Factors Governing the Charge Density Wave Patterns of Layered Transition-Metal Compounds of Octahedral Coordination with d² and d³ Electron Counts

Carme Rovira[†] and Myung-Hwan Whangbo^{*}

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Received January 19, 1993®

Two different charge density wave (CDW) patterns are observed for layered transition-metal compounds ML₂ (e.g., M = transition metal, L = oxygen, chalcogen) of octahedral coordination with d^2 and d^3 electron counts. Tightbinding electronic band structure calculations were carried out for several d² ML₂ layers, and factors controlling these patterns were discussed. In general, the 1T-ML₂ systems with short M-L bonds adopt a CDW pattern involving a weak distortion, while those with long M-L bonds adopt a CDW pattern involving a strong distortion. Our calculations show that the metal-atom trimerization in LiVO₂ is energetically favorable and opens a band gap for a small displacement of the metal atoms. This supports the CDW model of weak metal-atom trimerization proposed for the $\sqrt{3} \times \sqrt{3}$ superstructure of LiVO₂.

Introduction

The CdI₂-type transition-metal compounds 1T-ML₂ (e.g., M = transition metal, L = chalcogen) consist of ML_2 layers made up of ML_6 octahedra (Figure 1a), and the metal atoms of an undistorted ML₂ layer form a hexagonal lattice (Figure 1b).¹ The ML₂ layers with d-electron counts d^1 to d^3 exhibit various patterns of metal-atom clustering, which are commonly referred to as charge density waves (CDW's).² The CDW pattern of zigzag chains (Figure 1c) is observed for the 1T-ML₂ layers containing d² ions, β -MoTe₂,³ WTe₂,³ α -ZrI₂,⁴ and M'Nb₂Se₄ (M' = Ti, V, Cr).⁵ In contrast, the d² 1T-ML₂ systems 1T-MoS₂⁶ and LiVO₂^{7,8} do not exhibit a zigzag-chain clustering but a weak $\sqrt{3} \times \sqrt{3}$ superstructure. The $\sqrt{3} \times \sqrt{3}$ superstructure of LiVO₂ has been explained in terms of a weak trimerization of the metal atoms (Figure 1d) by Goodenough.⁸ Different CDW patterns are also found for d³ 1T-ML² compounds: ReSe₂⁹ and $\text{ReS}_{2^{10}}$ have a diamond-chain formation (Figure 1e), whereas ReO₂ has a zigzag-chain formation.¹¹ So far, the metal-atom trimerization model for the $\sqrt{3} \times \sqrt{3}$ superstructure has not been examined by electronic structure calculations, and factors controlling the CDW patterns of the 1T-ML₂ systems with a d² or d³ electron count have not been well understood. In the present work, we probe these questions by performing extended Hückel

