe_2-2-C,N)(cod) (4b)^d$	n.o., 143.7	123.2, 127.9	122.6, 133.5			53.9, 56.9	75.1, 78.9, 96.2, 98.7	27.9, 28.9, -0.2 30.2, 39.5
$Ir(OTf)(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)$ (5b)	153.7, 129.3	128.2, 126.9	122.5, 125.2	115.9, 134.9	138.1, 134.9	53.3, e 56.0 e	82.6, 88.1,• 108.6•	24.9, 27.9, 2.4° 31.0, 33.9

^a Recorded in CD₂Cl₂ at room temperature unless otherwise stated; δ in ppm relative to TMS. ^b From ref 13; $-CH_2$ -NMe₂ resonance δ = 75.7 ppm. ^c Recorded at 233 K. ^d $-CH_2$ -NMe₂ resonance δ = 75.2 ppm. ^e Broad resonance.




Figure 2. The five possible diastereoisomeric structures A-E for complexes IrX(R)(L-C,N)(cod).

often result in the formation of octahedral complexes. In general, an octahedral complex M(a)(b)(c)(d)(e)(f) has a total of 30 stereoisomers, ¹⁶ and this number of possible isomers can complicate structural assignment(s). In 1 as well as in $Ir(C_6H_4-CH_2NMe_2-2-C,N)(cod)$ (2) two rigid bidentate ligands are present, and consequently for the octahedral oxidative addition products, IrX(R)(L-C,N)(cod), the number of possible stereoisomers is restricted to 10, consisting of 5 pairs of enantiomers. In Figure 2 is given, for each of these pairs, the possible structure of one enantiomer. Since all five structures A-E are asymmetric, all the prochiral groupings are diastereotopic and, consequently, afford nonisochronous ¹H NMR resonances.

Oxidative Addition Reactions of RI (R = Me, C₆H₄Me-4) to 1 and 2.17 The reaction of complex 1 or 2 with methyl iodide in toluene, either at -70 °C or at room temperature, affords an off-white, air-stable product trans-IrI(Me)(L-C,N)(cod) (L = $1-C_{10}H_6NMe_2-8$ (3a), 81% yield; L = $C_6H_4CH_2NMe_2-2$ (4a), 91% yield); see Scheme I. Both 3a and 4a are soluble in dichloromethane and chloroform and slightly soluble in toluene and benzene; in these solvents quantitative isomerization to another off-white compound cis-IrI(Me)(L-C,N)(cod) (L = $1-C_{10}H_6NMe_2-8$ (3b) and $L = C_6H_4CH_2NMe_2-2$ (4b), respectively) took place (Scheme I). The four complexes are identified by a combination of ¹H, ¹³C (see Tables I and II), and 2D NMR spectroscopy and elemental analysis. The products 3a,b were shown to be neutral complexes by conductivity measurements (measured molar conductivity value in CH₂Cl₂ at -25 °C; for 3a $0.08 \,\mathrm{cm}^2 \,\Omega^{-1} \,\mathrm{mol}^{-1}$ and for 3b $0.007 \,\mathrm{cm}^2 \,\Omega^{-1} \,\mathrm{mol}^{-1}$). Furthermore, 3a gave no reaction with sodium tetraphenylborate, which is a known reagent for the direct titration of univalent inorganic or organic cations. 18

The ¹H NMR spectra of **3a** and **4a**, acquired at low temperature to prevent further reaction, are very similar to each other. The ¹H NMR spectrum of **3a** is easier to interpret because of the absence of benzylic protons and will be explained in detail. This spectrum of **3a** shows two singlets for the -NMe₂ group at 3.86 and 3.09 ppm, four resonances for the olefinic cod protons at 5.6,

Scheme I. Reaction Sequences and Conditions for the Oxidative Addition Reactions, Intermediate Detection, and Isomerization Processes

5.05, 4.74, and 4.06 ppm, several multiplets for the aliphatic cod protons, a singlet for the Ir-Me group at 1.4 ppm, and three well-separated aromatic resonances at 7.59, 7.21, and 6.65 ppm together with multiplets for the other aromatic protons. The chemical shift values indicate respectively that (a) the -NMe₂ group is coordinating to the metal center (a noncoordinating-NMe₂ group shows a singlet resonance at 2.5 ppm),¹¹ (b) both olefinic moieties of the cod ligand are coordinating to the metal center, and (c) the Me group is bonded to the metal center (free MeI shows a resonance at 2.1 ppm). The nonequivalence of the -NMe₂ methyl groups and cod olefinic protons shows these groups and protons to be diastereotopic, which is further evidence for the chelate binding mode of the ligands. These data point to an

