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Macrocyclic ligands which provide a planar tetradentate ligand 
environment and also incorporate a superstructure capable of 
through-space effects on axial ligand binding or reactivity have 
received much attention.14 Here we describe an approach to 
superstructured nonporphyrinic metal complexes in which boron- 
linked groups are positioned in close proximity to axial binding 
sites and function as a flexible “gate” with respect to ligand access 
to iron. 

Boron-derivatized complexes5 are obtained in high yield by 
reaction of the substitution-inert6 Fe(DMGH)z(PY)(CO) with 
common boron reagents as shown in eqs 1-3 (DMGH = 

Fe(DMGH),(PY)(CO) + 2BH,Me2S - 
Fe(DMGBH,),(PY)(CO) + 2H2 + 2Me2S (1) 

Fe(DMGH),(PY 

Fe(DMGH),(PY 

(CO) + ZBBN-H - 
Fe(DMGBBN),(PY)(CO) + 2H2 (2) 

(CO) + (Ph,B),O - 
Fe(DMGBPh,),(PY)(CO) + H 2 0  (3) 

dimethylglyoximate, PY = pyridine, BBN-H = 9-borabicy- 
clo[3.3.l]nonane). A alternative route to the Fe(dmgBPh2)2 
system has been previously reported.’ Subsequent conversion to 
a variety of axial-ligated derivatives is achieved with complete 
retention of the boron substituents through ligand substitution 
reactions exhaustively characterized previously in the Fe(D- 
MGH)2 and Fe(DMGBF2)2 systems.6 

Two conformational isomers of the macrocycle arise based on 
axial vs equatorial orientations of the R groups on each boron. 
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Both C2h and CZ, structures have been reported in the solid state.’%’J 
Axially oriented phenyl rings in Fe(DMGBPh2)z complexes 
project over the metal-binding site giving rise to three different 
ligand environments (Figure 1). In the C2h conformer, found in 
Fe(DMGBPh&(MeIm)2,7a both ligands face a single phenyl ring. 
In the C, confomer, one ligand lies between two parallel phenyl 
rings while the other experiences a wide open axial environment. 
The axial phenyl groups resemble the pickets in picket-fence 
porphyrinslb but are in much more intimate contact with metal- 
bound ligands and “swing” easily in response to entering and 
leaving ligands. The terms “gates” and “pickets” are appropriate! 

The predominant solution conformers in the Fe(DMGBPh2)2 
system are established on the basis of the large upfield shifts of 
ligand proton resonances (Figure 2) when that ligand lies over 
the face of an axially directed phenyl NMR shift 
mapping and MM2 molecular modeling both place ligand protons 
within van der Waals contact (3.5 A) with the face of the axial 
phenyl groups. Bis-ligated complexes adopt the Ca conformation. 
When the axial ligands differ, the complex relieves nonbonded 
contacts by adopting the Cb conformation, directing both axial 
phenyls toward the smaller ligand. The largest shifts are 
experienced by CH3CN in Fe(DMGBPh2)2(PY)(CH$N) and 
by pyridine in Fe(DMGBPh2)2(PY)(PMePh2) when these ligands 
are “sandwiched” between two phenyl rings. These examples 
illustrate how a ligand may be used in the remote control of the 
peripheral environment and orientation of the trans ligand. 

The barrier for the conformational flip (perhaps <5 kcal/mol 
as found in diamine chelate ringsI2) places gross movements of 
boron-linked groups on a much faster time scale than those 
associated with ligation. The pentacoordinate intermediate, 
formed along the reaction coordinate for ligand substitution, 
should adopt a CZ, geometry (regardless of reactant conforma- 
tion’3) in which both axial phenyls pinch over the vacant site 
(closing the “gates” following ligand egress). This geometry is 
predicted by MM2 studies and found in CO(DMGBF~)~(PY)-.~ 

The dynamic linkage between axial ligation and conformation 
is summarized in the free energy profile for the BF2 and BPh2 

~~ 
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Figure 1. Conformational isomers of Fe(DMGBPh2)z. (DMG methyl 
are groups omitted.) 
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Figure 2. Predominant conformations for ligated Fe(DMGBPh2)z 
complexes (A = CH3CN) in CDCI3. The 'H NMR shifts for pyridine 
protons and methyl protons in CH$N and PMePhz are given?JO 

complexes given in Figure 3. Reactant energies are obtained 
from stepwise constants for pyridine binding (eq 4)14 measured 
by spectrophotometric titration.6b Transition-state free energies 
are obtained from flash photolysis studies of reaction 5.15 

Ground-state destabilizing effects in the BPhz complexes arise 
only when axial PY-phenyl contacts are required by conformation. 
These interactions are avoided in Fe(CH3CN)(PY) and Fe(PY- 
)(CO) in the C b  geometry in which the pyridine ligand lies on 
the open face. As a result, AG's differ significantly for the Fe(PY)z 
complexes but not for Fe(PY)(CH$N) or Fe(PY)(CO). 

(14) Stepwise formation constants, CHzC12,25 OC, (eq 4): BPhz, KI = 1.2 

= 450. Estimated error: 10%. Data analysis is as described previously." 
(15) Kinetic data for eq 5, CHzCIz, 25 OC: k-py = 6.7, 0.15, and 1.5 s-1; 

k+py/k+CO - 2,20, and 30 s-I; k _ c ~  = 6 X 10-5,2 X 10-5, and 2 X 1 0 - 5  
s-' for BPhz, BFz, and BHz, respectively. Estimated errors are 10% for 
k- and 20% for k+py/k+co. For the method used, see ref 6b. 

X 104, Kz 4; BFz, Ki 1.8 X 104, Kz 250; BHz, Ki = 8 X 104, Kz 
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Figure 3. Free energy vs reaction coordinate diagram. Ground- and 
transition-state free energies (kcal/mol) for BF2 (in brackets) and BPh2 
complexes are relative to FeNd(CH3CN)z. 

Ki Kz 
FeN,(CH,CN), + FeN,(CH,CN)(PY) + FeN,(PY), 

(4) 

k-PY k+co 

k+py k_oo 

FeN,(PY), + FeN,(PY) FeN,(PY)(CO) ( 5 )  

Rates of CO binding to Fe(PY)z are 500 times faster in the 
BPhz system under conditions of 0.1 M [PY] in CO-saturated 
dichloromethane (BFz, kok = 0.0006 s-l; BPh2, kok = 0.3 s-1). 
This difference can be shown to arise from a combination of "on" 
( k + ~ ~ / k + p ~ )  and "off" rate effects. Pyridine loss is 44 times 
faster in the BPhz system in part due to repulsive ground-state 
interaction with axial phenyl groups. 

The relative rate of CO vs PY addition to the Fe(dmg- 
BPh&(PY) intermediate is 10 times larger than for the BF2 
analogue. This result is reflected in the transition-state free energy 
differences shown in Figure 3. These "on-rate" effects are typical 
of those associated with blockage of ligand access to iron in 
hindered hemes.l8 The facile movement of peripheral phenyl 
groups, which facilitate ligand access to iron, mimics the mobile 
nature of distal residues in myoglobin.16 

The 15 atom FeN4C404B2 unit exemplifies the principles of 
economy ofdesign within a functional structure." It is potentially 
a highly adaptable molecular device which may be useful for 
protein modeling, for fragment positioning,18 or for the intramo- 
lecular control of the peripheral environment around a ligand. 
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