## **1.3-Diaryltriazenido Compounds of Aluminum**

## John T. Leman, Janet Braddock-Wilking, Alanna J. Coolong, and Andrew R. Barron<sup>\*</sup>

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 Received March 5, 1993®

Reaction of AlH(<sup>i</sup>Bu)<sub>2</sub> with 1 and 2 equiv of 1,3-diphenyltriazene, (Ph)NNN(H)(Ph), yields Al(<sup>i</sup>Bu)<sub>2</sub>[N(Ph)-NN(Ph)] (1) and Al(<sup>i</sup>Bu)[N(Ph)NN(Ph)]<sub>2</sub> (2), respectively. Compound 2 undergoes ligand exchange in solution to give an equimolar mixture of 1 and Al[N(Ph)NN(Ph)]3. The reaction of Al('Bu)3 with (Ph)NNN(H)(Ph) gives Al('Bu)<sub>2</sub>[N(Ph)NN(Ph)] (3) as the only product. Addition of 1 equiv of (Ph)NNN(H)(Ph) to AlMe<sub>2</sub>(BHT)- $(OEt_2)$  (BHT-H = 2,6-di-tert-butyl-4-methylphenol) allows for the isolation of AlMe(BHT)[N(Ph)NN(Ph)] (4); however, higher equivalents of (Ph)NNN(H)(Ph) yield only Al[N(Ph)NN(Ph)]<sub>3</sub>. The bis(triazenide) complex Å1(BHT)[N(Ph)NN(Ph)]2 (5) is isolated from the reaction of (Ph)NNN(H)(Ph) with AlH2(BHT)(NMe3), while Al(BHT)<sub>2</sub>[N(Ph)NN(Ph)] (6) is formed from the reaction of (Ph)NNN(H)(Ph) with AlMe(BHT)<sub>2</sub>. Although the reaction of 1 with H<sub>2</sub>salen [N,N'-ethylenebis(salicylideneamine)] does not yield Al[N(Ph)NN'(Ph)](salen) (8) but rather yields Al('Bu)(salen) (7), compound 8 may be isolated from interaction of (Ph)NNN(H)(Ph) with AlMe(salen). The reaction between AlMe<sub>3</sub> and 3 equiv of substituted 1,3-diaryltriazenes, (Ar)NNN(H)(Ar), yields the 6-coordinate aluminum tris(1,3-diaryltriazenido) compounds,  $Al[N(Ar)NN(Ar)]_3$  [Ar = 2-MePh (9), 4-MePh (10), 4-MeOPh (11), 4-FPh (12), 4-ClPh (13), 4-BrPh (14), C<sub>6</sub>F<sub>5</sub> (15)]. The unsymmetrical diaryltriazene complex AI[N(Ph)NN(4-MeOPh)]<sub>3</sub> (16) adopts a trans-meridional conformation. The spectroscopic characterization of the tris(triazenido) complexes is discussed with respect to the nature of the aryl substituents. The X-ray structures of 1, 6, AlMe(salen), 9, 11, 13,  $(C_6F_5)NNN(H)(C_6F_5)$ , and  $(2-MePh)NNN(H)(2-MePh)\cdot(2-MePh)NH_2$  have been determined. Crystallographic data for 1: monoclinic,  $P2_1/c$ , a = 12.437(7) Å, b = 12.327(5) Å, c = 13.413(9)Å,  $\beta = 98.29(5)^{\circ}$ , Z = 4, R = 0.059,  $R_w = 0.071$ . Crystallographic data for 6: monoclinic, C2/c, a = 17.967(b)Å, b = 10.030(5) Å, c = 21.650(6) Å,  $\beta = 99.99(2)^{\circ}$ , Z = 2, R = 0.086,  $R_w = 0.090$ . Crystallographic data for AlMe(salen): monoclinic,  $P_{2_1}/n$ , a = 11.751(8) Å, b = 12.227(9) Å, c = 12.609 Å,  $\beta = 98.52(6)^\circ$ , Z = 4, R = 12.609 Å,  $\beta = 12.609$  Å,  $\beta = 1$ 0.082,  $R_w = 0.082$ . Crystallographic data for 9: monoclinic,  $P_{21}/c$ , a = 11.392(3) Å, b = 11.418(3) Å, c = 31.227(9)Å,  $\beta = 94.31(2)^\circ$ , Z = 4, R = 0.093,  $R_w = 0.099$ . Crystallographic data for 11: tetragonal,  $I4_1/a$ , a = 27.996(6)Å, c = 20.613(5) Å, Z = 16, R = 0.076,  $R_w = 0.077$ . Crystallographic data for 13: monoclinic,  $P_{21}/c$ , a = 8.746(3)Å, b = 18.754(4) Å, c = 22.985(5) Å,  $\beta = 90.36(3)^{\circ}$ , Z = 4, R = 0.042,  $R_{w} = 0.056$ . Crystallographic data for (C<sub>6</sub>F<sub>5</sub>)NNN(H)(C<sub>6</sub>F<sub>5</sub>): monoclinic,  $P2_1/c$ , a = 10.027(4) Å, b = 9.909(4) Å, c = 12.998(4) Å,  $\beta = 96.00(3)^{\circ}$ , Z = 4, R = 0.034,  $R_w = 0.046$ . Crystallographic data for (2-MePh)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub>): triclinic, P1, a = 9.609(9) Å, b = 10.272(5) Å, c = 11.276(5) Å,  $\alpha = 108.53(8)^{\circ}$ ,  $\beta = 114.90(7)^{\circ}$ ,  $\gamma = 90.88(7)^{\circ}$ , Z = 2,

Introduction

The first extensive investigation of the coordination chemistry of 1,3-diphenyltriazene (I) was carried out over 100 years ago by Meldola.<sup>1</sup> While in the intervening years numerous transition metal triazenide compounds have been studied, only limited examples of group 13 triazenides have appeared.<sup>2-5</sup>

 $R = 0.070, R_w = 0.070.$ 



In a previous publication<sup>6</sup> we described the X-ray structural characterization of the aluminum 1,3-diphenyltriazenido complex Ål[N(Ph)NN(Ph)]<sub>3</sub> (II). Although we initially prepared Ål- $[N(Ph)N\dot{N}(Ph)]_3$  from the reaction of AlMe<sub>3</sub> with 3 equiv of 1,3-diphenyltriazene (eq 1), we showed that the tris complex was

 $AlMe_3 + 3(Ph)NN(H)(Ph) -$ 

 $Al[N(Ph)NN(Ph)]_3 + 3MeH$  (1)

the sole product isolated even when a large excess of AlMe<sub>3</sub> was employed.<sup>7</sup> If, however, the reaction is carried out in the presence of a strong Lewis base, such as 3,5-dimethylpyridine

- (a) Black, D. St. C.; Davis, V. C.; Deacon, G. B.; Schultze, R. J. Inorg. (2)Chim. Acta 1979, 37, L528. (b) Beck, J.; Strahle, J. Z. Naturforsch., B 1986, 41, 1381
- (a) Brinckman, F.E.; Haiss, H.S. Chem. Ind. 1963, 1124. (b) Brinckman, F. E.; Haiss, H. S.; Robb, R. A. Inorg. Chem. 1965, 4, 936.
   (4) Wheeler, P. P.; Richardson, A. C. Mikrochim. Ichnoanal. Acta 1964,
- 609.
- Coates, G. E. Mukherjee, R. N. J. Chem. Soc. 1964, 1295.
- Leman, J. T.; Barron, A. R.; Ziller, J. W.; Kren, R. M. Polyhedron 1989, 8, 1909.
- (7)Al[N(Ph)NN(Ph)]3 may also be prepared by the reaction of AlCl3 with 3 equiv of Ag[N(Ph)NN(Ph)]; see ref 4a.

<sup>\*</sup> Author to whom all correspondence should be addressed.

Abstract published in Advance ACS Abstracts, August 15, 1993.
 (1) (a) Meldola, R.; Streatfield, F. W. J. Chem. Soc. 1887, 434. (b) Meldola,

R.; Streatfield, F. W. J. Chem. Soc. 1888, 664. (c) Melodola, R.; Streatfield, F. W. J. Chem. Soc. 1890, 785.

(3,5-Me<sub>2</sub>py), a less highly substituted compound can be isolated (eq 2).8 X-ray crystallographic characterization of

 $AlMe_3 + 2(Ph)NNN(H)(Ph) -$ 

$$\dot{A}1Me[N(Ph)NN(Ph)]_{2}(3,5-Me_{2}py) + 2MeH (2)$$

AlMe[N(Ph)NN(Ph)]<sub>2</sub>(3,5-Me<sub>2</sub>py) revealed it to be the first example of a monomeric six-coordinate aluminum alkyl (III). In addition, a large trans influence was observed for the Al-N distance trans to the methyl ligand, the first observation of such an effect for an aluminum complex.



Difficulties in preparing AlMe[N(Ph)NN(Ph)]<sub>2</sub>(3,5-Me<sub>2</sub>py) in high yield and the inertness of the methyl ligand to substitution prompted us to investigate alternative routes to mono- and bis(1,3diphenyltriazenido) complexes of aluminum. In this regard we have investigated the reactivity of 1,3-diphenyltriazene with isobutyl, tert-butyl, aryloxide, and Schiff-base aluminum compounds, and the results of this study are presented herein. In addition, the synthesis and spectroscopic and structural characterization of tris(1,3-diaryltriazenido)aluminum complexes, in which the phenyl substituent is monosubstituted at either the 2or 4-position or pentasubstituted, are reported.