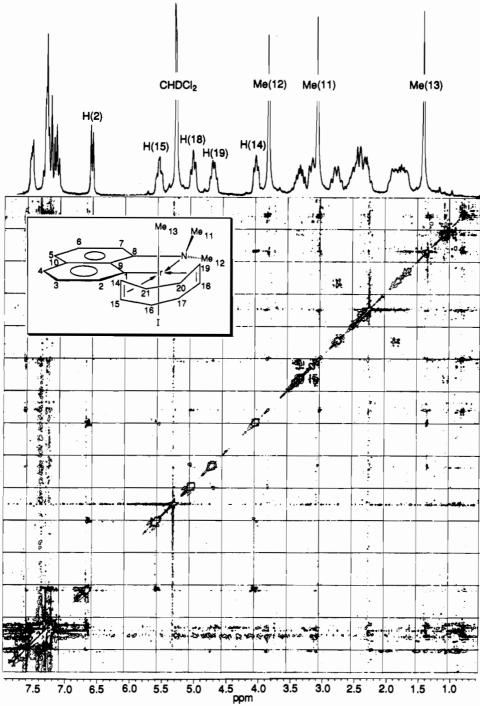


Figure 3. 2D NOESY spectrum and the structure together with the adopted numbering scheme of 3a.

octahedral structure IrI(Me)(1-C₁₀H₆NMe₂-8-C,N)(cod) for complex 3a. Further support for this proposal for 3a being a d6 Ir(III) oxidative addition product comes from the ¹³C NMR spectrum which shows C_{ipso} is at 156.5 ppm (in the starting Ir(I) complex 1, C_{ipso} is at 165.5 ppm), the Ir-Me resonance is at 9 ppm (free MeI has a resonance at -18 ppm), and all the other ¹³C resonances are inequivalent and in the expected regions.

The ¹H and ¹³C NMR data show the reactions of both 1 and 2 with MeI to be stereoselective; only one species is observed in solution whereas 5 isomers (A-E; vide supra) could be expected. However, on the basis of the 1D NMR data, it is not possible with certainty to identify which of the structures A-E has been formed. To help elucidate the structure of 3a in solution, 2D NOESY (nuclear Overhauser enhancement spectroscopy) NMR experiments, which are facilitated by the rigidity of the octahedral complexes, have been carried out. For 3a several nOe's may be expected of which the most significant ones are likely to be those between the aromatic ortho protons and the olefinic cod protons. Therefore, we first deduced with COSY (correlation spectroscopy) experiments that the aromatic resonance at 6.65 ppm belongs to the ortho proton. The 2D ¹H NOESY spectrum of 3a is shown in Figure 3, together with the adopted numbering scheme. The aromatic ortho proton H(2) (6.65 ppm) shows two cross peaks for the interactions with the olefinic protons H(14) and H(15), which, on the basis of decoupling experiments, are bound to the same olefinic unit of the cod ligand. These two nOe interactions are indicative for a structural moiety in which at least one olefinic unit is perpendicular to the plane of the naphthyl ligand, and this immediately rules out structures C-E. One can also rule out structure B, because a downfield shift for the aromatic ortho proton, due to anisotropic effects of the iodide, 7,19 is expected in

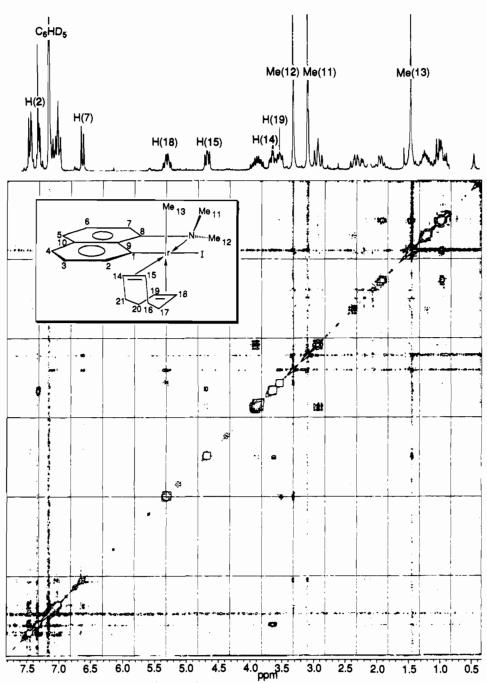


Figure 4. 2D NOESY spectrum and the structure together with the adopted numbering scheme of 3b.

this case but is not observed for 3a. Consequently it is structure A that complies with all spectroscopic data gathered for this oxidative addition product. This proposal is confirmed by the nOe's between the protons of the other olefinic unit of the cod ligand (H(18) and H(19)) and the -NMe₂ unit (Me(11) and Me(12), respectively). On the basis of the great similarity between the ¹H NMR spectra of 3a and 4a, structure A is also assigned to 4a.