- For early reviews, see: (a) Wilson, J. A.; Yoffe, A. D. Adv. Phys. 1969, 18, 193. (b) Hulliger, F. Struct. Bonding 1967, 4, 83.
- (a) Wilson, J. A.; DiSalvo, F. J.; Mahajan, S. Phys. Rev. Lett. 1974, 32, 882.
 (b) Wilson, J. A.; DiSalvo, F. J.; Mahajan, S. Adv. Phys. 1975, 24, 117.
 (c) Williams, P. M.; Parry, G. S.; Scruby, C. B. Phil. Mag. 1974, 29, 695.
 (d) Williams, P. M. In Crystallography and Crystal Chemistry of Materials with Layered Structures; Lévy, F., Ed.; Reidel: Dordrecht, The Netherlands, 1976; Vol. 2, p 51.
- Brown, B. E. Acta Crystallogr. 1966, 20, 268. Guthrie, D. H.; Corbett, J. D. J. Solid State Chem. 1981, 37, 256.
- (5) Meerchaut, A.; Spiesser, M.; Rouxel, J.; Gorochov, O. J. Solid State Chem. 1980, 31, 31.
- Wypych, F.; Schöllhorn, R. J. Chem. Soc., Chem. Commun. 1992, 1386.
- (a) Takei, H.; Koike, M.; Imai, K.; Sawa, H.; Kadowaki, H.; Iye, Y. Mater. Res. Bull. 1992, 27, 555. (b) Bongers, P. F. In Crystal Structure (7) and Chemical Bonding; Rooymans, C. J. M., Rabenau, A., Eds.; Elsevier: New York, 1975; Chapter 4. (c) Kobayashi, K.; Kosuge, K.; (a) Goodenough, J. B.; Dutta, G.; Manthiram, A. Phys. Rev. B 1991,
- 43, 10170. (b) Goodenough, J. B. Phys. Rev. 1964, 117, 1442; 1960, 120, 67. (c) Goodenough, J. B. In Magnetism and the Chemical Bond; Wiley: New York, 1963; p 269.
- (9) Alcock, N. W.; Kjekshus, A. Acta Chem. Scand. 1965, 19, 79.
 (10) Wildervanck, J. C.; Jellinek, F. J. Less-Common Met. 1971, 24, 73.
 (11) Magnéli, A. Acta Chem. Scand. 1957, 11, 28.

Figure 1. (a) Schematic projection view of an undistorted 1T-ML₂ layer along the direction perpendicular to the layer. (b) Metal ion arrangement in an undistorted 1T-ML₂ layer. (c) Zigzag-chain clustering of metal atoms in $1T-ML_2$ with d^2 ions. (d) Trimerization of metal atoms in $1T-ML_2$ with d² ions. (e) Diamond-chain clustering of metal atoms in $1T-ML_2$ with d³ ions.

tight-binding (EHTB) electronic band structure calculations^{12,13} of several d² 1T-ML₂ layers. A CDW is formed as a result of electron-phonon interactions. What kind of a CDW is likely to occur can be discussed on the basis of Fermi surface nesting.14,15

- (12) Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093.
- (a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Ammeter, J. H.; (13) Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686.
- Whangbo, M.-H.; Canadell, E. J. Am. Chem. Soc. 1992, 114, 9587. (a) Whangbo, M.-H.; Canadell, E.; Foury, P.; Pouget, J. P. Science 1991, 252, 96. (b) Canadell, E.; Whangbo, M.-H. Chem. Rev. 1991, 91,965. (c) Whangbo, M.-H.; Ren, J.; Liang, W.; Canadell, E.; Pouget, J.-P.; Ravy, S.; Williams, J. M.; Beno, M. A. Inorg. Chem. 1992, 31, 4169.

© 1993 American Chemical Society

[†] Permanent address: Departamento de Química Fisica, Universidad de Barcelona, 08028 Barcelona, Spain

Abstract published in Advance ACS Abstracts, August 15, 1993.

Figure 2. (a) Top: Dispersion relations of the t_{2g} -block bands calculated for a single VO₂⁻ layer of undistorted LiVO₂, where the dashed line is the Fermi level for the d² electron count. $\Gamma = (0, 0), X = (a^{\bullet}/2, 0)$, and $K = (a^{\bullet}/3, b^{*}/3)$. (b) Bottom: Fermi surfaces associated with the partially filled t_{2g} -block bands of (a) in an extended zone, where $\Gamma = (0, 0), X = (a^{\bullet}/2, 0), K = (a^{*}/3, b^{*}/3)$, and $Y = (0, b^{*}/2)$.

Hidden 1D bands of 1T-ML₂

The dispersion relations of the t_{2g} -block bands calculated for a single VO₂-layer of the undistorted LiVO₂^{7a} are shown in Figure 2a. For the d² electron count, these bands are partially filled and lead to the Fermi surfaces consisting of an electron pocket at Γ and a hole pocket at K (Figure 2b). Thus, LiVO₂ is predicted to be a two-dimensional (2D) metal, but it is a semiconductor below $T_p \approx 490 \text{ K}$.^{7,8} The latter has been interpreted to originate from a CDW of metal-atom trimerization (Figure 1d).⁸ In general, the CDW phenomenon of a low-dimensional metal is explained in terms of the electronic instability associated with Fermi surface nesting. As already observed for the 1T type transition-metal dichalcogenides,¹⁴ the Fermi surfaces calculated for undistorted 1T-ML₂ layers have a poor nesting and cannot be used to explain why the CDW instabilities arise.