## **Results and Discussion**

Alkylaluminum Triazenide Compounds. Although we have no firm explanation for the mechanism resulting in the exclusive formation of the tris(triazenido)aluminum compound from AlMe<sub>3</sub> (cf. eq 1), on the basis of analogy with other group 13 systems, we propose that it involves rapid alkyl-triazenide ligand exchange, e.g., eq 3. If this is indeed true, increased steric bulk of the alkyl substituent should slow one or other (or both) of these ligandexchange reactions.9

$$AIMe_{2}L \xrightarrow[-AIMe_{3}]{AIMe_{2}L} AIMe_{2} \xrightarrow[-AIMe_{3}]{AIMe_{2}L} AIL_{3}$$
(3)

Interaction of AlH(iBu)<sub>2</sub> with 1 or 2 molar equiv of 1,3diphenyltriazene, at -78 °C, yields Ål(<sup>i</sup>Bu)<sub>2</sub>[N(Ph)NN(Ph)] (1) or Al(<sup>i</sup>Bu)[N(Ph)NN(Ph)]<sub>2</sub> (2), respectively (eqs 4 and 5).  $AlH(^{i}Bu)_{2} + (Ph)NNN(H)(Ph) -$ 

$$\dot{Al}(Bu)_{2}[N(Ph)NN(Ph)] + H_{2}$$
 (4)

 $AlH(^{1}Bu)_{2} + 2(Ph)NNN(H)(Ph)$ hexane/toluene

$$\frac{1}{Al(^{i}Bu)[N(Ph)NN(Ph)]_{2} + H_{2} + ^{i}BuH} (5)$$

Compounds 1 and 2 are both orange-red and soluble in

(8) Leman, J. T.; Barron, A. R. Organometallics 1989, 8, 1828.



Figure 1. Molecular structure of Al(<sup>i</sup>Bu)<sub>2</sub>[N(Ph)NN(Ph)] (1). Thermal ellipsoids are drawn at the 40% probability level, and hydrogen atoms are omitted for clarity.

| Al( <sup>i</sup> Bu) <sub>2</sub> [N(Ph)NN(P | h)] (1)    |                       |          |
|----------------------------------------------|------------|-----------------------|----------|
| Al(1)-N(1)                                   | 1.971(3)   | Al(1)-N(2)            | 1.962(3) |
| Al(1)-C(31)                                  | 1.956(4)   | Al(1)-C(41)           | 1.952(3) |
| N(1)-N(12)                                   | 1.319(4)   | N(1)-C(11)            | 1.402(4) |
| N(2)-N(12)                                   | 1.321(4)   | N(2)-C(21)            | 1.399(4) |
| C(31)-C(32a)                                 | 1.529(9)   | C(31)-C(32b)          | 1.507(8) |
| C(32a)-C(33)                                 | 1.39(1)    | C(32b)-C(33)          | 1.33(1)  |
| C(32a)-C(34)                                 | 1.53(1)    | C(32b)-C(34b)         | 1.55(1)  |
| C(41)-C(42)                                  | 1.524(5)   | C(42)-C(43)           | 1.520(6) |
| C(42)–C(44)                                  | 1.521(5)   |                       |          |
| N(1)-A(1)-N(2)                               | 64.7(1)    | N(1)-AI(1)-C(31)      | 115.3(1) |
| N(1)-A(1)-C(41)                              | 113.4(1)   | N(2) - Al(1) - C(31)  | 120.9(1) |
| N(2)-Al(1)-C(41)                             | 108.4(1)   | C(31) - Al(1) - C(41) | 121.2(1) |
| AI(1)-N(1)-N(12)                             | 94.5(2)    | AI(1)-N(1)-C(11)      | 147.5(2) |
| N(12)-N(1)-C(11)                             | 118.0(2)   | Al(1) - N(2) - N(12)  | 94.9(2)  |
| A1(1)-N(2)-C(21)                             | 145.8(2)   | N(12)-N(2)-C(21)      | 118.7(2) |
| N(1)-N(12)-N(2)                              | 105.8(2)   | Al(1)-C(31)-C(32a)    | 124.9(4) |
| Al(1)-C(31)-C(32b)                           | 117.6(4)   | C(31)-C(32a)-C(33)    | 117.3(6) |
| C(31)-C(32b)-C(33)                           | 122.5(7)   | C(31)-C(32a)-C(34a)   | 116.3(8) |
| C(31)-C(32b)-C(34b                           | ) 107.2(6) | C(33)-C(32a)-C(34a)   | 115.9(8) |
| C(33)-C(32b)-C(34b                           | ) 109.8(7) | Al(1)-C(41)-C(42)     | 117.9(2) |
| C(41)-C(42)-C(43)                            | 110.2(3)   | C(41)-C(42)-C(44)     | 111.4(3) |
| C(43)-C(42)-C(44)                            | 111.2(3)   |                       |          |
|                                              |            |                       |          |

hydrocarbon solvents and have been fully characterized by elemental analysis and IR and NMR spectroscopy (see Experimental Section); in addition, the molecular structure of 1 has been confirmed by X-ray crystallography. Although we have been unable to obtain crystals of 2 suitable for X-ray diffraction studies, the coordination around aluminum is probably similar to that found for other five-coordinate complexes.<sup>10</sup>

The molecular structure of compound 1 is shown in Figure 1; selected bond lengths and angles are given in Table I. Compound 1 is monomeric with no unusual intermolecular contacts. The aluminum atom is four-coordinate distorted tetrahedral, as a consequence of the small bite angle of the triazenide ligand, i.e.,  $N(1)-Al(1)-N(2) = 64.7(1)^{\circ}$ . The ligation of the triazenide is essentially identical to that observed for the six-coordinate compounds A1[N(Ph)NN(Ph)]36 and A1Me[N(Ph)NN(Ph)2(3,5-Me<sub>2</sub>Py),<sup>8</sup> indicating the ligand geometry to be relatively insensitive to the coordination environment around aluminum.

Reaction of Al('Bu)311 with 1 equiv of 1,3-diphenyltriazene at -78 °C allows for the isolation of the mono(triazenido) compound

- (10) See for example: Robinson, G. H.; Sangokoya, S. A. J. Am. Chem. Soc. 1987, 109, 6852. (11) Uhl, W. Z. Anorg. Allg. Chem. 1989, 570, 37.

<sup>(9)</sup> For an example of the control exerted on ligand-exchange equilibria by the steric bulk of an alkyl substituent see: Shreve, A. P.; Mullhaupt, R.; Fultz, W.; Calabrese, J.; Robbins, W.; Ittel, S. D. Organometallics 1988, 7, 409.

 $Al(Bu)_2[N(Ph)NN(Ph)]$  (3). On the basis of spectroscopic characterization, compound 3 has a structure analogous to 1; however, unlike 2, compound 3 does not react with further equivalents of 1,3-diphenyltriazene.

While compounds 1 and 3 are indefinitely stable under an inert atmosphere in both the solid state and solution, compound 2 undergoes ligand exchange, at ambient temperatures (eq 6). These observations are consistent with the inhibition of the alkyltriazenide exchange with increasing steric bulk of the aluminum alkyl.

$$2Al(^{i}Bu)[N(Ph)NHN(Ph)]_{2} \xrightarrow{\text{room temp}}$$

$$Al(^{i}Bu)_{2}[N(Ph)NN(Ph)] + Al[N(Ph)NN(Ph)]_{3} (6)$$

Aluminum Aryloxide Triazenide Compounds. The reaction of  $AlMe_2(BHT)(OEt_2)^{12}$  with 1 molar equiv of 1,3-diphenyltriazene yields the mixed alkyl-aryloxide-triazenide compound 4 in moderate yield (eq 7). By contrast, the reaction of  $AlH_2$ -(BHT)(NMe<sub>3</sub>)<sup>13</sup> with (Ph)NNN(H)(Ph) results in the formation

AlMe<sub>2</sub>(BHT)(OEt<sub>2</sub>) + (Ph)NNN(H)(Ph) 
$$\longrightarrow$$
  
AlMe(BHT)[N(Ph)NN(Ph)] + MeH (7)  
4

of Al(BHT)[N(Ph)NN(Ph)]<sub>2</sub> (5), in good yield (eq 8). Com

$$AlH_2(BHT)(NMe_3) + 2(Ph)NNN(H)(Ph) \longrightarrow$$

$$\frac{1}{5}$$

pound 5 slowly (days at 25 °C in toluene solution) undergoes ligand exchange, in a manner analogous to that observed for compound 2, to yield Al[N(Ph)NN(Ph)]<sub>3</sub> and Al(BHT)<sub>2</sub>-[N(Ph)NN(Ph)] (6) (eq 9). Compound 6 may also be prepared

$$2Al(BHT)[N(Ph)NN(Ph)]_{2} \longrightarrow$$

$$Al[N(Ph)NN(Ph)]_{3} + Al(BHT)_{2}[N(Ph)NN(Ph)] (9)$$

directly from the reaction of  $AlMe(BHT)_2^{14}$  with 1 equiv of 1,3diphenyltriazene, i.e., eq 10. Compounds 4-6 are all orange and

$$AlMe(BHT)_2 + (Ph)NNN(H)(Ph) - - -$$

$$\dot{A}l(BHT)_2[N(Ph)NN(Ph)] + MeH (10)$$

soluble in hydrocarbon solvents. Elemental analysis and IR and NMR spectroscopy (see Experimental Section) are consistent with their formulation as given. The molecular structure of 6 has been determined by X-ray crystallography.

