Gas-Phase Reactions of Fe(benzyne)+ with Simple Alkyl Halides

Edna Garcia, Yongqing Huang, and Ben S. Freiser'

H. C. Brown Laboratory of Chemistry, Purdue University, West Lafayette, Indiana 47907-1 393

Received March 3, I993

As an extension of our work on M(benzyne)⁺ complexes ($M = Fe$, Fe₂, CoFe, Sc), here we report the primary and secondary reactions of Fe(benzyne)⁺ with CH₃F and the small alkyl halides, C_nH_{2n+1}X ($n = 1-3$; X = Cl, Br, I). Reaction mechanisms are postulated based on the product ion structures which are determined by ion-molecule reactions and collision-induced dissociation. In general, the reactions are observed to proceed by an initial C-X or C-C insertion. If β -hydrogens are present on the alkyl moiety, subsequent β -H transfer and elimination of HX is observed. Secondary reactions generally involve dehydrohalogenation and halogen abstraction. One of the most interesting reactions is with CH₃I. Following C-I insertion, transfer of the CH₃ group to the benzyne ligand results in an Fe(I)(tolyl)⁺ intermediate which competitively eliminates either FeI to generate C_7H_7 ⁺ or I^{*} to generate $FeC₇H₇$. Ion-molecule reactions indicate that the $C₇H₇$ species has the benzyl structure. Additionally, CID and ion-molecule reactions suggest that $FeC₇H₇$ has an *o*-tolyliron structure. For larger alkyl halides, however, the analogous reactions are not observed due to the availability of β -hydrogens, which undergo facile transfer and elimination of HX as described above. Finally, the thermochemical implications of these results are discussed.

Introduction

The Fourier transform ion cyclotron resonance mass **spec**trometer, FT-ICR-MS,' has been shown to be a superb 'beaker" for the synthesis, manipulation, and storage of ions in the gas phase, where one may observe the chemical reactivity of such species in the ultimate nonpolar medium. Increasingly, the chemistry of transition metal ions in this environment has proved to be rich, with studies revealing intrinsic physical and chemical properties of these species. $2-16$ In particular, several research groups²⁻¹⁵ have worked on the characterization of $Fe⁺$ with a variety of organic halides. Allison and Ridge, for example, looked at the reactions of Fe+ with alkyl halides.^{4,5} Subsequently, Ridge and co-workers⁶ studied the reactions of Fe⁺ with aryl halides and discovered an interesting polymerization reaction between

- (2) Some review articles include: Allison, J. *Prog. Inorg. Chem.* **1986**, 34, **627. Allison, J.; Mavridis, A,; Harrison, J. F.** *Polyhedron* **1988,7,1559. Armentrout, P. B.; Beauchamp, J. L.** *Acc. Chem. Res.* **1989, 22, 315. Schwarz, H.** *Ace. Chem. Res.* **1989, 22, 282. Eller, K.; Schwarz, H.** *Chem. Rev.* **1991, 91, 1121.**
-
-
- Bjarnason, A.; Taylor, J. W. *Organometallics* 1989, 8, 2020.
Allison, J.; Ridge, D. P. *J. Organomet. Chem.* 1975, 99, C11.
Allison, J.; Ridge, D. P. *J. Am. Chem. Soc.* 1976, 98, 23, 7445.
Dietz, T. G.; Chatellier, D. S.
- *100,* **4905.**
- **Peake, D. A.; Gross, M. L.** *Anal. Chem.* **1985,** *57,* **115.**
- **Armentrout, P. B.; Hodges, R. V.; Beauchamp, J. L.** *J. Am. Chem. Soc.* **1981, 103, 734.**
- **Bjamason, A.; Taylor, J. W.; Kinsinger, J. A.; Cody, R. B.; Weil, D. A.** *Awl. Chem.* **1989,61, 1889.**
- **Bjamason, A.; Taylor, J. W.** *Organometallics* **1990, 9, 1493.**
- **Bjarnason, A.** *Organometallics* **1991,** *10,* **1244.**
- **Huang, Y.; Freiser, B. S.** *Inorg. Chem.* **1990, 29, 2052. Huang,** *Y.;* **Freiser, B. S.** *Inorg. Chem.* **1990, 29, 1102.**
- **Huang, Y.; Freiser, B. S.** *J. Am. Chem. Soc.* **1989,** *111,* **2387. The** original value for D° (Fe⁺-benzyne) was recalculated using ΔH_f (C₆H₄) = 105.2 ± 2.4 kcal/mol: Riveros, J. M.; Ingemann, S.; Nibbering, N.
M. M. J. Am. Chem. Soc. 1991, 113, 1053. Wenthold, P. G.; Paulino, **J. A.; Squires, R. R.** *J. Am. Chem. SOC.* **1991, 113, 7414. Guo, Y.; Grabowski, J. J.** *J. Am. Chem. Soc.* **1991,113, 5923.**
- **Huang,** *Y.;* **Freiser, B. S.** *J. Am. Chem. Soc.* **1990, 112, 1682. Huang, Y.; Hill, Y. D.; Sodupe,M.; Bauschlicher, Jr. C. W.; Freiser, B.**
- **S.** *Inorg. Chem.* **1991,** *30,* **3822.**
- **Freiser, B. S.** *Talanta* **1985, 32, 697. Freiser, B. S.** *Chemtracts-Anal. Phys. Chem.* **1989,** *I,* **65.**

