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A number of examples of a novel class of carbon allotropes, 
the polyhedral fullerenes, C,, with n in the range 6&94, have 
now been isolated, and their structures have been either proved 
or postu1ated.l Even larger “giant” fullerenes have been suggested 
as components of soot and interstellar matter.2 The epidemic 
spread of this research area3 has led to the proposal of a wide 
variety of methods of generating the possible polyhedral cages. 
These methods include the leapfrog construction$ the ring-spiral 
algorithm,s the lattice-projection method? and several random- 
ization-annealing techniques.lhs7 This circumstance in turn has 
resulted in a chaotic proliferation of model structures; this 
communication is intended as a first step in developing a taxonomy 
for this “fullerene zoo”,8 especially in the light of suggestions that 
it might be possible to form similar boron-nitrogen networksg or 
giant doso-borane structures based on the polyhedral duals of 
the fullerenes.1° 

The fact is these polyhedral cage molecules have introduced 
new possibilities into the analysis of isomer counting in chemistry. 
A previous paper” considered one specific series, the icosahedral 
fullerenes C~O,,,, from the point of view of using crystallographic 
enumeration techniques to determine the precise number and 
symmetry of such GoldbergI2 polyhedra, which also form the 
basis of geodesic domes and many virus parti~1es.l~ The same 
crystallographic approach will now be combined with the lattice 
projection method6 of constructing fullerene cages to provide a 
comprehensive classification scheme for fullerene cages capable 
of predicting many potential structures of giant fullerenes. 

There are several equivalent approaches6.’ 1,14 to the construction 
of an icosahedral fullerene by selecting hexagons on a two- 
dimensional derivative lattice15 of the graphene sheet, to become 
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the 12 pentagons of the final polyhedron. If the same 12 pentagons 
are chosen in an irregular manner, rather than on the array of 
equilateral triangles, a more general fullerene may result. In 
fact, as has been asserted? it is possible to project any fullerene 
onto a hexagonal net in such a fashion; a proof of this will be 
presented elsewhere.16 In turn this approach to the construction 
of the cage immediately gives rise to a remarkable and very useful 
theorem; all fullerenes whose constructions conform to the normal 
rules may be arranged in infinite families, such that the number 
of isomeric cage structures C,, within any family conforms to 
the same rules as does the icosahedral family C20m of Goldberg 
polyhedra. This result arises in the following way. 

The general shape of the polyhedron produced will be 
determined by the arrangement of pentagons; in fact we can 
define a “frame polyhedron” as that described by the centroids 
of the 12 pentagons once the graphene sheet has been folded into 
the fullerene cage. These frame polyhedra will be geometrically 
similar provided the original planar arrangements are. However, 
whichever set of hexagons are chosen to become pentagons, they 
must lie on a hexagonal derivative lattice of index at most m, 
where m nmust conform to the usual hexagonal quadratic form: 

m = hZ + hk + kz (h ,  k integers) 
Here we define the derivative lattice by the index in hexagonal 
coordinates of its closest lattice point in the sextant h > 0, k 2 
0. Where m = 1, we shall describe the resultant polyhedron as 
a parent, since any polyhedron with m = k > 1 can be derived 
from one with m = 1 by a uniform expansion by k1I2 and 
appropriate rotation’’ of the defining set of points. This leads 
us to the conclusion that all the possible fullerenes may be arranged 
in infinite families, each related to some parent through the 
geometrical similarity of their frame polyhedra. The family 
members each correspond to a distinct hexagonal derivative lattice 
which and are therefore enumerated by the Dirichlet generating 
functions18 derived previouslylg for this purpose and which are 
used elsewhere” to discuss the icosahedral family. For such 
Dirichlet functions the arithmetic function, which is the coefficient 
of n+ in the series expansion, gives the number of distinct lattices 
or isomers for that value of n. They frequently have the additional 
advantage of discriminating among thevarious possiblesymmetry 
groups for the objects enumerated. For example, in this particular 
case, we have 