The structure of compound 6 is shown in Figure 2; selected bond lengths and angles are given in Table II. The compound contains a crystallographically-imposed  $C_2$  axis coincident with the Al(1)-N(2) vector. The aryloxide ligands adopt a propellerlike conformation. As was observed for compound 1, the aluminum atom in 6 is in a highly distorted tetrahedral environment, with the smallest angle being associated with the triazenide chelate  $[N(1)-Al(1)-N(1a) = 64.7(1)^{\circ}]$ . Given the

- (12) Power, M. B.; Healy, M. D.; Barron, A. J. J. Coord. Chem. 1990, 21, 363.
- (13) Healy, M. D.; Gravelle, P.; Bott, S. G.; Barron, A. R. J. Chem. Soc., Dalton Trans. 1993, 441.
- (14) Healy, M. D.; Wierda, D. A.; Barron, A. R. Organometallics 1988, 7, 2563



Figure 2. Molecular structure of Al(BHT)<sub>2</sub>[N(Ph)NN(Ph)] (6). Thermal ellipsoids are drawn at the 40% probability level, and hydrogen atoms are omitted for clarity.

Table II. Selected Bond Lengths (Å) and Angles (deg) for

| Al(BHT)2[N(Ph)NN                                                                                                        | (Ph)] ( <b>6</b> )                                     |                                                                           |                                              |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|
| Al(1)-N(1)<br>N(1)-N(2)<br>O(1)-C(7)                                                                                    | 1.958(3)<br>1.303(4)<br>1.372(4)                       | Al(1)–O(1)<br>N(1)–C(1)                                                   | 1.689(3)<br>1.426(5)                         |
| $\begin{array}{l} N(1)-Al(1)-N(1a)\\ N(1)-Al(1)-O(1a)\\ Al(1)-N(1)-N(2)\\ N(2)-N(1)-C(1)\\ Al(1)-O(1)-C(7) \end{array}$ | 65.3(2)<br>108.8(1)<br>93.1(2)<br>116.1(3)<br>151.5(2) | N(1)-Al(1)-O(1)<br>O(1)-Al(1)-O(1a)<br>Al(1)-N(1)-C(1)<br>N(1)-N(2)-N(1a) | 117.5(1)<br>124.5(2)<br>149.7(3)<br>108.4(4) |

difference in steric bulk of the BHT and isobutyl ligands, it is interesting to note that the geometry around aluminum in 6 is surprisingly similar to that in 1. The O(1)-Al(1)-O(1a) angle in 6 [124.5(2)°] is only slightly larger than the equivalent C(31)-Al(1)-C(41) angle in 1 [121.2(2)°]. Furthermore, the extents by which the  $AIX_2 [X = C(1), O(6)]$  plane is twisted away from the perpendicular to the plane defined by the triazenide nitrogens and the aluminum atom are comparable  $[7.6^{\circ} (1), 8.4^{\circ} (6)]$ .

Aluminum Schiff-Base Triazenide Compounds. The reaction of compound 1 with N,N'-ethylenebis(salicylideneamine) does not result in the substitution of both isobutyl groups but rather results in the liberation of 1 equiv of alkane and the protonated triazenide ligand (eq 11).<sup>15</sup> On the basis of its <sup>1</sup>H NMR spectrum

$$\dot{Al}(^{i}Bu)_{2}[N(Ph)NN(Ph)] + H_{2}salen \longrightarrow$$
$$Al(^{i}Bu)(salen) + (Ph)NNN(H)(Ph) + ^{i}BuH (11)$$

(see Experimental Section), compound 7 appears to be essentially the same in structure as the ethyl<sup>16</sup> and methyl<sup>17</sup> analogs, whose structures have been determined by X-ray crystallography (see below), the aluminum being five-coordinate.

We have previously shown<sup>17</sup> that AlMe(salen) reacts with a variety of protic acids, HX, to yield the corresponding complexes, eq 12. Treatment of AlMe(salen) with HN(Ph)NN(Ph) allows

the isolation of Al[N(Ph)NN(Ph)](salen) 8; cf. eq 13. Unfortunately, we have been unable to obtain crystals of 8 suitable for

- (16) Dzugan, S. J.; Goedken, V. L. Inorg. Chem. 1986, 25, 2858.
   (17) Gurian, P. L.; Cheatham, L. K.; Ziller, J. W.; Barron, A. R. J. Chem. Soc., Dalton Trans. 1991, 1449.

<sup>(15)</sup> We have previously observed a lack of reactivity for aluminum alkyls in dialkylaluminum amide compounds: Healy, M. D.; Leman, J. T.; Barron, A. R. J. Am. Chem. Soc. 1991, 113, 2776.

1,3-Diaryltriazenido Compounds of Aluminum

$$AlMe(salen) + HX \rightarrow AlX(salen) + MeH$$
 (12)

$$X = OH, OR, O_2CR$$

X-ray diffraction; however, the IR spectrum contains bands at 1279, 1303, and 1330 cm<sup>-1</sup> which are characteristic of chelating triazenide groups.<sup>6</sup> The peak position ( $\delta$  11) and line width ( $W_{1/2}$  = 940 Hz) of the single peak observed in the <sup>27</sup>Al NMR spectrum of compound 8 are consistent with those of a highly distorted octahedral site. The spectroscopic data are therefore consistent with a structure analogous to that found for M(acac)(salen) (Hacac = acetylacetone; M = Al, Co),<sup>17,18</sup> in which the metals are in a distorted octahedral environment and the acac group acts as a chelate ligand.

During the course of this study, we obtained crystals of AlMe(salen) suitable for X-ray analysis, where our previous attempts had been frustrated by crystal twinning.<sup>17</sup> The molecular structure of AlMe(salen) is shown in Figure 3; selected bond lengths and angles are given in Table III.

Tris(diaryltriazenido) Compounds of Aluminum. All the triazenido compounds of the group 13 metals prepared in our laboratory have been derived from 1,3-diphenyltriazene (I). In order to probe possible structural and spectroscopic changes upon substitution of the aryl ring, we have now prepared a homologous

series of tris(diaryltriazenido) compounds  $Al[N(Ar)NN(Ar')]_3$ . Furthermore, we have prepared the tris(triazenido) complex derived from the asymmetric triazene (Ph)NNN(H)(4-MeOPh).<sup>19</sup> All the substituted triazenido compounds are prepared in a manner analogous to that for the parent compound, eq 13.

$$AIR_{3} + 3(Ar)NNN(H)(Ar') \longrightarrow$$

$$AI[N(Ar)NN(Ar')]_{3} + 3RH (13)$$

Ar = Ar' = 2-MePh (9), 4-MePh (10), 4-MeOPh (11), 4-FPh (12), 4-ClPh (13), 4-BrPh (14),  $C_6F_5$  (15); Ar = Ph, Ar' = 4-MeOPh (16)

Compounds 9-16 have been characterized by spectral data (see Experimental Section. The <sup>27</sup>Al NMR spectra consist of broad resonances whose shifts ( $\delta$  24-34 ppm), while indicative of six-coordinate aluminum centers, are uncharacteristically broad  $(W_{1/2} = 1400-2460 \text{ Hz}).^{20}$  This broadening is possibly due to the high trigonal distortion observed in the solid state (vide infra) but may also be exacerbated by coupling to the quadrupolar 14N nuclei. However, another effect may be operating in view of the <sup>27</sup>Al NMR spectrum obtained for the perfluorinated compound (15), for which the line width ( $W_{1/2} = 625$  Hz), although still broad with respect to six-coordinate species commonly observed, is a notable exception to the large line widths in the <sup>27</sup>Al NMR spectra for the other tris(triazenido) complexes. The smaller line width for compound 15 may be rationalized from the perspective of a decrease in the intermolecular interactions due to the fluorocarbon periphery of the molecule, and the subsequent decrease in spin-spin exchange collisions, which in turn results in an increase of the transverse relaxation time  $(T_2)$  and a decrease



Figure 3. Molecular structure of AlMe(salen). Thermal ellipsoids are drawn at the 30% level, and hydrogen atoms are omitted for clarity.

in the line width.<sup>21</sup> It is therefore reasonable to expect that the increased line widths for compounds 9–14 and 16 as compared to 15 are due to efficient intermolecular interactions in solution. The IR spectra of 9–16 show bands at 1303–1324, 1276–1306, and 1247–1293 cm<sup>-1</sup>, which are characteristic of chelating triazenide groups. The chelating coordination mode has been confirmed for 9, 11, and 13 by X-ray crystallography.

The molecular structures of 9, 11, and 13 are shown in Figures 4-6, respectively; selected bond lengths and angles are given in Tables IV-VI. The aluminum in each compound is in a trigonally distorted octahedral coordination environment, with the *trans* N-Al(1)-N angles in the range  $153.8(2)-163.2(4)^{\circ}$ . The triazenido ligands are arranged in a pseudo- $C_3$  propeller arrangement. The Al-N [1.968(4)-2.003(9) Å] and N-N [1.30(1)-1.33(1) Å] distances and the N-N-N [105.1(9)-106.5(8)^{\circ}] and Al-N-C [145.1(8)-150.3(7)^{\circ}] angles for all the compounds appear to be essentially independent of the substituents on the triazenide ligand.