Fe+ and chlorobenzene initiated by the formation of Fe(benzyne)+. They also reported a lower limit for $\Delta H_1(C_6H_4)$. Bjarnason and Taylor also studied Fe⁺ with halobenzenes and documented the aforementioned polymerization reaction.^{3,9–11} Huang and Freiser studied the reactions of Fe(benzyne)+ with small alkanes, alkenes and cycloalkenes, as well as the reactions of Fe(alkene)+ with chlorobenzene.¹²⁻¹⁵ The metal-ligand bond energy, $D^{o}(Fe^{+} C_6H_4$) = 81 ± 10 kcal/mol, was bracketed by ion-molecule reactions, collision-induced dissociation (CID), and photodissociation studies.13 This value is comparable to a recent theoretical value by Bauschlicher of 73 \pm 5 kcal/mol.¹⁷ In addition, their calculation indicates that the planar benzoferracyclopropene structure with $Fe⁺$ inserted into the in-plane π bond is about 20 kcal/mol more stable than the above the plane structure.

Benzyne (dehydrobenzene) is an important organic intermediate, useful synthetically because of its high reactivity with a large variety of species.¹⁸ For example, it is a highly reactive dienophile in **[2** + **41** cycloaddition, undergoes **[2** + **21** cycloaddition, and is prone to nucleophilic additions. Benzyne also takes part in the ene reaction and inserts into carbon-hydrogen bonds.¹⁸ It is this reactivity and the fact that it must be prepared in situ for further synthesis that renders the isolation and characterization of benzyne somewhat arduous yet intriguing. The coordination of benzyne to a transition metal center, however, greatly enhances its stability, and benzyne complexes of several transition metals have been isolated and crystalized.¹⁸ Likewise, gas-phase transition metal benzyne complexes can be readily generated thereby allowing characterization of its intrinsic reactivity.¹²⁻¹⁵ In this paper we extend our gas-phase studies of Fe(benzyne)⁺ to its reactions with small alkyl halides, $C_nH_{2n+1}X$ $(n = 1-3; X = C1)$, Br, I) and CH_3F . The polarizable halogen and relatively weak C-X bond, as expected, leads to a rich and interesting chemistry.

Comisarow, M. B.; Marshall, A. G. *Chem. Phys. Lett.* **1974,25,282.** (1) **Comisarow. M. B.: Marshall. A. G.** *Chem. Phvs. Lett.* **1974. 26,489.**

⁽¹⁷⁾ Bauschlicher, C. W., Jr. *J. Phys. Chem.* **1993, 97, 3709.**

⁽ **18) Hoffmann, R. W.** *Dehydrobenrene and Cycloalkynes;* **Academic Press: New York, 1967. Levin, R. H. In** *Reactiue Intermediates;* **Jones, M., Moss, R. A,, Eds.; J. Wiley: New York, 1978; Vol. 1, p 1; Vol. 2, p** 1; **Vol. 3, p** 1. **Gilchrist, T. L.** *Carbenes, Nitrenes, and Arynes;* **Appleton Century Croft: New York, 1969.**

Experimental Section

Most of the experiments were carried out on a prototype Nicolet FTMS-1000 Fourier transform mass spectrometer.¹⁶ The balance of the experiments were performed using the same vacuum system together with an upgraded Extrel FTMS 1OOOdata station. The spectrometer has a 5.2-cm cubic cell situated between the poles of a 15-in. electromagnet, which was maintained at 0.9 T. The cell utilizes two **80%** transmittance stainless steel transmitter plates, one of which holds various metal targets.¹⁹ Fe+ was generated by focusing the fundamental wavelength (1064 nm) of a Quanta-Ray Nd:YAG laser on a high-purity Fe target.^{16,19-21}

High-purity chemicals, obtained from commercial sources, were used as supplied except for multiple freeze-pump-thaw cycles to eliminate the noncondensable gases. The cell pressures were measured with an uncalibrated Bayard-Alpert ionization gauge and were typically maintained at (2-4) **X** 10-6 Torr of alkyl halide and **(2-4) X 10-5** Torr of Ar cooling gas. Ar, maintained at $(4-5) \times 10^{-5}$ Torr, was also utilized as the collision gas in CID experiments.20 Multiple collision CID at this pressure and on this time scale can give fragments at unusually low energies (all energies are laboratory frame unless otherwise stated). This was not a concern in this study, however, since the goal was to derive structural and not thermodynamic information.