The metal-atom clustering patterns in the $1T-ML_2$ systems have been a subject of numerous theoretical studies.^{14,16} The d-electron-count dependence of these patterns is explained on the basis of both local chemical bonding^{14,16a} and hidden Fermi surface nesting^{14,15} concepts. The ideal $1T-ML_2$ layer of Figure 1a is decomposed into edge-sharing octahedral chains running along the *a*-, *b*-, or (a + b)-direction, as shown in Figure 3a-c. For convenience, the plane containing the shared edges of ML_6 octahedra is referred to as the equatorial plane, and the t_{2g} orbitals contained in the equatorial plane (see 1) are referred to as the in-plane t_{2g} orbitals. Then, each ML_6 octahedron possesses three equatorial planes and three corresponding in-plane t_{2g} orbitals so that, given a set of edge-sharing octahedral chains parallel to the *a*-, *b*-, or (a + b)-direction, the metal-metal (M-M) interactions resulting from their in-plane t_{2g} orbitals are strong within each

Figure 3. Decomposition of an undistorted $1T-ML_2$ layer into sets of edge-sharing octahedral chains running along (a) the *a*-direction, (b) the *b*-direction, and (c) the (a + b)-direction.

Þ	Þ	Þ	Þ				

chain (being σ in nature) but weak between adjacent chains (being pseudo- δ in nature). On the basis of only the strong interactions between the in-plane t_{2g} orbitals, the t_{2g} -block bands of an undistorted 1T-ML₂ layer can be approximated as a superposition of the three independent one-dimensional (1D) bands (see Figure 4a) resulting from the three in-plane t_{2g} orbitals. These three 1D bands are termed the hidden 1D bands of an undistorted 1T-ML₂ layer.¹⁴ The use of the hidden 1D surfaces is justified in discussing the CDW modulations of 1T-ML₂ systems, because the M-M interactions involving the in-plane t_{2g} orbitals contained in nonparallel equatorial planes become strongly weakened when structural modulations are introduced into the lattice.¹⁴

For the d^2 electron count, each hidden band becomes 1/3-filled (Figure 4b), when the electrons are equally shared among the three bands. In general, a 1D band system with band occupancy f = 1/n (n = 2, 3, etc.) is suspectible to a structural distortion that increases the unit cell size n times along the chain direction, for such a distortion introduces a band gap at the Fermi level and lowers the total energy.^{14,15b} The three 1/3-filled hidden 1D bands of Figure 4b predict a trimerization of the lattice along the a-, b- and (a + b)-directions. This prediction is consistent with the metal-atom trimerization model of Figure 1d, and hence with the $\sqrt{3} \times \sqrt{3}$ superstructure of 1T-MoS₂ and LiVO₂,⁶⁻⁸ because every row of the metal atoms along the a-, b- or (a + b)-direction in Figure 1d has three metal atoms in a unit cell.

A d³ 1T-ML₂ system has three ¹/₂-filled 1D bands (Figure 4c), which lead to diamond chains (Figure 1e) as a result of the dimerization associated with each ¹/₂-filled band.¹⁴ When two of the three 1D bands are filled with two electrons to become each ¹/₂-filled (Figure 4d), zigzag chains are formed as a result of the associated dimerization in two directions [e.g., the *a*- and

^{(16) (}a) Burdett, J. K.; Hughbanks, T. Inorg. Chem. 1985, 24, 1741. (b) Kertesz, M.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 3453. (c) Structure Phase Transitions in Layered Transition Metal Compounds; Motizuki, K., Ed.; Reidel: Dordrecht, The Netherlands, 1986. (d) Doni, E.; Girlanda, R. In Electronic Structure and Electronic Transitions in Layered Materials, Grasso, V., Ed.; Reidel: Dordrecht, The Netherlands, 1986; p 1.