Whereas the aryl rings in 11 and 13 are nearly coplanar with the triazenide nitrogens, those in 9 are significantly twisted away from coplanarity due to the steric influence of the ortho methyl groups. It is worth noting that in the solid state the o-tolyl groups adopt one of two conformations which may be termed exo and *endo*, for those situated away from or toward the aluminum, respectively (IV). In the solid-state structure of 9, each ligand



has one methyl group exo and one *endo*. This is in contrast to the uncomplexed ligand (see below), where both the methyl groups occupy *endo* orientations. This difference in ligand orientation is clearly due to the steric hindrance in compound 9 versus the free ligand. The positions of the methyl groups in the o-tolyl groups associated with N(4) and N(5) are such that they are placed above and below the aluminum atom (see Figure 4). However, the intramolecular (observed) C...Al and (calculated)

<sup>(18)</sup> Calligaris, M.; Nardin, G.; Randaccio, L. J. Chem. Soc., Chem. Commun. 1969, 1248.

<sup>(19)</sup> It should be noted that (Ph)NNN(H)(4-MeOPh) is one of a prototropic, tautomeric pair, written in this fashion for convenience, e.g., (Ph)-NNN(H)(4-MeOPh) ↔ (Ph)N(H)NN(4-MeOPh). Neither can be isolated in pure form.

<sup>(20)</sup> Due to the high symmetry of the octahedral environment, the <sup>27</sup>AlNMR signals for AlL<sub>6</sub> complexes tend to be narrow (W<sub>1/2</sub> = 3-70 Hz): Harris, R. K.; Mann, B. E. NMR and the Periodic Table; Academic Press: London, 1978.

<sup>(21)</sup> Roberts, J. D. Nuclear Magnetic Resonance; McGraw-Hill: New York, 1959.

Table III. Selected Bond Lengths (Å) and Angles (deg) for AlMe(salen)

| Al(1)-C(1)            | 1.95(1)  | Al(1)-O(11)           | 1.794(7) |
|-----------------------|----------|-----------------------|----------|
| Al(1)-O(21)           | 1.823(7) | Al(1)-N(11)           | 2.041(8) |
| Al(1) - N(21)         | 2.033(8) | O(11)-C(11)           | 1.32(1)  |
| O(21) - C(21)         | 1.30(1)  | N(11)-C(17)           | 1.28(1)  |
| N(11) - C(18)         | 1.46(1)  | N(21)–C(27)           | 1.28(1)  |
| N(21)-C(28)           | 1.47(1)  |                       |          |
|                       |          | 0(1) (1) (2)          | 102.0(4) |
| C(1) - AI(1) - O(11)  | 11/.0(4) | C(1) = AI(1) = O(21)  | 103.9(4) |
| O(11) - Al(1) - O(21) | 89.0(3)  | C(1)-Al(1)-N(11)      | 97.8(4)  |
| O(11)-Al(1)-N(11)     | 88.0(3)  | O(21) - Al(1) - N(11) | 156.9(3) |
| C(1)-Al(1)-N(21)      | 108.5(4) | O(11) - AI(1) - N(21) | 133.1(3) |
| O(21) - AI(1) - N(21) | 87.8(3)  | N(11)-AI(1)-N(21)     | 77.7(3)  |
| Al(1)-O(11)-C(11)     | 133.6(6) | Al(1)-O(21)-C(21)     | 133.8(6) |
| AI(1)-N(11)-C(17)     | 128.6(7) | A1(1)-N(11)-C(18)     | 112.3(5) |
| C(17)-N(11)-C(18)     | 119.0(8) | AI(1)-N(21)-C(27)     | 126.7(7) |
| Al(1)-N(21)-C(28)     | 116.3(5) |                       |          |



Figure 4. Molecular structure of Al[N(2-MePh)NN(2-MePh)]<sub>3</sub> (9). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms and the labels for the phenyl carbon atoms are omitted for clarity.



Figure 5. Molecular structure of Al[N(4-MeOPh)NN(4-MeOPh)]<sub>3</sub>(11). Thermal ellipsoids are drawn at the 40% probability level. Hydrogen atoms and the labels for phenyl carbon atoms are omitted for clarity.

H...Al distances are sufficiently large to preclude the possibility of any agostic C-H-Al interaction.<sup>22</sup>



Figure 6. Molecular structure of Al[N(4-ClPh)NN(4-ClPh)]<sub>3</sub> (13). Thermal ellipsoids are drawn at the 40% probability level. Hydrogen atoms and the labels for the phenyl carbon atoms are omitted for clarity.

It is clear from the spectroscopy of 9-16 and the molecular structures of 9, 11, and 13 that substitution of the aryl ring does not appreciably alter the structure of the tris(triazenido)aluminum complex.

Coordination compounds in which the central atom is bound to three unsymmetrical bidentate ligands may exist in two geometrically isomeric forms, facial (cis) and meridional (trans).

While we have been unable to grow crystals of Al[N(Ph)NN(4-MeOPh)]<sub>3</sub> (16) suitable for X-ray diffraction, the <sup>1</sup>H and <sup>13</sup>C NMR spectra are consistent with the presence of a single meridional isomer (V).23 This is analogous to the results reported



for aluminum tris(benzoylacetonate).24 Failure to obtain any of

the facial isomer for Al[N(Ph)NN(4-MeOPh)]<sub>3</sub> is undoubtedly reflects the lability of the complex and the greater stability of the trans isomer.24,25

Are Aluminum Triazenide Compounds Structural Analogs of Aluminum Carboxylates? The 1,3-diphenyltriazenide anion, [PhN=N-NPh]-, has been reported to act as a monodentate (VI), chelating (VII), or bridging (VIII) ligand toward transition



metals,<sup>26</sup> suggesting a formal analogy to the carboxylate anion,  $[O=C(R)-O]^-$ ; both ligands are monovalent, hard donors and

<sup>(22)</sup> It should be noted that we have previously observed the presence of an agostic C-H-In interaction for the ortho methyl groups in In(2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>)<sub>3</sub>: Leman, J. T.; Barron, A. R. Organometallics 1989, 8. 2214.

<sup>(23)</sup> It is interesting to note that while the <sup>1</sup>H NMR shows inequivalent OCH3 groups (ratio 2:1), the 13C NMR spectrum shows only inequivalent aromatic rings. Furthermore, no evidence for the facial isomer is found.

<sup>(24)</sup> Fay, R. C.; Piper, T. S. J. Am. Chem. Soc. 1962, 84, 2303.
(25) For a detailed study of the ligand-exchange reactions observed for Al(β-diketonate)<sub>3</sub>, see: Saito, K.; Nagasawa, A. Polyhedron 1990, 9, 215.
(26) Moore, D. S.; Robinson, S. D. Adv. Inorg. Chem. Radiochem. 1986, 30,

Table IV. Selected Bond Lengths (Å) and Angles (deg) for 

| AI[N(2-McPh)NN(2                           | -MePh)] <sub>3</sub> ·(C; | $(\mathbf{H}_{8})$ (9)                           |          |
|--------------------------------------------|---------------------------|--------------------------------------------------|----------|
| Al(1)N(1)                                  | 1.98(1)                   | Al(1)–N(2)                                       | 1.981(9) |
| Al(1)–N(3)                                 | 1.977(8)                  | Al(1) - N(4)                                     | 1.979(9) |
| Al(1)-N(5)                                 | 2.000(9)                  | Al(1) - N(6)                                     | 1.970(8) |
| N(1) - N(12)                               | 1.33(1)                   | N(1) - C(11)                                     | 1.44(1)  |
| N(12) - N(2)                               | 1.32(1)                   | N(2) - C(21)                                     | 1.46(1)  |
| N(3)-N(34)                                 | 1.31(1)                   | N(3)-C(31)                                       | 1.42(1)  |
| N(34) - N(4)                               | 1.33(1)                   | N(4) - C(41)                                     | 1.42(1)  |
| N(5)-N(56)                                 | 1.31(1)                   | N(5)-C(51)                                       | 1.40(1)  |
| N(56)-N(6)                                 | 1.32(1)                   | N(6)-C(61)                                       | 1.41(1)  |
| N(1) = A1(1) = N(2)                        | 64 5(4)                   | N(1) = A(1) = N(3)                               | 101 4(4) |
| N(1) - A(1) - N(2)                         | 95 5(4)                   | N(1) = A(1) = N(3)                               | 160 9(4) |
| N(2) - AI(1) - N(3)<br>N(2) - AI(1) - N(4) | 103.1(4)                  | N(1) = A1(1) = N(4)<br>N(2) = A1(1) = N(4)       | 64 1(4)  |
| N(1) - A(1) - N(4)                         | 103.1(4)                  | N(3) - A(1) - N(4)<br>N(2) - A(1) - N(5)         | 162 2(4) |
| N(1) - A(1) - N(3)<br>N(3) - A(1) - N(5)   | 104.2(4)                  | $N(2) = A_1(1) = N(3)$<br>$N(4) = A_1(1) = N(5)$ | 103.2(4) |
| N(1) - A(1) - N(5)                         | 100 8(4)                  | N(2) - A(1) - N(3)                               | 104 4(4) |
| N(1) - AI(1) - N(0)<br>N(2) - AI(1) - N(6) | 155 0(4)                  | N(2) = AI(1) = N(0)<br>N(4) = AI(1) = N(6)       | 06 2(4)  |
| N(5) - AI(1) - N(6)                        | 133.0(4)                  | N(4) = AI(1) = N(0)<br>AI(1) N(1) N(12)          | 90.3(4)  |
| N(3) - N(1) - N(0)                         | 140 6(9)                  | N(12) = N(1) = N(12)                             | 114 2(0) |
| N(1) = N(1) = C(11)<br>N(1) = N(12) = N(2) | 149.0(0)                  | N(12) = N(1) = C(11)                             | 114.3(9) |
| N(1) - N(12) - N(2)                        | 145 1(9)                  | N(12) = N(2) = N(12)<br>N(12) = N(2) = C(21)     | 119 5(0) |
| AI(1) = IN(2) = C(21)                      | 143.1(0)                  | N(12) = N(2) = C(21)                             | 140 5(9) |
| N(24) N(2) C(21)                           | 93.3(0)                   | N(2) N(24) N(4)                                  | 140.3(0) |
| N(34) - N(3) - C(31)                       | 113.9(8)                  | N(3) - N(34) - N(4)                              | 105.5(8) |
| AI(1) - N(4) - N(54)                       | 94.7(0)                   | AI(1) - N(4) - C(41)                             | 145.3(7) |
| N(34) - N(4) - C(41)                       | 115.7(8)                  | M(1) = M(3) = M(30)<br>M(5) = M(5) = O(51)       | 73.9(0)  |
| AI(1) - IN(3) - C(31)                      | 143.8(7)                  | N(30) - N(3) - C(31)                             | 110.5(8) |
| N(3) - N(30) - N(6)                        | 100.3(8)                  | AI(1) - N(0) - N(30)                             | 95.0(6)  |
| AI(1) - N(0) - C(01)                       | 140.4(8)                  | N(30) - N(6) - C(61)                             | 118.6(9) |