 FeC_6H_4 ⁺ was prepared as previously reported,⁶ by reacting Fe⁺ with chlorobenzene. The chlorobenzene was pulsed into the instrument using a General Valve Corporation Series 9 pulsed solenoid valve²³ to prevent the polymerization reactions heretofore described.^{3,6,9-15} The pulsed valve was triggered 0.8-1 s after laser desorption to permit Fe⁺ to undergo approximately 100 thermalizing collisions. The pulsed valve open time and pressure were adjusted **so** that the unreacted chlorobenzene was pumped away by a 6-in. diffusion pump in about 600 ms. The FeC₆H₄⁺ was then isolated by a series of double resonance ejection sweeps²² and permitted to react with a static pressure of reagent gas. Product ions could then be isolated and probed by a variety of means available to FTMS.I6

Reactivity of Fe(benzyne)+

The general reactivity of Fe(benzyne)⁺ with alkyl halides involves initial C-C or C-X bond activations, the exact mechanisms of which are not fully understood. It is conceivable that the reaction is initiated when $Fe⁺$ inserts into the X-Y bond. However, since the benzometallacyclopropene has a formal Fe(II1) metal center, this would require the Fe⁺ to migrate from its σ -bonding position to the less stable π configuration to avoid an unfavorable **+5** oxidation state. Alternatively, a multicentered transition state may be responsible for the initial activation step, as has been proposed for the activation of C-C and C-H bonds by the structurally similar Sc(benzyne)+ **ion.15** Thus, the mechanisms described here will concentrate mainly **on** the steps following the initial bond activation, based mainly on the knowledge of the final products.

Reactions with Methyl Halide

Among the most interesting reactions observed in this study are the ones with CH₃X, reactions 1-4. For $X = Cl$, Br, and I, FeC₆H₄⁺ activates the C-X bond, reactions 1-3. For X = F,

- **(19)** Cody, R. B.; Burnier, R. C.; Reents, W. D., **Jr.;** Carlin, T. J.; McCrery, D. **A.;** Lengel, **R.** K.; Freiser, B. *S. Int. J. Mass Spectrom. Ion Phys.* **1980,** *33,* **37.**
- *(20)* Burnier, R. *C.;* Cody, R. B.; Freiser, B. *S. J. Am. Chem. Soc.* **1982,104, 7436.**
- **(21)** Burnier, R. C.; Byrd, G. D.; Freiser, B. *S. J. Am. Chem. Soc.* **1981,103, 4360.**
- **(22)** Comisarow, **M.** B.; Grassi, **V.;** Parisod, G. *Chem. Phys. Lett.* **1978,57, 413.**
- **(23)** Carlin, T. J.; Freiser, B. *S. Anal. Chem.* **1983,** *55,* **571.**

Figure 1. Collision-induced dissociation of FeC₇H₇Cl⁺ as a function of energy in the laboratory frame.

however, the high CH₃-F bond energy $(108 \pm 5 \text{ kcal/mol})^{24}$ prevents insertion, and instead, condensation is observed, reaction **4.** Evidence for simple condensation is that, even at the lowest energies (0.69 eV), the CID of $FeC₇H₇F⁺$ yields $FeC₆H₄⁺$, exclusively. The CID at 8.67 eV reduces the $FeC₇H₇F⁺$ to 10% relative to the FeC_6H_4 ⁺ base peak, which remains the sole ionic product. Even more convincing, however, is the fact that the CH_3F in FeC₇H₇F⁺ is displaced by CH₃Cl, yielding FeC₇H₇Cl⁺. The reverse process is also observed in which $FeC₇H₇Cl⁺$ reacts with CH₃F to regenerate FeC₇H₇F⁺. In contrast to FeC₇H₇F⁺, however, CID of $FeC₇H₇Cl⁺$ (Figure 1) yields loss of FeCl and HCl in addition to $CH₃Cl$. These results indicate that the $CH₃Cl$ remains intact in the $FeC₇H₇Cl⁺$ displacement product until the system is collisionally activated. Subsequent C-Cl insertion can then occur and, in analogy to the chemically activated intermediate in reactions 1 and 2, elimination of HCI and FeCl is observed.