Figure 4. Schematic representations of the three hidden 1D bands comprising the t_{2g} -block bands of an undistorted 1T-ML₂ layer and their band occupancies: (a) Three hidden 1D bands; (b) three $^{1}/_{2}$ -filled 1D bands expected for a d² 1T-ML₂ system; (c) three $^{1}/_{2}$ -filled 1D bands expected for a d² 1T-MX₂ system; (d) two $^{1}/_{2}$ -filled 1D bands and an empty band expected for a d² 1T-ML₂ system.

Figure 5. Widths of the t_{2g} -block bands calculated for the ideal 1T-ML₂ (ML₂ = VO₂, MOS₂, VS₂, VSe₂, VTe₂) layers constructed from regular ML₆ octahedra.

(a + b)-directions in Figure 1c].¹⁴ For a d² 1T-ML₂ system, therefore, the zigzag chain formation arises from the disproportionate band filling (Figure 4d), and the $\sqrt{3} \times \sqrt{3}$ superstructure from the proportionate band filling (Figure 4b).

Factors Influencing the CDW Patterns of d² or d³ 1T-ML₂

The CDW pattern of a $d^2 1T$ -ML₂ system should be determined by the balance of several competing energy factors, e.g., the energy required for the disproportionate band filling, the enhancement of the M-M bonding interaction by the metal-atom clustering, and the lattice strain resulting from the metal-atom clustering. Let us consider "ideal" 1T-ML₂ layers made up of regular ML₆ octahedra. Then, with decreasing of the metal-ligand (M-L) bond length, the M-M distance becomes smaller so that the M-M interaction becomes stronger, and the M-L bond becomes less polarizable so that the lattice strain increases. Note that the zigzag chain formation is found for the $d^2 1T$ -ML₂ systems with a long M-L bond [i.e., MoTe₂, WTe₂, and M'Nb₂Se₄ (M' = Ti, V, Cr)] and not for those with a short M-L bond (i.e., LiVO₂ and 1T-MOS₂).

The zigzag chain formation arises from the disproportionate band filling of Figure 4d. The latter requires an electron transfer from one of the t_{2g} -block bands to the remaining two (Figure 4d vs Figure 4b); i.e., a "promotion energy" is needed. This energy increases, and hence the zigzag chain formation becomes less favorable, with increasing the width of the hidden 1D bands (or, equivalently, that of the t_{2g} -block bands). As shown in Figure 5, which summarizes our EHTB calculations for the "ideal" 1T-ML₂ layers (ML₂ = VO₂, MoS₂, VS₂, VSe₂, VTe₂), the width of the "ideal" t_{2g} -block bands becomes gradually narrower with increasing the M-L distance. (The atomic parameters used for

Table I. Exponents ζ_i and Valence Shell Ionization Potentials H_{ii} of the Slater Type Orbitals χ_i Used in the EHTB Calculations^a

me Stater	-) -	CI Dituit XI				
atom	Χi	H_{ii} (eV)	<u>Š</u> i	$c_1{}^{b}$	5 i	c2 ^b
v	4s	-8.81	1.30	-		
	4p	-5.52	1.30			
	3d	-11.00	4.75	0.4755	1.70	0.7052
Мо	5s	-8.34	1.96			
	5p	-5.24	1.90			
	4d	-10.50	4.54	0.5899	1.90	0.5899
0	2s	-32.3	2.275			
	2p	-14.8	2.275			
S	3s	-20.00	1.817			
	3p	-13.30	1.817			
Se	4s	-20.50	2.44			
	4p	-13.20	2.07			
Te	5s	-20.78	2.51			
	5p	-13.20	2.16			