Table V. Selected Bond Lengths (Å) and Angles (deg) for

 $\dot{A}l[N(4-MeOPh)N\dot{N}(4-MeOPh)]_3$  (11)

| Al(1) - N(1)                             | 1.989(8) | Al(1)-N(2)                                 | 1.990(8) |
|------------------------------------------|----------|--------------------------------------------|----------|
| Al(1) - N(3)                             | 1.977(8) | Al(1) - N(4)                               | 1.996(8) |
| AI(1) - N(5)                             | 2.003(9) | AI(1) - N(6)                               | 1.974(8) |
| N(1) - N(12)                             | 1.32(1)  | N(1) - C(11)                               | 1.41(1)  |
| N(12) - N(2)                             | 1.32(1)  | N(2) - C(21)                               | 1.41(1)  |
| N(3)-N(34)                               | 1.32(1)  | N(3)-C(31)                                 | 1.41(1)  |
| N(34)-N(4)                               | 1.34(1)  | N(4)-C(41)                                 | 1.39(1)  |
| N(5)–N(56)                               | 1.30(1)  | N(5)-C(51)                                 | 1.42(1)  |
| N(56)–N(6)                               | 1.32(1)  | N(6)-C(61)                                 | 1.39(1)  |
| N(1) = A1(1) = N(2)                      | 64 1(2)  | N(1) A1(1) N(2)                            | 09 4(2)  |
| N(1) - A(1) - N(2)<br>N(2) - A(1) - N(2) | 04.1(3)  | N(1) - AI(1) - N(3)<br>N(1) - AI(1) - N(4) | 1557(A)  |
| N(2) = A(1) = N(3)<br>N(2) = A(1) = N(4) | 99.3(3)  | N(1) - A(1) - N(4)<br>N(3) - A(1) - N(4)   | 64 5(3)  |
| N(1) = AI(1) = N(5)                      | 103 9(3) | N(2) = A(1) = N(3)<br>N(2) = A(1) = N(3)   | 158 0(4) |
| N(3) = A(1) = N(5)                       | 103.3(3) | N(4) = A(1) = N(5)<br>N(4) = A(1) = N(5)   | 97 2(3)  |
| N(1) = A(1) = N(6)                       | 96 9(3)  | N(2) = AI(1) = N(6)                        | 98 2(3)  |
| N(3) = A1(1) = N(6)                      | 162.0(4) | N(4) - A(1) - N(6)                         | 1034(3)  |
| N(5) - A(1) - N(6)                       | 63.7(3)  | A(1) - N(1) - N(12)                        | 95 0(6)  |
| A(1) - N(1) - C(11)                      | 149.8(6) | N(12) - N(1) - C(11)                       | 115.2(8) |
| N(1)-N(12)-N(2)                          | 106.0(7) | AI(1) - N(2) - N(12)                       | 94.8(6)  |
| AI(1)-N(2)-C(21)                         | 147.8(7) | N(12)-N(2)-C(21)                           | 117.3(8) |
| Al(1)-N(3)-N(34)                         | 95.7(6)  | AI(1) - N(3) - C(31)                       | 147.7(7) |
| N(34) - N(3) - C(31)                     | 116.5(8) | N(3) - N(34) - N(4)                        | 105.5(7) |
| Al(1)-N(4)-N(34)                         | 94.2(5)  | Al(1) - N(4) - C(41)                       | 150.3(7) |
| N(34) - N(4) - C(41)                     | 115.2(8) | Al(1)-N(5)-N(56)                           | 94.7(6)  |
| AI(1)-N(5)-C(51)                         | 146.8(7) | N(56)-N(5)-C(51)                           | 117.0(8) |
| N(5)-N(56)-N(6)                          | 106.3(7) | Al(1)-N(6)-N(56)                           | 95.3(5)  |
| AI(1) - N(6) - C(61)                     | 147.3(7) | N(56) - N(6) - C(61)                       | 116 3(8) |

form a four-center metallacycle as a chelating ligand and a threecenter bridge between two metal centers. However, with respect to aluminum, does the analogy between carboxylate and triazenide hold?

In all of the triazenido compounds of aluminum we have isolated at this time, the triazenide ligands bind exclusively in a bidentate chelate manner. By contrast, no such coordination has been crystallographically characterized for aluminum carboxylates. Instead, where structural elucidations have been performed, the carboxylate adopts a monodentate<sup>27</sup> or bridging coordination.<sup>28</sup> In fact for each of the classes of triazenide compounds structurally

Table VI. Selected Bond Lengths (Å) and Angles (deg) for  $\frac{1}{4}$  I[N(4-CIPh)NN(4-CIPh)], (13)

| AILIA (4-CIFII)IAIA (4- | CIPII)]3 (13)    |                      |          |
|-------------------------|------------------|----------------------|----------|
| Al(1)-N(1)              | 1.968(4)         | Al(1)-N(2)           | 1.985(4) |
| Al(1) - N(3)            | 1.993(4)         | AI(1) - N(4)         | 1.968(4) |
| Al(1)-N(5)              | 1.987(4)         | Al(1)-N(6)           | 1.979(4) |
| N(1) - N(12)            | 1.320(5)         | N(1) - C(11)         | 1.404(6) |
| N(12) - N(2)            | 1.309(5)         | N(2) - C(21)         | 1.417(6) |
| N(3)-N(34)              | 1.313(5)         | N(3)-C(31)           | 1.412(6) |
| N(34)–N(4)              | 1.315(5)         | N(4)-C(41)           | 1.405(6) |
| N(5)-N(56)              | 1.322(5)         | N(5)-C(51)           | 1.403(6) |
| N(56)–N(6)              | 1.316(5)         | N(6)-C(61)           | 1.407(6) |
| N(1)-AI(1)-N(2)         | 64.1(2)          | N(1)-AI(1)-N(3)      | 103.1(2) |
| N(2) - Al(1) - N(3)     | 94.9(2)          | N(1)-Al(1)-N(4)      | 161.4(2) |
| N(2) - AI(1) - N(4)     | 102.3(2)         | N(3) - Al(1) - N(4)  | 63.9(2)  |
| N(1) - Al(1) - N(5)     | 100.2(2)         | N(2) - AI(1) - N(5)  | 161.5(2) |
| N(3)-Al(1)-N(5)         | 98.5(2)          | N(4) - Al(1) - N(5)  | 95.1(2)  |
| N(1)-Al(1)-N(6)         | 99.2(2)          | N(2)-Al(1)-N(6)      | 107.2(2) |
| N(3)-Al(1)-N(6)         | 153.8(2)         | N(4) - Al(1) - N(6)  | 97.0(2)  |
| N(5)-Al(1)-N(6)         | 63.8(2)          | AI(1)-N(1)-N(12)     | 95.2(3)  |
| Al(1)-N(1)-C(11)        | 147.0(3)         | N(12)-N(1)-C(11)     | 117.9(4) |
| N(1)-N(12)-N(2)         | 105.9(3)         | A1(1)-N(2)-N(12)     | 94.7(3)  |
| Al(1)-N(2)-C(21)        | 1 <b>46.9(3)</b> | N(12)-N(2)-C(21)     | 116.6(4) |
| Al(1)-N(3)-N(34)        | 94.6(3)          | Al(1) - N(3) - C(31) | 148.1(3) |
| N(34)-N(3)-C(31)        | 117.2(4)         | N(3)-N(34)-N(4)      | 105.8(3) |
| Al(1)-N(4)-N(34)        | 95.7(3)          | Al(1)-N(4)-C(41)     | 145.6(3) |
| N(34)-N(4)-C(41)        | 117.7(4)         | Al(1)-N(5)-N(56)     | 95.2(3)  |
| Al(1)-N(5)-C(51)        | 147.4(3)         | N(56)-N(5)-C(51)     | 117.3(4) |
| N(5)-N(56)-N(6)         | 105.2(3)         | Al(1)-N(6)-N(56)     | 95.8(3)  |
| Al(1)-N(6)-C(61)        | 147.2(3)         | N(56)–N(6)–C(61)     | 117.0(4) |

characterized for aluminum, there is a  $\beta$ -diketonate analog but not one of a carboxylate. For example, in AlL(salen), for L =carboxylate, the aluminum is five-coordinate, with a monodentate carboxylate, while, for L = N(Ph)NN(Ph) or acac, the aluminum is six-coordinate with a chelating ligand. Thus, 1,3-diaryltriazenide could be better considered to be an analog of the  $\beta$ -diketonate anion [OC(R)CH(O)CR]<sup>-</sup>.