As shown in Schemes **I** and **I1** for reactions 1-3, since there are no β -hydrogens on the methyl group, insertion into the CH₃-X bond yields, presumably, an Fe(X)(tolyl)+ intermediate **I.** For $X = C1$ and Br, this intermediate competitively eliminates HX to form Fe(2-methylbenzyne)+, **11,** as well as the benzoferracyclobutene ion, **111,** and/or Fe(benzocyclopropane)+, **IV** (Scheme **I).** Of the three proposed structures, only **IV** might be expected to undergo displacement with p-xylene. Reaction with p-xylene yields \sim 13% displacement and \sim 87% condensation suggesting that there are possibly two isomeric structures for *m/z* 146 $($ FeC₇H₆⁺ $).$

Further evidence for the presence of at least two isomeric structures was obtained by employing CD3Cl. **In** reaction 1, for example, CD₃Cl with FeC_6H_4 ⁺ eliminates both DCl to generate $FeC₇H₄D₂⁺$ (structures III/IV) and HCl to generate $FeC₇H₃D₃⁺$ (structure II) in a 1:4 ratio. Conversely, reaction of FeC_6D_4 ⁺ with CH₃X (X = Cl, Br) yields a 3:2 ratio of $FeC₇H₃D₃$ ⁺ and $FeC₇H₂D₄$ ⁺, respectively. These results indicate that in the reaction with $CH₃Cl$, loss of HCl results mainly in the formation of Fe(2-methylbenzyne)+, **11.**

CID of $FeC₇H₆$ ⁺ yields loss of the ligand, exclusively, over the energy range studied $(2.2-27.4 \text{ eV})$ to generate Fe⁺, which is consistent with the IP of benzocyclopropene $(\leq 8.82 \text{ eV})^{25}$ and

- **(24)** *Lnnge's Handbook of Chemistry,* 13th ed.; Dean, **J. A.,** Ed., McGraw- **(25)** Lias, *S.* **G.;** Bartmess, J. E.; Liebman, **J.** F.; Holmes, **J.** L.; Levin, R. Hill: New **York, 1985;** Table 3-11, Bond Energies, p **3-127.**
- D.; Mallard, W. G. *J. Phys. Chem. Ref. Data* **1988,** *17,* Suppl. 1.

Scheme I

2-methylbenzyne $({\sim}8.6 \text{ eV})^{26}$ being higher than that of Fe at 7.87 eV. $FeC₇H₃D₃$ ⁺ (structure **II** in Scheme I) undergoes competing secondary reactions with the background CD₃Cl by loss of FeCl, DCl, and HCl to generate what is believed to be the o-methylbenzyl cation, $C_8H_3D_6^+$, as well as $FeC_8H_3D_5^+$ and $FeC₈H₂D₆⁺$, respectively.

To substantiate the presence of Fe(2-methylbenzyne)+, structure II, Fe⁺ was reacted with o-chlorotoluene. By analogy with chlorobenzene, dehydrochlorination of o-chlorotoluene to form $FeC₇H₆$ ⁺ would be expected to yield the aforementioned structure. CID of $FeC₇H₆⁺$ from o-chlorotoluene yielded exclusive loss of the C_7H_6 over the entire range studied (0.4-23.4 eV). In addition, its reactions with methyl chloride were identical within experimental error with those above, yielding loss of FeCl and HCl. Thus, the ion resulting from reaction 1 with CD3Cl by **loss** of HCl is consistent with the $Fe(2-methylbenzyne)$ ⁺ structure.

Interestingly, the Fe(I)(tolyl)+ intermediate **I** formed from CH31 competitively eliminates I' (76%), rather than HI, to generate $FeC₇H₇⁺$, reaction 3. As with CH₃Cl and CH₃Br, however, it also eliminates FeX to generate C_7H_7 ⁺ in reaction 2. $FeC₇H₇$ ⁺ undergoes competing secondary reactions with the background CH₃I to yield Fe(I)(o -xylene)⁺, intermediate **IX**, which competitively eliminates either xylene (IP of xylene 8.56) eV²⁵) to generate FeI⁺ (IP of FeI 7.8 \pm 0.5 eV²⁵) (85%) or I[•] to generate Fe(xylene)⁺ (15%). These results also suggest D° (Fe⁺-I) \geq D^o(Fe⁺-xylene) which is reasonably consistent with D^o(Fe⁺-I) = 60 ± 5 kcal/mol²⁴⁻²⁵ and D°(Fe⁺-benzene) = 55 ± 5 kcal/ mol.²⁷ D^o(Fe⁺-xylene) has not yet been measured, but is expected to be only a few kilocalories per mole greater than $D^{o}(Fe^{+}$ benzene). Furthermore, the CID of $FeC₇H₇$ ⁺ yields exclusive loss of neutral iron. The CID product, C₇H₇⁺, is unreactive with the background CH31, but reacts with toluene to produce the characteristic C₈H₉⁺ species indicating that C₇H₇⁺ has the benzyl cation structure.²⁸⁻²⁹ Benzyl cation is known to result from the rearrangement of tolyl cation **on** the FTMS time scale28-30 as shown in Scheme 11.