Complexes 3a and 4a are not stable in solution at temperatures higher than -10 °C and isomerize quantitatively to the solutionstable complexes 3b and 4b, respectively. The ¹H NMR spectra of 3b and 4b not only are very similar to each other but they also resemble the spectra of 3a and 4a, respectively. Consequently, the structure of 3b, the more rigid complex, was determined in

the same way as for 3a. The main difference in the NOESY spectrum of 3b (see Figure 4) compared to that of 3a is that only one olefinic proton (H(14)) shows an interaction with the aromatic proton H(2); see Figure 4 for the numbering scheme. This means that in 3b one olefinic bond lies in the plane of the naphthyl ligand and not in a mutually perpendicular arrangement as in 3a. Such a structural feature excludes A-C as possible structures for 3b, but both isomers D and E are still possible. From interactions of the olefinic protons H(15) and H(18) with the Me groups H(13) and H(12), respectively, it is possible to exclude structure E. Furthermore, the low-field shifts of the olefinic protons H(15)and H(18) (4.69 and 5.51 ppm, respectively), due to anisotropic effects of the iodide, are in agreement with structure D for complex 3b. By analogy structure D is also assigned to 4b.

Complex 1 did not react with 4-tolyl iodide at -20 °C for 18 h.

C. Isomerization of trans-IrI(Me)(L-C,N)(cod). The isomerization of 3a to 3b is a "clean" process during which no other

⁽a) Gunther, H. NMR Spectroscopy; George Thieme Verlag: Stuttgart-New York, 1974. (b) van der Zeijden, A. A. H.; van Koten, G.; Wouters, J. M. A.; Wijsmuller, W. F. A.; Grove, D. M.; Smeets, W. J. J.; Spek, A. L. J. Am. Chem. Soc. 1988, 110, 5354.

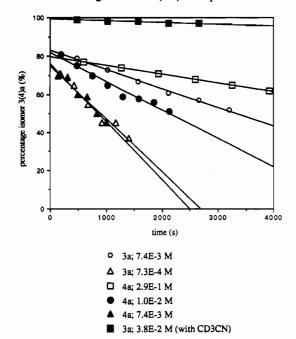


Figure 5. Plot of concentration of 3a (4a) vs time for the isomerization of 3a (4a) to 3b (4b). The concentration of 3a (4a) is represented in percentage such that $\% \ 3a \ (4a) + \% \ 3b \ (4b) = 100\%$.

isomers were observed by 1H NMR spectroscopy. However, the isomerization of 4a to 4b (now L is the more flexible [C₆H₄CH₂NMe₂-2] ligand) involves another isomer with similar ¹H NMR resonance patterns. The most striking difference is that instead of two-NMe resonances at ca. 3 ppm and one Ir-Me resonance at ca. 1 ppm, the new isomer has now two -NMe singlets at 2.65 and 3.3 ppm and one Ir-Me singlet at 2.6 ppm. Unfortunately, a complete characterization of this "intermediate" has not proved possible.

The rate of isomerization of the species with the trans-Me-Ir-I geometry (3a or 4a) to the product with the cis geometry (3b or 4b) is dependent on several factors. First, concerning the solvent, whereas the isomerization in polar solvents (CHCl₃, CH₂-Cl₂) takes ca. 1-4 h, under similar conditions the isomerization in nonpolar solvents takes 40-60 h. Second, concerning the temperature, no isomerization takes place at temperatures lower than -10 °C. Third, when the isomerizations of 3a and 4a are followed at one temperature (5 °C), it is found that both the concentration of the isomers with the trans geometry and the type of chelating ligand system influence the rate of the isomerization. For example, as shown in Figure 5, the isomerization of 3a to 3b is 2.8 times faster when the concentration of 3a is a factor of 10 lower. Furthermore, at the same concentration of the starting trans isomer the isomerization of 4a to 4b is 3.1 times faster than that of 3a to 3b. At room temperature the rate of isomerization of 3a to 3b can be affected by addition of external reagents. When a solution of MeBu₃NI in CDCl₃ is added to a solution of 3a in CDCl₃, the conversion to isomer 3b within 1 h decreases by 25%. In contrast, addition of a bromide (instead of iodide) salt, i.e. Bu₄NBr, decreases the yield within 1 h to 6%. When this latter reaction mixture is measured after 18 h, complex 3a is still present (for 20%) and, as well as 3b, there is another product (for 15%) present; this new complex is thought to be the bromide analogue of 3b, i.e. cis-IrBr(Me)(1-C₁₀H₆NMe₂-8-C,N)-(cod) (3c). The latter has also been obtained in a separate experiment (see Experimental Section) where 4 equiv of Bu₄NBr was added to 3a affording a 1:1.7 mixture of 3b (cis-MeI) and 3c (cis-MeBr).