Given the isoelectronic nature and structural similarities of the triazenide and carboxylate anions, why is the chelating mode of coordination for the latter unfavorable? One reason that must clearly be considered in that greater steric strain would be imposed on a chelating carboxylate than is observed for the triazenide. Upon coordination to aluminum, the N-N-N angle in a triazene ligand is reduced from ca. 112° to ca. 106°, a change of -6°. From the similarity in Al-O versus Al-N and N versus C....O bond distances, a similar chelate geometry would be expected for both the carboxylate and triazenide. However, the O-C-O bond angle in a free acid is ca. 123°. Thus, upon coordination, the O-C-O angle would be reduced by ca. 18°,

imposing significant ring strain in the AlOCO cycle.

In summary, the 1,3-diaryltriazenide ligand is best likened chemically to a  $\beta$ -diketonate ligand, but with a small "bite angle", 63-65° versus 80-90° for  $\beta$ -diketonates.

Molecular Structures of (C<sub>6</sub>F<sub>5</sub>)NNN(H)(C<sub>6</sub>F<sub>5</sub>) and (2-Me-Ph)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub>. The free triazenes are generally believed to adopt a trans configuration (I), and this arrangement has been confirmed for (Ph)NNN(H)(Ph)<sup>29</sup> and a number of para-substituted derivatives.<sup>30,31</sup> Two structural forms have been observed; an  $\alpha$ -modification consisting of H-bonded dimeric complexes and a  $\beta$ -modification formed by infinite, helical chains of H-bonded molecules. The majority of structures have been the  $\beta$ -modification. In both crystallographic forms, the phenyl rings are found to be coplanar with the triazene's  $N_3$ plane. However, no structural data are available on orthosubstituted triazenes. In order to determine the effects of ortho

<sup>(27)</sup> Atwood, J. L.; Hunter, W. E.; Crissinger, J. Organomet. Chem. 1977, 4127, 403.

Sobota, P.; Mustafa, M. O.; Ukko, J.; Lis, T., J. Chem. Soc., Dalton Trans. 1990, 1809. Gladkova, V. F.; Kondrashev, Yu. D. Kristallografiya 1972, 17, 33. Kondrashev, Yu. D. Kristallografiya 1968, 13, 622. (28)

<sup>(29)</sup> 

<sup>(30)</sup> 

Omel'chenko, Yu. A.; Kondrashev, Yu. D. Kristallografiya 1972, 17, (31) 947.



Figure 7. Structure of the hydrogen-bonded dimer of  $(C_6F_5)NNN(H)(C_6F_5)$ 

Table VII. Selected Bond Lengths (Å) and Angles (deg) for  $(C_6F_5)NNN(H)(C_6F_5)$ 

| N(1)-N(12)       | 1.286(3)           | N(1)-C(11)       | 1.413(3) |
|------------------|--------------------|------------------|----------|
| N(2)-N(12)       | 1.315(3)           | N(2)-C(21)       | 1.400(3) |
| N(2)-H(2)        | 1.094 <sup>a</sup> | H(2)-N(1a)       | 1.999ª   |
| N(12)-N(1)-C(11) | 113.8(2)           | N(12)-N(2)-C(21) | 117.7(2) |
| N(12)-N(2)-H(2)  | 115.9 <sup>a</sup> | C(21)-N(2)-H(2)  | 119.5ª   |
| N(1)-N(12)-N(2)  | 112.8(2)           | N(2)-H(2)-N(1a)  | 176.9ª   |

<sup>a</sup> No esd's given for bond lengths and angles associated with the hydrogen; see Experimental Section.

substitution on the molecular planarity and H-bonded supramolecular structure, we have determined the molecular structure of  $(C_6F_5)NNN(H)(C_6F_5).$ 

The hydrogen-bridged dimeric  $\alpha$ -structure of (C<sub>6</sub>F<sub>5</sub>)- $NNN(H)(C_6F_5)$  is shown in Figure 7; selected bond lengths and angles are given in Table VII. As was found previously,<sup>29-31</sup> there is a significant nonequivalence of the N-N distances, consistent with the localization of the double bond between N(1)and N(2). This resonance form is further confirmed by the position of the hydrogen atom, which was located and refined. Unlike previous structures, that of  $(C_6F_5)NNN(H)(C_6F_5)$  is nonplanar, the aryl rings being twisted ca. 40° out of the N-N-N plane. This distortion is a consequence of steric interactions between the fluoro substituents on adjacent triazene molecules in the hydrogen-bridged dimeric units (cf. Figure 7). No evidence was found for the existence of a helical  $\beta$ -modification of  $(C_6F_5)NNN(H)(C_6F_5).$ 

The synthesis of (2-MePh)NNN(H)(2-MePh) involves the diazotization and coupling of 2-methylaniline (see Experimental Section). However, unlike the para-substituted derivatives, which form hydrogen-bonded dimers, (2-MePh)NNN(H)(2-MePh) crystallizes from hexane with 1 molar equiv of (2-MePh)NH<sub>2</sub>. The presence in the <sup>1</sup>H NMR of the crystals of two distinct peaks due to the triazene ( $\delta$  9.53) and the aniline ( $\delta$  3.54) disallows the formation of a triazenide salt, i.e., [(2-MePh)NH<sub>3</sub>][(2-Me-Ph)NNN(2-MePh)]. However, the IR spectrum shows the presence of hydrogen-bonding, which is confirmed by X-ray crystallography.

The structure of (2-MePh)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub> is shown in Figure 8; selected bond lengths and angles are given in Table VIII. The ortho methyl groups of the triazene are both in a pseudo-endo orientation (see above). Such a configuration would preclude the formation of a triazene hydrogen-bonded dimer as seen in the  $\beta$ -modification of (Ar)NNN(H)(Ar).<sup>29-31</sup> Instead,



Figure 8. Structure of the hydrogen-bonded complex (2-Me-Ph)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub>.

| Table VIII. | Selected | Bond L | engths  | (Å) a | ind . | Angles | (deg) | for |
|-------------|----------|--------|---------|-------|-------|--------|-------|-----|
| (2-MePh)Nl  | NN(H)(2- | MePh)  | •(2-MeH | Ph)NI | $H_2$ |        |       |     |

| N(1)-N(12)       | 1.259(8) | N(1)-C(11)       | 1.432(6)           |
|------------------|----------|------------------|--------------------|
| N(2)-N(12)       | 1.355(6) | N(2)-C(21)       | 1.401(8)           |
| N(2) - H(2)      | 1.3614   | N(3)-C(31)       | 1.394(9)           |
| N(3)-H(3a)       | 1.072ª   | N(3)-H(3b)       | 1.0714             |
| N(3)H(2)         | 2.031ª   |                  |                    |
|                  |          |                  |                    |
| N(12)-N(1)-C(11) | 113.2(4) | N(12)-N(2)-C(21) | 118.6(4)           |
| N(12)-N(2)-H(2)  | 112.3ª   | C(21)-N(2)-H(2)  | 120.6 <sup>a</sup> |
| N(1)-N(12)-N(2)  | 112.8(4) | C(31)-N(3)-H(3)  | 126.2ª             |
|                  |          |                  |                    |

" No esd's given for bond lengths and angles associated with the hydrogens; see Experimental Section.

the triazene is complexed with the aniline via a single hydrogen bond. While the N(3)-H(2) distance (2.031 Å) is comparable to that in (Ar)NNN(H)(Ar) (see above and refs. 29-31), the  $N(2)-H(2) \sigma$ -bonded distances (1.361 Å) is significantly lengthened compared to that expected for a N-H bond (0.9-1.1 Å). This lengthening would suggest a strong hydrogen-bonded interaction; however, it is interesting to note that the distortion from planarity of N(3) is small, ca. 6°. As observed in the structure of  $(C_6F_5)NNN(H)(C_6F_5)$ , there is a distinct inequality in the N-N bond distance. In fact, the difference,  $\Delta$ (N-N), in  $(C_6F_5)NNN(H)(C_6F_5)$  (0.029 Å) is smaller than that in (2-MePh)NNN(H)(2-MePh) (0.057 Å), suggesting that the presence of mutual hydrogen-bonding in the former has the effect of delocalization of the N-N=N resonance structure.