F(P6) = tw L[s,x(3)1 = 
1 + 3” + 4” + 2.7” + 9” + 12“ + 2.13” + ... 

in the unrestricted case, and 

F(p6mm) = (1 - T2”) {(2s)/( 1 - 3”) = 
1 + 3-’+ 4” + 9” + 12” + 16” + ... 

where the symmetry requires that a mirror plane present in the 
original lattice is retained in the polyhedron. The relevant 
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mathematical properties of the corresponding generating functions 
have been presented in detail elsewhere.ll 

However, it is important to note that in the latter series the 
coefficient is unity, where in the former series it is odd, and is 
zero where the previous series coefficient was even. This governs 
the distribution of point symmetries2O within any given family, 
for child polyhedra will not necessarily have the same symmetry 
as their parent and frame. If the frame polyhedron belongs to 
a point group which does not contain a mirror plane, the individual 
fullerenes will normally21 belong to the same point group as the 
frame. However, if the frame belongs to a point group containing 
a mirror plane, the distribution of isomers follows the pattern 
indicated by the two series above, i.e. the second series selects 
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n = 1, 3,4, 9, 12, 16, ... 
isomers which conserve the full symmetry of the parentda and 
which normally have the same point symmetry as the frame, 
while the remainder by termwise subtraction 

n = 7, 13, 19, 21,28, ... 
occur as pairs of the corresponding lower point symmetry. By 
contrast, these latter pairs are actually structural isomers in the 
case of a chiral frame, since their enantiomers along to the distinct 
family of the enantiomorphous frame. 

We may use the stable C70 isomer as the exemplary parent. 
Here the frame has symmetry D5hr and its vertices lie on a slightly 
prolate spheroid. There are then isomers of formulae C210 and 
c280 with geometrically similar frames and belonging to the same 
point group, but for C ~ W  we find a chiral pair of point symmetry 
Dg. The orientation of their patterns on the graphene sheet is 
shown in Figure 1. 

The further intention of this work is to use the lattice projection 
method to search for enumerating formulas for fullerene isomers 
of specific idealized point symmetries and, hence, a convenient 
way to break down the total number of isomers for a given mass 
according to their symmetry. Unfortunately, although appro- 
priate lattice projections exist for some symmetries? these are 
not available in general. Some work has already been done in 
regard to generating parent fullerenesof specific point symmetries, 
for example, the C ~ O  + 30" series of Fowler>3 with symmetries D5h 
and Dsd. This series is also derived from C70 but is not to be 
confused with its children above, although some may have common 
masses. Ds,&80 in Fowler's parent series is a cylindrical tubule 
with Cm-like hemispherical caps, while Dsh-C280 has the same 
"rugby ball" proportions as its parent C70. 

Another aspect to be considered is the degree of separation of 
the individual pentagons in thecage. The isolated-pentagon rule23 
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Figure 1. Frame patterns of the first five members of the family of 
&&o, arranged on thegraphene sheet. Only one-fifth of each complete 
pattern is shown. 

has been recognized as an important guide to the stability of 
fullerenes, and some of the constructions mentioned495 are 
specifically designed to yield such isomers. Examination of the 
transformation used above to generate a family from its parent 
shows that only the parent may have adjacent pentagonal faces, 
as these move to the (1,l) vertex-facing (VF) position in the m 
= 3 child, this being equivalent to the leapfrog procedure, to the 
(2,O) side-facing (SF) position in them = 4 child, and even farther 
away for higher values of m. In fact buckminsterfullerene, Ca, 
the smallest fullerene conforming to the isolated-pentagon rule, 
is the m = 3 child of the smallest conceivable fullerene, CZo, 
which has no hexagons at all. The smallest actual parent with 
isolated pentagons is the Dsh isomer of C70; however, such parents 
rapidly become numerous beyond that ~ i n t . 2 ~  

These same considerations will also apply, mutatis mutandis, 
to related non-carbon cages.gJ0 
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