Alternatively, activation of $FeC₇H₇⁺$ could convert $Fe(tolyl)⁺$ into Fe(benzyl)+ prior to dissociation. In accordance with Stevenson's rule, the CID of FeC₇H₇⁺ to produce C₇H₇⁺ indicates that the ionization potential (IP) of Fe is greater than the IP of the C_7H_7 moiety. While the IP of benzyl at 7.20 eV lies well below that of iron (7.87 eV), an estimate of the IP of tolyl at **8.02** \pm 0.36 eV^{26,27,31,32} leaves it uncertain as to whether it lies above or below that of iron. If the IP of tolyl is below that of iron, direct cleavage to tolyl cation is possible. If it lies above that for iron, however, the CID results can be explained by the rearrangement step prior to dissociation.

Reactions with Ethyl Halides

The predominant primary reaction of the ethyl halides with Fe(benzyne)+ is a dehydrohalogenation process producing Fe- (styrene)+, reaction 5. Competing with this process is hydrogenation and hydrohalogenation of the benzyne ligand, reactions 6 and 7, respectively. As shown in Scheme 111, activation of the C-X bond yields an Fe(X)(o-ethylphenyl)+ intermediate, **X,** which can dehydrohalogenate via a σ bond metathesis. A subsequent

- (27) Hettich, R. L.; Jackson, T. C.; Stanko, E. M.; Freiser, **B.** S. *J. Am. Chem. SOC.* **1986,** *108,* 5086.
- (28) Jackson, J.-A. A.; Lias, S. G.; Ausloos, P. *J. Am. Chem. SOC.* **1977,99,** 7515.
- (29) Shen, J. H.; Dunbar, R. C.; Olah, G. A. *J. Am. Chem. SOC.* **1974,96,** 6227.
- (30) Examples of other work **on** the C,H,+ problem not **on** the ICR time scale: Buschek, J. M.; Ridal J. J.; Holmes, J. L. *Org. Mass Spectrom.*
1988, 23, 543. Winkler, J.; McLafferty, F. W. *J. Am. Chem. Soc.* 1974, *96,* 5182. Koeppel, C.; Dymerski, P. P.; Bockhoff, F. M.; McLafferty, F. W. *Adu. MassSpectrom.* **1978,7a,** 295. Proctor, C. J.,; McLafferty, F. W. Org. **Mass** *Spectrom.* **1983,** *18,* 193. Heath, T. G.; Allison, J.; Watson **J.** T. *J. Am. SOC.* **Mass** *Spectrom.* **1991,** 2, 270.
- (31) Baer, T.; Morrow J. C.; Shao, J. D.; Olesik, S. *J. Am Chem. SOC.* **1988,** *110,* 5633.
- (32) An estimate for ΔH_f (tolyl cation) \approx 253 kcal/mol was obtained from the bond energy of 3.9 eV of the ring hydrogen in toluene cation **31** and using ΔH_1 (toluene cation) = 218 kcal/mol and ΔH_1 (H) = 52 kcal/ using ΔH_1 (toluene cation) = 218 kcal/mol and ΔH_1 (H) = 52 kcal/mol.²⁵ An estimate for ΔH_1 (tolyl neutral) \approx 71 kcal/mol was obtained by assuming that the C-H bond strength in benzene of \approx 111 kcal/mol²⁵ is about the same in toluene. Thus, an estimate for IP(toly1) is derived from ΔH_f (tolyl cation) - ΔH_f (tolyl) ≈ 8.02 eV.

⁽²⁶⁾ Since the IP of 2-methylbenzyne is not available, it was estimated.
 $\Delta H_f(C_6H_4) = 105.2 \pm 2.4$ kcal/mol¹³ and $\Delta H_f(C_6H_4^+) = 313$ kcal/mol²³ yields IP(benzyne) = $\Delta H_{fion} - \Delta H_{fion}$ = 9.02 eV. The difference in th provides an estimate of the methyl effect **on** IP(benzyne), yielding IP(2 methylbenzyne) ≈ 8.6 eV.