D. Cationic Complexes. ¹H NMR Detection of the Cationic Complex $[Ir(Me)(C_{10}H_6NMe_2-8-C_1N)(CD_3CN)(cod)[I]$ (3a'). Addition of an excess of the coordinating solvent CD₃CN to a solution of 3a in CD₂Cl₂ at -40 °C affords the cationic complex

 $[Ir(Me)(C_{10}H_6NMe_2-8-C,N)(CD_3CN)(cod)][I]$ (3a') (see Scheme I), which is easily detected with ¹H NMR. When this experiment is carried out at room temperature, this cationic complex is not detected. The ionic character of complex 3a' is very clear from conductivity measurements: the molar conductivity value of 3a' (19.8 cm² Ω^{-1} mol⁻¹) is 250 times greater than that of **3a**. In the ¹H NMR spectrum of 3a', the Ir-Me resonance at 0.91 ppm is 0.5 ppm upfield of that of 3a and this difference is in accordance with the trans influences of X and CH₃CN.¹⁹ In 3a' the N-Me resonances are now separated by only 0.1 ppm, whereas in 3a the separation is 0.77 ppm as a result of the anisotropic effects of the iodide.7,19

Addition of less than 1 equiv of CD₃CN to a solution of 3a in CD₂Cl₂ at -40 °C causes partial (¹H NMR detectable) formation of 3a'. However, when the temperature was raised (-30, -10, 5 °C), 3a' is no longer observed. The measured isomerization rate of 3a to 3b in presence of added CD₃CN at 5 °C (see Figure 5) shows that conversion is slow.

The reaction of 1 with MeI carried out in CD₃CN at -40 °C also affords the cationic complex 3a'. Interestingly, if MeI is added to a solution of 1 in CD₃CN, the complex 3a' can now be detected even at room temperature. The cationic complex 3a' in solution at room temperature has some stability and after 15 min isomerization to 3b and some decomposition becomes appreciable. This isomerization is not accelerated by addition of a solution of 40 equiv of Lil in CD₃CN.

Attempts to isolate the cationic complex 3a' failed; after workup of the reaction of 1 with MeI in CH3CN, only a mixture of 3a and 3b was obtained.

When CD₃CN was added to a solution of 3b in CDCl₃, at temperatures from -40 °C to room temperature, no reaction was

Synthesis of $[Ir(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)][OTf]$ (5). The oxidative addition reaction of methyl trifluoromethanesulfonate (CF₃SO₃Me = MeOTF) to 1 dissolved in toluene affords the white solid $[Ir(Me)(1-C_{10}H_6NMe_2-8-C,N)(cod)][OTf]$ (5) in 79% yield; see Scheme I. Complex 5 can also be synthesized by the reaction of 3 with silver trifluoromethanesulfonate. This product, which is air-stable and soluble in chloroform and dichloromethane, has been characterized with ¹H and ¹³C NMR spectroscopy (Tables I and II, respectively) and elemental analysis. Variable-temperature NMR data in solution at room temperature for 5 have shown that this complex exists as two isomers which are in equilibrium. At room temperature broad signals for both isomers 5a,b (each with two-NMe singlets and one Ir-Me singlet) are present in a 3:2 ratio. Above 30 °C only 1 isomer, 5a, is present and all lines sharpen. Upon cooling, the ratio of the two isomers 5a,b changes to 2:3 at -50 °C. A clear saturated solution of 5 in CDCl₃ at room temperature shows with ¹H NMR only one isomer 5b; dilution of this sample with CDCl₃ gives a mixture of 5a,b. Therefore, we propose that 5a is the five-coordinate ionic complex [Ir(Me)(1-C₁₀H₆NMe₂-8-C,N)(cod)][OTf] and that 5b is the neutral six-coordinate octahedral complex Ir-(OTf)(Me)(1-C₁₀H₆NMe₂-8-C,N)(cod). Although the trifluoromethanesulfonate group is a poorly coordinating anion, 20 in a saturated solution of 5 the equilibrium between 5a and 5b is shifted completely to the side of 5b with a coordinated OTf group. Further evidence for the proposed structures of 5a,b is provided by the observation that a clear dilute sample of 5 in the apolar solvent C_6D_6 shows only the presence of isomer 5b. The ionic character of the mixture was confirmed with conductivity experiments; the measured molar conductivity value of 5 in CH₂-