^a H_{ii} 's are the diagonal matrix elements $\langle \chi_d H^{\text{eff}} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H_{ij} = \langle \chi_d H^{\text{eff}} | \chi_j \rangle$, the weighted formula was used.^{13b} ^b Contraction coefficients used in the double- ζ Slater type orbital.

our EHTB calculations are summarized in Table I. The M-L bond lengths used to construct the ML₆ octahedra are V-O = 2.007 Å, Mo-S = 2.285 Å, V-S = 2.400 Å, V-Se = 2.557 Å, and V-Te = 2.709 Å.¹⁷) According to Figure 5, the ideal 1T-ML₂ layers will have a larger t_{2g} -block bandwidth for LiVO₂ and 1T-MoS₂ compared with the other d² 1T-ML₂ systems exhibiting the zigzag-chain formation. This is consistent with the finding that the zigzag-chain formation is unfavorable in LiVO₂ and 1T-MoS₂.

The M-M and M-L distances are shorter, and thus the lattice strain should be larger, in the 1T-VO₂- and 1T-MoS₂ layers than in the other d₂ 1T-ML₂ layers. Therefore, the stabilization energy resulting from the metal-atom trimerization (Figure 1d) should be substantial for a small displacement of the metal atoms in LiVO₂ and 1T-MoS₂. As a representative example, we calculate how the band electronic structure of a single 1T-VO₂⁻ layer is affected as the metal-atom trimerization progresses. For simplicity, we define the extent of the trimerization in terms of the metal atom displacement δ shown in **2**. As δ increases, the

equilateral triangle of each metal trimer becomes smaller without moving the oxygen atoms of the lattice. Figure 6a presents the band gap E_g of a single 1T-VO₂-layer as a function of δ , and Figure 6b the stabilization energy ΔE of a single 1T-VO₂⁻ layer as a function of δ . As anticipated, the E_g and ΔE values are sensitive to the displacement δ . The band gap opening occurs for a very small value of δ (≥ 0.023 Å), and the total electronic energy is gradually lowered with increasing δ . Due the lattice strain, which increases with δ , the total energy of the lattice should be raised beyond a certain δ value. Experimentally, the band gap E_{g} for single-crystal samples of LiVO₂ is estimated to be 0.1–0.2 $eV.^{7a}$ According to our calculations, this range of E_g occurs for the very small displacement $\delta = 0.026-0.030$ Å (Figure 6a), for which the lattice is stabilized by 12-16 kcal/mol per $(VO_2)_3$ unit (Figure 6b). Thus, the CDW model of weak metal-atom trimerization proposed by Goodenough⁸ for the $\sqrt{3} \times \sqrt{3}$ superstructure of LiVO₂ is fully supported by the present study. This model should also be appropriate for $1T-MoS_2$.

⁽¹⁷⁾ These M-L bond lengths were obtained as follows: V-O = V-V/√2 with V-V = 2.839 Å;⁷ Mo-S = Mo-Mo/√2 with Mo-Mo = 3.231 Å;⁶ V-S is the average of the V-S bond lengths in VS_{1.47};²² V-Se is the average of the V-Se bond lengths in V₃Se₄;²³ V-Te is the average of the V-Te bond lengths in 1T-VTe₂.²⁴

Figure 6. (a) Top: Band gap E_g (eV) of a single 1T-VO_2 layer as a function of the metal-atom displacement δ (Å). (b) Bottom: Stabilization energy ΔE , in kcal/mol per (VO₂⁻)₃, of a single 1T-VO_2 layer as a function of the metal-atom displacement δ (Å).