Scheme 111

&hydrogen transfer yields Fe(styrene)+. Besides Fe(styrene)+, structure XI, two other possible isomers are Fe(benzocyclobutene)+ and Fe(ethylene)(benzyne)+, structures **XII** and **XIII,** respectively. These isomers, however, have been studied previously and can readily be ruled out **on** the basis of their distinct CID pathways and displacement reactions.¹³ The CID of $FeC₈H₈$ ⁺ generated from the ethyl halides yields the sole loss of the styrene ligand. For comparison, Fe⁺ reacts with ethylbenzene via a dehydrogenation process¹⁰ to form, presumably, Fe(styrene)⁺

which **upon** CID also results in exclusive loss of the styrene ligand. Moreover, the condensation product of Fe⁺ with styrene also yields exclusive loss of the styrene ligand upon CID. Structure XII has been postulated as arising from the reaction of ethane¹³ with $FeC_6H_4^+$. CID of this species yields mostly $FeC_6H_4^+$ and some Fe+. The CID of structure **XIII** would also be expected to yield FeC_6H_4 ⁺ and the ethylene should be easily displaced, neither of which is observed in this case.

Fe(styrene)+ undergoes competing secondary reactions with the static background of ethyl halide. Only small differences in the product ion ratios are observed depending **on** the halide. For example, halogen atom abstraction to yield Fe(X)(styrene)+, structure **XIV,** accounts for **80%** of the products with ethyl chloride, 70% with ethyl bromide, and **50%** for ethyl iodide. Dehydrohalogenation competes with halogen abstraction yielding Fe(ethylene)(styrene)+, structure *XV.* The CID of Fe(X)(styrene)+, structure *XIV,* yields exclusive loss of the styrene ligand indicating that $D^{0}(Fe^{+}-s) < D^{0}(Fe^{+}-X)$, and further CID

of the FeX⁺ results in loss of the halogen. CID of Fe(ethylene)-(styrene)+ yields exclusive loss of the ethylene ligand and further CID of Fe(styrene)+ yields exclusive loss of the styrene ligand. Thus, the CID data provide strong support for the proposed structures. Finally, while $D^{\text{o}}(\text{Fe}^+\text{-}\text{styrene}) \leq D^{\text{o}}(\text{Fe}^+\text{-}\text{X})$ would seem to be consistent for the previously determined values of $D^{\circ}(\text{Fe}^+\text{-C1}) = 79 \text{ kcal/mol}^{33-35}$ and possibly for $D^{\circ}(\text{Fe}^+\text{-I}) = 60$ kcal/mol,³⁴ it indicates that the reported value of $D^{o}(Fe^{+}-Br)$ = 48 kcal/mol³⁴ is considerably too low. To further substantiate this, FeBr+, a product from the reaction of bare metal Fe+ with CH3Br, undergoes a condensation reaction with benzene. CID of this FeBr(benzene)+ moiety yields loss of benzene, exclusively, indicating that $D^{\circ}(\text{Fe}^+\text{-Br}) > D^{\circ}(\text{Fe}^+\text{-benzene}) = 55 \pm 5 \text{ kcal}$ mol.27 Finally, in accordance with these results, theoretical calculations by Bauschlicher and coworkers yield an estimate of D° (Fe⁺-Br) = 72 \pm 5 kcal/mol.³⁶

Reactions with Propyl Halides

 $FeC₆H₄$ ⁺ undergoes reactions 8-12 with the *n*-propyl halides and reactions 13-15 with the *i*-propyl halides. The primary

reactions in both cases generate the methanation product ion FeC7H8+ (reactions 11 and **14)** with loss of vinyl halide and the dehydrohalogenation product FeC₉H₁₀⁺ (reactions 12 and 15). The formation of $C_7H_7^+$ and $FeC_7H_7I^+$ is unique to the reaction with n-propyl iodide. The other competing reactions, **8** and 13, apparently involve a simple halide abstraction to generate propyl cation and halophenyl iron. As expected, this reaction channel is more important for the isopropyl halides which have weaker heterolytic R^+ -X⁻ bond energies than the corresponding *n*-propyl halides. Interestingly, these reactions were found to be very sensitive to the Ar pressure. In the absence of the Ar, the carbocation dominated the spectrum and at higher pressures the *SIN* ratio decreased, but without a significant change in the product ion ratios. Reactions **8-15** are given for Ar at (1-3) **X** 10⁻⁵ Torr. On the basis of the bond energy D° (Fe⁺-C₆H₄) = 81 \pm 10 kcal/mol,¹³ generation of FeC₆H₄⁺ from Fe⁺ and chlorobenzene may be up to about **20** kcal/mol exothermic resulting in a portion of the ions being nonthermal. The dependence of reactions **8** and 13 **on** Ar pressure suggest that these pathways are enhanced by nonthermal reactant ions.