^{(20) (}a) Howells, R. D.; McCown, J. D. Chem. Rev. 1977, 77, 69. (b) Davies, J. A.; Hartley, F. R. Chem. Rev. 1981, 81, 79. (c) Byers, P. K.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D. Organometallics 1988, 7, 1363. (d) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Organometallics 1989, 8, 2907. (e) Winter, C. H.; Zhou, X.-X.; Heeg, M. J. Organometallics 1991, 10, 3799.

Cl₂ at -25 °C is 4.81 cm² Ω^{-1} mol⁻¹, which is between the value of the neutral complex 3a and the cationic complex 3a'.

The proposed stereochemistry of the two isomers of 5 is shown in Scheme I. The ¹H NMR spectra of pure 5a,b, obtained from dilute samples at high temperature and saturated ones at room temperature, respectively, both resemble the spectrum of 3b as regards the aromatic region and the three methyl signals. This similarity points to a cis configuration of the Me ligand and the free coordination site in 5a and of the Me and OTf groups in 5b rather than a trans arrangement as found for Me and I in 3a. Upon addition of CD₃CN at room temperature to a solution containing **5a,b**, only one isomer is formed, i.e. $[Ir(Me)(1-C_{10}H_{6}-E_{$ $NMe_2-8-C,N(CD_3CN)(cod)$ [OTf] (5a'), which is stable in solution for days. Compared to the spectrum of 5b that of 5a' shows a small upfield shift of the Ir-Me resonance from 0.69 to 0.58 ppm, though both -NMe resonances at 3.52 and 3.11 ppm and the olefinic cod signals are hardly shifted. The small upfield shift of the Ir-Me resonance points to a cis position of the CD₃-CN and the Me group and is, thus, further evidence for the proposed structures for 5a,b. Moreover, the conductivity of the solution containing 5a,b is enhanced 10 times by addition of acetonitrile, and 5a' so formed is ionic (measured molar conductivity value of 5a' in CH₂Cl₂ at -25 °C is 49.7 cm² Ω^{-1} mol^{-1}).

Starting from the solution containing 5a,b, it is also possible to generate the IrIII(Me)(I) complex 3b; see Scheme I. Addition of a solution of 4 equiv of LiI in methanol- d_4 to a solution containing 5a,b in methanol- d_4 results in the immediate precipitation of an off-white solid, which is soluble in CDCl₃ and has been shown by ¹H NMR to be pure 3b. This experiment also provides extra evidence for the cis configuration of 5a,b. The possibility that the off-white precipitate is 3a which then isomerized to 3b in CDCl₃ can be ruled out, because isomerization of pure 3a to 3b does not take place either in the solid state or in solution within 5 min.

Discussion

Mechanism of Oxidative Addition Reactions. Alkyl halides are known to react as electrophiles with a metal complex to give an oxidative addition reaction. In general, for an oxidative addition reaction with a square planar d8 metal complex, three mechanisms have been proposed, the S_N2 type, the concerted addition, and the free radical (chain or nonchain) process.²¹ In these reactions, the outcome of the product stereochemistry is indicative for the operative mechanism. For the oxidative addition of alkyl halides the S_N2 type of mechanism is most common, very often resulting in a trans positioning of the alkyl and the halide ligands.²² Further evidence for the operation of the S_N2 type of mechanism comes from the observation of cationic intermediates. Another possible intermediate in the S_N2 type of reaction is a five-coordinate metal complex in which intact RX is coordinated to the metal center. Usually, RX-coordinated complexes are formed from cationic precursor species in which the metal center possesses a high oxidation state for improved acceptor ability.²³ In such RX-coordinated complexes the metal center retains the oxidation state of the precursor complex.

CA, 1980. (c) Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms; Brooks/Cole Publishing Co.: Montery, CA, 1985. (22) (a) Ruddick, J. D.; Shaw, B. L. J. Chem. Soc. A 1969, 2801, 2964. (b) Clark, H. C.; Ruddick, J. D. Inorg. Chem. 1970, 9, 2556. (c) Appleton, T. G.; Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1974, 65, 275.