## Experimental Section

Microanalyses were performed by Oneida Research Services, Inc., Whitesboro, NY. Melting points were determined in sealed capillaries and are uncorrected. IR spectra (4000-400 cm<sup>-1</sup>) were recorded on a Nicolet 5ZDX FT-IR spectrometer in Nujol mulls or KBr pellets. NMR spectra were recorded on Bruker AM-250 (1H), AM-500 (13C) and WM-300 (<sup>27</sup>Al,<sup>19</sup>F) spectrometers [ $\delta$  in ppm relative to external SiMe4 (<sup>1</sup>H and <sup>13</sup>C), external [A1(H<sub>2</sub>O<sub>6</sub>]<sup>3+</sup> (<sup>27</sup>A1), and external CFCl<sub>3</sub> (<sup>19</sup>F)]. Mass spectra were recorded using a JEOL AX-505H mass spectrometer and associated data system. All manipulations were carried out under nitrogen. Solvents were dried, distilled, and degassed before use. AlH(<sup>i</sup>Bu)<sub>2</sub> was used as received from commercial sources. Al('Bu)<sub>3</sub>,<sup>11</sup> AlMe<sub>2</sub>-(BHT)(OEt<sub>2</sub>),<sup>12</sup>AlH<sub>2</sub>(BHT)(NMe<sub>3</sub>),<sup>13</sup>AlMe(BHT)<sub>2</sub>,<sup>14</sup>AlMe(salen),<sup>17</sup> (Ph)NNN(H)(Ph),<sup>32</sup> and C<sub>6</sub>F<sub>5</sub>NH<sub>2</sub><sup>33</sup> were prepared by following literature methods.

Al('Bu) [N(Ph)NN(Ph)] (1). To a slurry of (Ph)NNN(H)(Ph) (3.40 g, 17.3 mmol) in pentane (150 mL) at -78 °C was added, dropwise, a pentane (50 mL) solution of AlH('Bu)2 (17.5 mL, 1 M solution in hexane,

<sup>(32)</sup> Hartman, W. W.; Dickey, J. B. Org. Synth. 1943, 2, 163.
(33) (a) Forbes, E. J.; Richardson, R. D.; Tatlow, T. C. Chem. Ind. 1959, 630. (b) Brooke, G. M.; Burden, J.; Stacey, M.; Tatlow, T. C. J. Chem. Soc. 1960, 1768.

| N(Ph)NN- AIMe(salen)-MeCN<br>502 CysHawAIN3,02<br>monoclinic<br>P2,1/c<br>11.751(8)<br>12.509(9)<br>98.52(6)<br>1792(2)<br>4                                                                                              | Al[N(2.MePh)NN-<br>(2.MePh)]-C,H4<br>(2.MePh)]-C,H4<br>C_eH4,MNN,<br>monoclinic<br>P2,1/c<br>11.392(3)<br>11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A[N(4-M6OPh)NN-<br>(4-M6OPh)] <sub>3</sub><br>(4-M6OPh)] <sub>3</sub><br>(4-1/c<br>27-996(6)<br>20.613(5)<br>20.613(5)                           | Al[N(4-CIPb)NN-<br>(4-CIPb)];<br>(4-CIPb)];<br>monoclinic<br>P2,/c<br>8.746(3)<br>18.754(4)<br>22.985(5)<br>90.36(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HN(C4F3)NN(C4F3)<br>C12HF1aN3<br>monoclinic<br>P21/c<br>10.027(4)<br>9.909(4)<br>12.998(4)<br>86.00(3)                                | (2-McPh)NNN(H)-<br>(2-McPh)-(2-McPhNH <sub>2</sub><br>C <sub>21</sub> H <sub>3</sub> N <sub>4</sub><br>triclinic<br>PT<br>9.609(9)<br>10.272(5)<br>11.276(9)<br>114.90(7)<br>9.88(7) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 502 C <sub>19</sub> H <sub>20</sub> AIN <sub>5</sub> 02<br>monoclinic<br><i>P2</i> <sub>1</sub> /c<br>11.751(8)<br>12.227(9)<br>12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                     | CHAlN,<br>monoclinic<br>P2./c<br>11.392(3)<br>11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C <sub>42</sub> H <sub>42</sub> AlN <sub>9</sub> O <sub>6</sub><br>tetragonal<br><i>4</i> <sub>4</sub> /c<br>27.996(6)<br>20.613(5)<br>16 156(8) | C <sub>as</sub> H <sub>av</sub> AlCl <sub>a</sub> N,<br>monoclinic<br><i>P</i> 2 <sub>1</sub> /c<br>8.746(3)<br>18.754(4)<br>22.985(5)<br>90.36(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>13</sub> HF <sub>16</sub> N <sub>3</sub><br>monoclinic<br>P2 <sub>1</sub> /c<br>10.027(4)<br>9.909(4)<br>12.998(4)<br>96.00(3) | C <sub>11</sub> H <sub>28</sub> N <sub>4</sub><br>triclinic<br>PI<br>9.609(9)<br>10.272(5)<br>11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                        |
| monoclinic<br>P2./c<br>11.751(8)<br>12.227(9)<br>12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                                                                                                    | momoclinic<br>P2./c<br>11.392(3)<br>11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tetragonal<br>14./c<br>27.996(6)<br>20.613(5)<br>16 156(8)                                                                                       | monoclinic<br>P21/C<br>8.746(3)<br>18.754(4)<br>22.985(5)<br>90.36(3)<br>3770/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | monoclinic<br>P2 <sub>1</sub> /c<br>10.027(4)<br>9.909(4)<br>12.998(4)<br>96.00(3)                                                    | rriclinic<br>PI<br>9.609(9)<br>10.272(5)<br>11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                                                                          |
| P21/c<br>11.751(8)<br>12.227(9)<br>12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                                                                                                                  | P2./c<br>11.392(3)<br>11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 141/c<br>27.996(6)<br>20.613(5)<br>16 156(8)                                                                                                     | P21/c<br>8.746(3)<br>18.754(4)<br>22.985(5)<br>90.36(3)<br>3770(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P21/c<br>10.027(4)<br>9.909(4)<br>12.998(4)<br>96.00(3)                                                                               | PI<br>9.609(9)<br>10.272(5)<br>11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                                                                                       |
| 11.751(8)<br>12.227(9)<br>12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                                                                                                                           | 11.392(3)<br>11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27.996(6)<br>20.613(5)<br>16 156(8)                                                                                                              | 8.746(3)<br>18.754(4)<br>22.985(5)<br>90.36(3)<br>377/0'2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.027(4)<br>9.909(4)<br>12.998(4)<br>96.00(3)                                                                                        | 9,609(9)<br>10.272(5)<br>11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                                                                                             |
| 12.227(9)<br>12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                                                                                                                                        | 11.418(3)<br>31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.613(5)<br>16 156(8)                                                                                                                           | 18.754(4)<br>22.985(5)<br>90.36(3)<br>3170/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.909(4)<br>12.998(4)<br>96.00(3)                                                                                                     | 10.272(5)<br>11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                                                                                                         |
| 12.609(9)<br>98.52(6)<br>1792(2)<br>4                                                                                                                                                                                     | 31.227(9)<br>94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.613(5)<br>16 156(8)                                                                                                                           | 22.985(5)<br>90.36(3)<br>377//23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.998(4)<br>96.00(3)                                                                                                                 | 11.276(9)<br>108.53(8)<br>114.90(7)<br>90.88(7)                                                                                                                                      |
| 98.52(6)<br>1792(2)<br>4                                                                                                                                                                                                  | 94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 156(8)                                                                                                                                        | 90.36(3)<br>1770/71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.00(3)                                                                                                                              | 108.53(8)<br>114.90(7)<br>90.88(7)                                                                                                                                                   |
| 98.52(6)<br>1792(2)<br>4                                                                                                                                                                                                  | 94.31(2)<br>4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 156(8)                                                                                                                                        | 90.36(3)<br>3770(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96.00(3)                                                                                                                              | 114.90(7)<br>90.88(7)                                                                                                                                                                |
| 1792(2)<br>4                                                                                                                                                                                                              | 4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 156(8)                                                                                                                                        | (C)ULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       | 90.88(7)                                                                                                                                                                             |
| 1792(2)<br>4                                                                                                                                                                                                              | 4051(2)<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 156(8)                                                                                                                                        | (C)ULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                       |                                                                                                                                                                                      |
| 4                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1284.4(8)                                                                                                                             | 942(1)                                                                                                                                                                               |
|                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                     | 2                                                                                                                                                                                    |
| 1.295                                                                                                                                                                                                                     | 1.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.309                                                                                                                                            | 1.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.950                                                                                                                                 | 1.171                                                                                                                                                                                |
| × 0.41 0.40 × 0.24 × 0.34                                                                                                                                                                                                 | $0.41 \times 0.40 \times 0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.43 \times 0.38 \times 0.40$                                                                                                                   | $0.14 \times 0.14 \times 0.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.42 \times 0.42 \times 0.40$                                                                                                        | $0.40 \times 0.31 \times 0.35$                                                                                                                                                       |
| 193                                                                                                                                                                                                                       | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 193                                                                                                                                              | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 298                                                                                                                                   | 298                                                                                                                                                                                  |
| 0.130                                                                                                                                                                                                                     | 1.584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.110                                                                                                                                            | 0.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.222                                                                                                                                 | 0.071                                                                                                                                                                                |
| 4.0-40.0                                                                                                                                                                                                                  | 4.0-40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0-40.0                                                                                                                                         | 4.0-40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0-40.0                                                                                                                              | 4.0 40.0                                                                                                                                                                             |
| 1930                                                                                                                                                                                                                      | 4541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5839                                                                                                                                             | 4219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1435                                                                                                                                  | 1898                                                                                                                                                                                 |
| 1651                                                                                                                                                                                                                      | 3790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5293                                                                                                                                             | 3545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1401                                                                                                                                  | 1875                                                                                                                                                                                 |
| $\sigma(F)$ 1334 $[F > 4\sigma(F)]$                                                                                                                                                                                       | $2166 [F > 4\sigma(F)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2171 [F > 4\sigma(F)]$                                                                                                                          | $2808 [F > 4\sigma(F)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1206 [F > 4\sigma(F)]$                                                                                                               | $1496 [F > 4\sigma(F)]$                                                                                                                                                              |
| $+ 0.0512F^2  w^{-1} = \sigma^2(F)$                                                                                                                                                                                       | $w^{-1} = \sigma^2(F) + 0.0006F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $w^{-1} = \sigma^2(F) + 0.0011F^2$                                                                                                               | $w^{-1} = \sigma^2(F) + 0.0010F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $w^{-1} = \sigma^2(F) + 0.0015F^2$                                                                                                    | W <sup>-1</sup> = 0 <sup>2</sup> (F)                                                                                                                                                 |
| 0.082                                                                                                                                                                                                                     | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.076                                                                                                                                            | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.034                                                                                                                                 | 0.070                                                                                                                                                                                |
| 0.082                                                                                                                                                                                                                     | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.077                                                                                                                                            | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.046                                                                                                                                 | 0.070                                                                                                                                                                                |
| 0.49                                                                                                                                                                                                                      | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33                                                                                                                                             | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                  | 0.20                                                                                                                                                                                 |
| romator.                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                       |                                                                                                                                                                                      |
| $ \begin{array}{c} 1.295 \\ 1.295 \\ 0.40 \times 0.24 \times 0.34 \\ 193 \\ 0.130 \\ 0.130 \\ 4.0-40.0 \\ 1930 \\ 1651 \\ 1651 \\ 1651 \\ 1651 \\ 1651 \\ 1651 \\ 10082 \\ 0.082 \\ 0.082 \\ 0.082 \\ 0.082 \end{array} $ | 1.223<br>0.41 × 0.<br>193<br>1.584<br>4.0 40.0<br>4.40 40.0<br>3790<br>3790<br>4.541<br>8.1 4.40<br>4.541<br>8.1 4.541<br>8.1 4.54114<br>8.1 4.54114<br>8.1 54114<br>8.1 54114<br>8.1 54114<br>8.1 54114<br>8.1 54 | 40 × 0.26<br>+ 4 <i>a</i> ( <i>F</i> )]<br><i>F</i> ) + 0.0006 <i>F</i> <sup>2</sup>                                                             | $40 \times 0.26 \qquad \begin{array}{c} 1.309 \\ 1.309 \\ 1.309 \\ 1.309 \\ 1.33 \\ 0.110 \\ 4.0 - 40.0 \\ 5839 \\ 5839 \\ 5839 \\ 5839 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ 5293 \\ $ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                |