The formation of $FeC₇H₈⁺$ is postulated as proceeding via ligand-assisted insertion into either a terminal C-C bond as shown

⁽³³⁾ Franklin, J. L.; Dillard, J. *G.;* **Rosenstock, H. M.; Herron, J. T.; Draxl, K.; Field, F. H.** *Nar.* **Srand.** *Ref. Data Ser.* **June 1%9, June.**

⁽³⁴⁾ D° (Fe⁺-Cl) = 79 kcal/mol and D° (Fe⁺-Br) = 48 kcal/mol were obtained using $\Delta H_1(\text{FeX+})$ from ref 33, and $\Delta H_1(\text{Fe+})$ and $\Delta H_1(\text{X})$ from ref 25. $D^{o}(\overline{Fe^{+}}-I) = 60$ kcal/mol was obtained using the estimated values for ΔH_f (FeI⁺), ΔH_f (Fe⁺), and ΔH_f (I) from ref 25.

⁽³⁵⁾ CID of secondary reaction products from Fe(C₉H₁₀)⁺ was not possible due to low signal intensities. Using authentic α -methylstyrene and **p-methylstyrene asa starting reagent, the desired products wereobtained in high abundance.**

⁽³⁶⁾ Bauschlicher, C. W., Jr. Private communication.

Scheme V

in Schemes IV and V or into a C-H bond (in the α position from the halide for the *n*-propyl halides and in the β position for the isopropyl halides). The next step then involves vinyl halide elimination. The CID of FeC_7H_8 ⁺ yields exclusive loss of the C,H8 ligand. Furthermore, the ligand is displaced with **1,3,5** trimethylbenzene. Moreover, $FeC₇H₈$ ⁺ formed from the condensation of Fe+ with toluene yields the same CID and ligand displacement results as above. Given these results, the $FeC₇H₈$ ⁺ is assigned the Fe (toluene)⁺ structure and this is also consistent with the secondary reactions discussed below.

 $FeC₇H₈$ ⁺ generated by condensation of Fe⁺ with toluene reacts with styrene to form another condensation product, Fe- $(C_7H_8)(C_8H_8)^+$, which upon CID yields exclusive loss of styrene. In addition the condensation product reacts with toluene to displace the styrene ligand forming $Fe(C₇H₈)₂$ ⁺. These results indicate that D° (Fe⁺-toluene) > D° (Fe⁺-styrene).

Since the signal intensity for $FeC₉H₁₀⁺$ in reactions 12 and 15 was generally small, CID studies were not possible for all cases. **On** the basis of the proposed reaction mechanisms in Schemes VI and VII for this system, however, we postulate that $Fe(\beta$ methylstyrene)⁺ is produced from the *n*-propyl halides, while $Fe(\alpha$ -methylstyrene)⁺ is formed from the isopropyl halides. This was tested by comparing the properties of the $FeC₉H₁₀$ ⁺ species generated in reactions 12 and 15 with those of the authentic reference ions. Fe(α -methylstyrene)⁺ was formed by direct condensation of Fe+ with α -methylstyrene, which was pulsed into the cell. Reaction of Fe+ with β -methylstyrene, however, yielded $Fe(C₇H₈)⁺$. Ligand displacement reactions using Fe(ethylene)⁺ and Fe(propene)⁺ were also unsuccessful, forming Fe(C_7H_8)⁺ once again. Fe(benzene)+, however, did react by ligand displacement to generate the desired $Fe(\beta$ -methylstyrene)⁺ reference

Scheme VI

t

ion. The CID of Fe(α -methylstyrene)⁺ at low energies yields loss of CH4, and at higher energies, loss of the entire ligand becomes dominant.¹³ In contrast, CID of $Fe(\beta$ -methylstyrene)⁺ yielded loss of C_2H_2 at all the energies studied and loss of the entire ligand only at the higher energies.¹³ CID on FeC_9H_{10} ⁺ from reaction 12 with n-propyl bromide and chloride yielded loss of C_2H_2 and, at higher energies, the entire ligand, confirming that this ion has the $Fe(\beta$ -methylstyrene)⁺ structure. Similarly, CID on FeC₉H₁₀+ from reaction 15 with isopropyl chloride corresponds well with $Fe(\alpha$ -methylstyrene)⁺.