In the reactions of RX with 1 and 2 the precursor material is a neutral Ir(I) complex, which is not very likely to coordinate RX to form five-coordinate Ir(I) products. Here, our evidence points to the reaction of MeI with 1 or 2 to be proceeding by an S_N2 type of mechanism. First, we find that in the initial products 3a and 4a the methyl and iodide ligands are trans-positioned and, second, the reaction of 1 with MeI in CD₃CN provides the cationic complex 3a'. It is important to note that although many cationic intermediates are known in the oxidative addition reactions of 18-electron complexes, 3a' is, in fact, one of the first examples of a cationic intermediate to be detected during an oxidative addition reaction with a 16-electron Ir(I) complex.²⁴ This common failure to observe cationic species from 16-electron precursors is probably related to the relative rates of oxidative addition and subsequent ligand substitution. The first (oxidative addition) step to form the cation is likely to be much slower than the second step (ligand substitution of the coordinating solvent by the halide).1d In our work, the first step in the reaction of 1 with MeI is fast enough to enable detection of the cationic intermediate. Puddephatt et al. have shown that the oxidative addition step of the reactions of PtMe₂L₂ with RX in coordinating solvents was fast enough to detect a cationic intermediate 1d, 20c, 25 but only for the most reactive systems, i.e. RX = MeI and $PhCH_2Br$ in combination with L_2 = bipy and L = PMe₂Ph.

In our case further indirect evidence for the S_N2 mechanism for the MeI reaction comes from the reaction of 1 with 4-tolyl iodide where no oxidative addition products are found. In the few examples where aryl halide oxidative addition to a squareplanar d⁸ metal complex does occur, kinetic data have shown that an S_N2 mechanism was not involved.²⁶

The reaction of 1 with MeOTf in toluene is in several aspects different from that with MeI in CD3CN and leads to a product mixture of two isomers 5a,b, five- and six-coordinate Ir complexes which are in equilibrium with each other (see Results). This formation of a five-coordinate cationic metal species is also indicative for an S_N2 type of mechanism. However, the sixcoordinate species is not a product with trans geometry. This result can be readily explained by assuming that the initially formed cationic complex (with an apical Me group) first isomerizes by an intramolecular ligand rearrangement to afford the observed five-coordinate species before the OTf-group coordinates to afford the six-coordinate product. Although the OTf- group is a weak ligand for the Pt group metals and unlikely to coordinate,20 precedents for a coordinating OTf- group have been found in palladium,^{27a} cobalt,^{27b} ruthenium,^{27c,28} and zinc chemistry.²⁸

Finally, it is worth emphasising that it is fully consistent that the equilibrium isomer mixture of 5a,b in toluene when treated with CD₃CN should afford 5a' with a ligand arrangement different from the MeI oxidative addition product 3a' realized in CD₃CN solution.

Mechanism of Stereoselective Isomerization. In solution the product with the trans-Me-Ir-I geometry 3a (4a) is not stable and isomerizes quantitatively and stereoselectively to the product with the cis geometry 3b (4b). Cis-trans isomerizations within

^{(21) (}a) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434. (b) Collman, J. P.; Hegedus, L. S. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley,

^{(23) (}a) Winter, C. H.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 7560. (b) Winter, C. H.; Gladysz, J. A. J. Organomet. Chem. 1988, 354, C33. (c) Conroy-Lewis, F. M.; Redhouse, A. D.; Simpson, S. J. J. Organomet. Chem. 1989, 366, 357. (d) Winter, C. H.; Veal, W R.; Garner, C. M.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1989, 111, 4766. (e) Kulawiec, R. J.; Faller, J. W.; Crabtree, R. H. Organometallics 1990, 9, 745. (f) Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. Rev. 1990, 99, 89.

⁽a) Hart-Davis, A. J.; Graham, W. A. G. Inorg. Chem. 1970, 9, 2658; 1971, 10, 1653. (b) de Waal, D. J. A.; Gerber, T. I. A.; Louw, W. J. Inorg. Chem. 1982, 21, 1259

Puddephatt, R. J.; Scott, J. D. Organometallics 1985, 4, 1221.

(a) Mureinik, R. J.; Weitzberg, M.; Blum, J. Inorg. Chem. 1979, 18, 915. (b) Anderson, C. M.; Puddephatt, R. J.; Ferguson, G.; Lough, A. J. J. Chem. Soc., Chem. Commun. 1989, 1297.

⁽a) Anderson, O. P.; Packard, A. B. *Inorg. Chem.* 1979, 18, 1129. (b) Dixon, N. E.; Jackson, W. G.; Lancaster, M. J.; Lawrance, G. A.; Sargeson, A. M. *Inorg. Chem.* 1981, 20, 470. (c) Kraakman, M. J. A.; de Klerk Engels, B.; de Lange, P. P. M.; Vrieze, K. Organometallics 1992, 11, 3774.