For ideal d² 1T-ML₂ systems with long M-L bonds, a small M-M shortening cannot provide a significant energy lowering because the M-M distance is not short enough to provide a strong M-M bonding. From the viewpoint of local chemical bonding, the zigzag chains result when each metal atom makes two twocenter two-electron σ -bonds with its neighboring metal atoms by utilizing the in-plane t_{2g} orbitals.^{14,16a} The formation of such M-M σ -bonds requires a large lattice distortion in the d² 1T-ML₂ layers with long M-L bonds. A long M-L bond is polarizable, so that the M-M σ -bond formation may not induce a strong lattice strain. In addition, an ideal 1T-ML₂ lattice with a long M-L bond will have a narrow t_{2g}-block bandwidth and hence a small promotion energy for the disporportionate band filling. Consequently, the zigzag-chain formation is favorable for the d² 1T-ML₂ systems with long M-L bonds.

At room temperature ReO_2 exhibits zigzag chains instead of diamond chains, although it contains d^3 metal ions as do $ReSe_2$

and ReS₂. A diamond chain is a dimerized form of a zigzag chain,¹⁸ so that a diamond-chain formation induces a greater lattice strain than does a zigzag-chain formation. The Re–O distance is shorter than the Re–S or Re–Se distance, so that the lattice strain is greater in the ReO₂ layer than in the ReSe₂ and ReS₂ layers. Thus, it is speculated that the lattice strain is too strong for ReO₂ to form diamond chains. (It is worthwhile to note that Na₃Cu₄S₄ is a 1D metal¹⁹ but does not exhibit any CDW instability down to 13 K.²⁰ The lattice vibration needed for a CDW formation probably induces a severe lattice strain.¹⁹) For the d³ electron count, a 1T-ML₂ layer with zigzag chains has partially filled t_{2g}-block bands¹⁸ so that ReO₂ is predicted to be a 1D metal. It would be interesting to examine whether or not CDW fluctuations²¹ occur in ReO₂ as the temperature is lowered.

Concluding Remarks

Two different CDW patterns are observed for d² or d³ 1T-ML₂ systems depending on the nature of the metal M and the ligand L. Which CDW pattern is favored by a given system depends on several competing energy terms associated with the CDW formation. Two crucial factors are the M-M bonding interaction and the lattice strain, both of which are intimately related to the M-L bond length. In general, the 1T-ML₂ systems with short M-L bonds prefer a CDW pattern involving a small metal-atom displacement, while those with long M-L bonds prefers a CDW pattern involving a large metal-atom displacement. Our electronic band structure calculations show that the metal-atom trimerization in LiVO₂ lowers the total energy and opens a band gap for a very small displacement of the metal atoms, thereby supporting the CDW model of weak metal-atom trimerization proposed for the $\sqrt{3} \times \sqrt{3}$ superstructure of LiVO₂. This model is also appropriate for the $\sqrt{3} \times \sqrt{3}$ superstructure of 1T-MoS₂.

Acknowledgment. This work was supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences, under Grant DE-FG05-86ER45259. We thank Dr. E. Canadell for an invaluable discussion and a reference.

- (18) Canadell, E.; LeBeuze, A.; El Khalifa, M. A.; Chevrel, R.; Whangbo, M.-H. J. Am. Chem. Soc. 1989, 111, 3778.
 - 9) Whangbo, M.-H.; Canadell, E. Inorg. Chem. 1990, 29, 1395.
- (20) Peplinski, Z.; Brown, D. B.; Watt, T.; Hatfield, W. E.; Day, P. Inorg. Chem. 1982, 21, 1752.
- (21) Moret, R.; Pouget, J. P. In Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures; Rouxel, J., Ed.; Reidel: Dordrecht, The Netherlands, 1986; p 87.
- (22) Kawada, I.; Nakano-Onoda, M.; Ishi, M.; Sacki, M.; Nakahira, M. J. Solid State Chem. 1965, 15, 246.
- 23) Kallel, A.; Boller, H. J. Less-Common Met. 1984, 102, 213.
- (24) Bronsema, K. D.; Bus, G. W.; Wiegers, G. A. J. Solid State Chem. 1984, 53, 415.