The CID of $FeC₇H₇I⁺$ generated in reaction 10 yields mostly C_7H_7 ⁺ and some FeI⁺ at higher energy, indicative of structure **XVI.** Additionally, the C_7H_7 moiety is displaced by mesitylene resulting in $Fe(mesitylene)(I)^+$ which upon CID loses the mesitylene ligand. To corroborate this assignment, benzyl iodide was leaked into the cell and reacted with Fe⁺. While chiefly halide abstraction was observed, some $FeC₇H₇I⁺$ was also trapped and then isolated. CID of this $FeC₇H₇I⁺$ was identical to that from n-propyl iodide within experimental error. In addition, $FeC₇H₇I⁺$ was generated by displacing propene in the reaction of $FeC₃H₆$ ⁺ with benzyl iodide. The CID of this displacement product was again identical within experimental error, suggesting either that structure **XM** is formed directly in the displacement reaction or is readily formed during the activation process. Finally, in contrast to the other Fe⁺ complexes of monosubstituted benzenes (for example Fe(toluene)+, Fe(styrene)+, Fe(α -methylstyrene)+,

and $Fe(\beta$ -methylstyrene)⁺) which undergo secondary reactions, the $FeC₁H₁I⁺$ ion is unreactive. The $+3$ oxidation state of Fe in structure **XVI** would tend to inhibit further oxidative addition.

Propyl, benzyl, and, as mentioned above, $FeC₇H₇I⁺$ cations are unreactive with the static propyl halide background. Fe- (toluene)+ and Fe(methylstyrene)+, from reactions ll and 14 and reactions 12 and **15,** respectively, however, do react and react in a similar fashion, via dehydrohalogenation and halogen abstraction, reactions 16-23. In addition the authentic $Fe(\alpha$ -

methylstyrene)⁺ and $Fe(\beta$ -methylstyrene)⁺ undergo the corresponding reactions 18 and 19, 22 and 23, respectively, again supporting the assigned $Fe(C_9H_{10})^+$ structures. The *n*-propyl halides in general favor dehydrohalogenation, whereas the isopropyl halides favor halogen abstraction, as might be expected due to the secondary propyl radical being more stable leading to a lower homolytic C-X bond strength. Also, in this system there is **no** significant difference based **on** the halogen. The CID **on** $Fe(C_3H_6)(C_7H_8)^+$ and $Fe(C_3H_6)(C_9H_{10})^+$ generated in reactions 16 and 20 and reactions 18 and 22, respectively, at low energies yield exclusive loss of the propene ligand. Furthermore, this propene ligand is easily displaced with p -xylene. The CID of the $Fe(Cl)(\alpha$ -methylstyrene)^{+ 35} at low energy yields mostly loss of $Cl[*]$, some loss of $Cl[*]$ and $CH₄$, and a trace amount of loss of the entire α -methylstyrene ligand. CID of the halogen abstraction products, $Fe(X)(C_7H_8)^+$, from reactions 17 and 21, however, results in loss of the toluene ligand. Furthermore, only the toluene ligand is displaced by mesitylene. Taken together, these results indicate D° (Fe⁺-(α -methylstyrene)) $\geq D^{\circ}$ (Fe⁺-Cl) $> D^{\circ}$ (Fe⁺mesitylene)> $D^{o}(\text{Fe}^+-(p-x\text{ylene}))$ > $D^{o}(\text{Fe}^+-\text{toluene})$ > $D^{o}(\text{Fe}^+-\text{$ styrene) > D° (Fe⁺-benzene) > D° (Fe⁺-propene).

Summary

The alkyl halides exhibit an interesting reactivity with $FeC₆H₄$ ⁺, particularly the methyl halides. Only a condensation product is formed with $CH₃F$ due to the strong C-F bond strength which prevents oxidative addition. The reactivities of CH₃Cl and CH₃Br are quite similar, while $CH₃I$ is unique in eliminating $I[*]$ instead of HI, possibly due to a weaker C-I bond strength. The use of CD3Cl indicated that a seemingly simple dehydrohalogenation, reaction 1, actually proceeds by two pathways to yield two different product ions with different secondary reactions. In contrast to the methyl halides, the reactions of the ethyl halides and the propyl halides are not strongly dependent **on** the halide, producing similar products but at somewhat different product ratios. The generation of reference ions and the use of displacement reactions with *p*-xylene and mesitylene were useful in assigning structures and elucidating the mechanisms.

Acknowledgment is made to the Division of Chemical Sciences, Office of Basic Energy Sciences, **US.** Department of Energy (Grant DE-FG02-87ER13766), for supporting this research. The authors also wish to thank Dr. Charles Bauschlicher, Jr., and **Ms.** Sodupe for their helpful calculations and discussions.