We have very recently found η^1 -O bonded OTf⁻ in the X-ray molecular structures of MeZn(t-BuN=CHC(H)=N-t-Bu)(OTf) (Wissing, E.; Kaupp, M.; Boersma, J.; Spek, A. L.; van Koten, G. Unpublished results) and Ru{C₆H₄(CH₂NMe₂)₂-C₂N₂N³(C₇H₈)(OTf) (C₇H₈ = norbornadiene; Sutter, J. P.; van Koten, G.; Spek, A. L.; Veldman, N. Unpublished results).

Scheme II. Proposed Mechanism for the Isomerization Process of the Trans to the Cis Isomer

$$\begin{bmatrix} M_{0} \\ CD_{3}CN \\ 3a \end{bmatrix}$$

$$\begin{bmatrix} M_{0} \\ CD_{3}CN \\ 3a \end{bmatrix}$$

$$\begin{bmatrix} M_{0} \\ K_{2} \\ K_{2} \\ K_{3} \end{bmatrix}$$

$$\begin{bmatrix} M_{0} \\ K_{2} \\ K_{3} \end{bmatrix}$$

$$\begin{bmatrix} M_{0} \\ K_{3} \\ K_{4} \end{bmatrix}$$

$$\begin{bmatrix} M_{0} \\ K_{4} \\ K_$$

octahedral complexes may occur either intra- or intermolecularly and often involve prior dissociation of a ligand to create a free coordination site. 20c,29 The intermolecular process can proceed via either a reductive elimination/oxidative addition mechanism (as was found for the iridium hydride complexes Ir(H)2(Ph)- $(CO)(PMe_3)_2^{1e}$ and $IrX(H)_2(CO)(Ph_2PCH_2CH_2PPh_2)(X = Cl,$ Br, I))30 or by a dissociative pathway that involves ligand dissociation, rearrangement of the resulting five-coordinate complex and coordination of a free ligand. [We thank the reviewers for correctly pointing out that crossover experiments using CD₃I and isolated species 3a and 4a would provide further useful information on possible intermolecular exchange processes. Such experiments will be included in a newly initiated study of oxidative reactions with several chelated transition metal species.] Characteristic for this intermolecular dissociative pathway is that exchange with any free ligand should occur easily. However, there is also an intramolecular process for cis-trans isomerizations that can follow a dissociative pathway. In this process, the isomerization rate is much faster than that of the dissociation and consequently the latter becomes the rate-determining step. An example of this process is the first-order isomerization of cis-IrCl₂(R)(CO)(PMePh₂)₂ to trans-IrCl₂(R)(CO)(PMePh₂)₂ (R = Me, Et, n-Pr) that is proposed to go via rate-determining dissociation of Cl-, rapid rearrangement of the Ir(III) cation, and subsequent reentry of the same Cl-.31 The intermediate in this type of reaction may have a trigonal bipyramidal structure, in which an intramolecular Berry pseudorotation takes place.32 For the cited examples of iridium dihydride1e,30 and dihalide complexes³¹ the isomerizations at room temperature are very slow when no external reagents/ligands are present; the halflives for isomerization vary from 35 h to 1 week.

Although the complete isomerization of 3a to 3b in dry CDCl₃ or CD₂Cl₂ (without other reagents present) is relatively fast (1 to 5 h, room temperature, concentrations up to 20 mg/0.5 mL), we still wish to propose that this process follows a dissociative mechanism as given in Scheme II. In this process it is the iodide ligand that dissociates rather than the dimethylamine function

in the naphthyl ligand or one of the double bonds of the cyclooctadiene ligand, as occurs in the presence of the coordinating solvent MeCN. First complex 3a is formed in the oxidative addition reaction of MeI to 1 (k_1) , which proceeds through a cationic intermediate represented by the five-coordinate square pyramidal structure F^+ . Then, isomerization starts by (reversible) dissociation of the iodide (k_{-1}) from 3a to recreate cationic \mathbf{F}^+ . Then isomerization to cation G^+ takes place (k_3) . Upon readdition of the iodide to cation G+, complex 3b is formed in an irreversible reaction which goes to completion. Whereas 3b is unaffected by MeCN, 3a forms with MeCN via $F^+(k_2)$, the MeCN-coordinated cationic complex 3a'. This dissociation of I- in 3a to form F+ (k_{-1}) is facilitated by the *trans* influence of the methyl group, which makes the I- anion labile.33 The formation of 3a' results in an overal slowing down of the isomerization of 3a to 3b when MeCN is present. Although k_{-1} (formation of the cationic intermediate F+) may be increased by the presence of MeCN (polar solvent), k_3 will be decreased because a concurrent reaction to form 3a' (k_2) is now also operative. Such a stereoselective oxidative addition to a d8 metal complex followed by stereoselective isomerization within the d6 metal complex was earlier reported by Brown et al. for the reaction of cationic Ir(I) phosphine complexes with H₂ affording Ir(III) dihydrides.³⁴

The proposed mechanism is in accordance with the kinetics described in the Experimental Section and consists of a thermodynamic selectivity of the first step (a pre-equilibrium k_1/k_{-1} (K)) followed by a rate-determining step k_3 and a fast step to give the final product, in summary as follows:

$$A \stackrel{K}{\rightleftharpoons} F^+ + I^-$$
 (fast)
 $F^+ \stackrel{k_3}{\rightarrow} G^+$ (slow (rate-determining))
 $G^+ + I^- \rightleftharpoons \text{product}$ (fast)

External R₄NX reagents decrease the reaction rate because they reduce the concentration of F⁺ in the pre-equilibrium step. In the isomerization of 3a to 3b the fact that Br becomes built into the final product when additional R₄NBr is present is also indicative for a rate-determining second step (k_3) . As in our system, there are reported examples of external ligands retarding processes in which an equilibrium precedes the rate-determining step, such as in the oxidative addition of aryl iodides to Ir(I) complexes^{26a} or in the cyclopalladation of benzylamine systems.³⁵

For the isomerization of 4a to 4b the same mechanism as described in Scheme II is also likely to be operative. The fact that the isomerization in this case is faster can be explained by electronic rather than steric factors. The amine function of the benzylamine ligand in 4 has more Lewis base character than that of the naphthylamine ligand in 3. Therefore, with the former the positively charged iridium center in the cation F is more stabilized and the species detected during the isomerization of 4a to 4b is probably this five-coordinate cation F; the low-field shift of the Ir-Me group in the ¹H NMR spectrum is in line with this proposal. When the first step shows thermodynamic selectivity, this preequilibrium shifts to the side of the more stabilized species (F) resulting in a higher overall reaction rate for the 4a -> 4b isomerization than for the $3a \rightarrow 3b$ isomerization.

⁽a) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution, 2nd ed. John Wiley and Sons Inc.: New York, 1967. (b) Twigg, M. V. Mechanisms of Inorganic and Organometallic Reactions; Plenum Press: New York, 1983/1984; Vols. 1 and 2. (c) Thompson, J. S.; Atwood, J. D. Organometallics 1991, 10,

^{(30) (}a) Harrod, J. F.; Yorke, W. J. Inorg. Chem. 1981, 20, 1156. (b) Johnson, (c) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1983, 105, 7772. (c) Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 3148 and 6531. (d) Kunin, A. J.; Farid, R.; Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 5315.

Bennet, M. A.; Jeffrey, J. C. Inorg. Chem. 1980, 19, 3763.

⁽³²⁾ Berry, R. S. J. Chem. Phys. 1960, 32, 933.

⁽a) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 423. (b) Busson, S. S.; Leipoldt, J. G.; Nel, J. T. Inorg. Chim. Acta 1984, 84, 167.

⁽a) Brown, J. M.; Dayrit, F. M.; Lightowler, D. J. Chem. Soc., Chem. Commun. 1983, 414. (b) Brown, J. M.; Maddox, P. J. J. Chem. Soc., Chem. Commun. 1987, 1276 and 1278. (c) Brown, J. M.; Evans, P. L.; Maddox, P. J.; Sutton, K. H. J. Organomet. Chem. 1989, 359, 115.

Conclusions

This study has shown that stereoselective oxidative addition of electrophilic reagents to Ir(I) complexes is obtained when using bidentate C,N chelating ligands. With MeI a kinetic isomer could be isolated, which is the result of an S_N2 type of reaction. This kinetic product stereoselectively isomerizes to the thermodynamic isomer, through a cationic intermediate which is detectable when the coordinating solvent MeCN is used. The naphthylamine and benzylamine ligand both give rise to the same stereoselectivity; however, with the less Lewis basic and more

rigid naphthylamine ligand the isomerization is slower, allowing an easier study of the total isomerization process. The isomerization involves a pre-equilibrium in which dissociation of the halide takes place.

Acknowledgment. We gratefully thank Shell Research BV (ICMW-O) for their financial support.

^{(35) (}a) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Dalton Trans. 1985, 2629. (b) Ryabov, A. D. Chem. Rev. 1990, 90, 403.