Inorganic Chemistry, Vol. 32, No. 20, 1993 4331

Table X. Fractional Atomic Coordinates (×104) and Isotropic

| Thermal Pa | "hermal Parameters (×10 <sup>3</sup> Å <sup>2</sup> ) for $Al(^{i}Bu)_{2}[N(Ph)NN(Ph)]$ (1) |         |          |        |  |  |  |
|------------|---------------------------------------------------------------------------------------------|---------|----------|--------|--|--|--|
|            | x                                                                                           | у       | z        | U(eq)ª |  |  |  |
| Al(1)      | 7058(1)                                                                                     | 2571(1) | 843(1)   | 35(1)  |  |  |  |
| N(1)       | 7686(2)                                                                                     | 3727(2) | 1762(2)  | 38(1)  |  |  |  |
| N(12)      | 8611(2)                                                                                     | 3767(2) | 1391(2)  | 35(1)  |  |  |  |
| N(2)       | 8549(2)                                                                                     | 2995(2) | 703(2)   | 36(1)  |  |  |  |
| C(11)      | 7543(2)                                                                                     | 4449(2) | 2541(2)  | 33(1)  |  |  |  |
| C(12)      | 6614(3)                                                                                     | 4313(3) | 2999(2)  | 41(1)  |  |  |  |
| C(13)      | 6428(3)                                                                                     | 4975(3) | 3783(3)  | 48(1)  |  |  |  |
| C(14)      | 7169(3)                                                                                     | 5774(3) | 4135(3)  | 52(1)  |  |  |  |
| C(15)      | 8093(3)                                                                                     | 5925(3) | 3680(3)  | 48(1)  |  |  |  |
| C(16)      | 8279(3)                                                                                     | 5268(2) | 2874(3)  | 41(1)  |  |  |  |
| C(21)      | 9403(2)                                                                                     | 2878(3) | 137(2)   | 34(1)  |  |  |  |
| C(22)      | 10292(3)                                                                                    | 3586(3) | 213(2)   | 40(1)  |  |  |  |
| C(23)      | 11084(3)                                                                                    | 3429(3) | -397(3)  | 46(1)  |  |  |  |
| C(24)      | 11012(3)                                                                                    | 2578(3) | -1074(3) | 50(1)  |  |  |  |
| C(25)      | 10135(3)                                                                                    | 1868(3) | -1136(3) | 50(1)  |  |  |  |
| C(26)      | 9346(3)                                                                                     | 2017(3) | -537(3)  | 44(1)  |  |  |  |
| C(31)      | 6761(3)                                                                                     | 1205(3) | 1493(3)  | 41(1)  |  |  |  |
| C(32)      | 7625(6)                                                                                     | 384(7)  | 1927(7)  | 48(3)  |  |  |  |
| C(33)      | 8611(5)                                                                                     | 792(5)  | 2396(6)  | 128(3) |  |  |  |
| C(34)      | 7210(13)                                                                                    | -638(9) | 2403(10) | 68(5)  |  |  |  |
| C(35)      | 7541(6)                                                                                     | 861(6)  | 2404(6)  | 43(3)  |  |  |  |
| C(36)      | 7109(10)                                                                                    | -224(9) | 2784(10) | 70(5)  |  |  |  |
| C(41)      | 6087(3)                                                                                     | 3114(3) | -323(2)  | 40(1)  |  |  |  |
| C(42)      | 4880(3)                                                                                     | 2853(3) | -394(3)  | 41(1)  |  |  |  |
| C(43)      | 4429(3)                                                                                     | 3316(3) | 511(3)   | 58(1)  |  |  |  |
| C(44)      | 4247(4)                                                                                     | 3265(4) | -1375(3) | 75(2)  |  |  |  |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ii}$  tensor.

17.5 mmol). The resulting solution was allowed to warm to room temperature and stirred overnight. The solvent was removed under vacuum to give a viscous red-brown liquid, which crystallized upon standing at room temperature. Orange crystals suitable for X-ray diffraction were obtained by dissolving the product in pentane (10 mL) followed by crystallization and removal of the solvent at low temperature (-78 °C). Yield: 4.6 g, 79%. Mp: 35-37 °C. Anal. Calc for C20H28AlN3: C 71.9; H, 8.36; N, 12.45. Found: C, 70.61; H, 8.11; N, 12.03. MS [EI, m/z (assignment, %)]: 337 (M<sup>+</sup>, 35), 280 (M<sup>+</sup> - <sup>i</sup>Bu, 50). IR (Nujol, cm<sup>-1</sup>): 1597 (s), 1495 (s), 1486 (s), 1362 (m), 1340 (s), 1324 (s), 1308 (s), 1298 (s), 1210 (s), 1071 (m), 897 (m), 849 (m), 815 (m), 758 (s), 689 (s), 676 (s), 512 (m). NMR (C<sub>6</sub>D<sub>6</sub>, δ): <sup>1</sup>H, 7.36 [4H, d, J(H-H) = 8.1 Hz, o-CH], 7.12 [4H, m, J(H-H) = 8.3 Hz, m-CH], 6.92 [2H, t, J(H-H) = 7.9 Hz, p-CH, 2.01 [2H, m,  $J(H-H) = 7.0 Hz, AlCH_2CH$ ], 1.01 [12H, d, J(H-H) = 7.0 Hz,  $AlCH_2CH(CH_3)_2$ ], 0.49 [4H, d, J(H-H)H) = 7.0 Hz, AlCH<sub>2</sub>]; <sup>13</sup>C, 144.5 (NC), 129.8 (m-CH), 125.8 (p-CH), 117.8 (o-CH), 28.2 [AlCH2CH(CH3)2], 26.3 (AlCH2CH), 21.9 (AlCH2).

 $Al(^{i}Bu)[N(Ph)NN(Ph)]_2$  (2). To a solution of  $AlH(^{i}Bu)_2$  (10.0 mL, 1 M solution in hexane, 10.0 mmol) in hexane (75 mL) was added, dropwise, (Ph)NNN(H)(Ph) (3.80 g, 19.3 mmol) in toluene (100 mL). The reaction mixture was warmed to room temperature and then stirred overnight. The volume was reduced by half and any precipitate filtered off. The solvent was removed under vacuum to give an orange-red solid. Yield: 3.22 g, 70%. Mp: 124-126 °C. Anal. Calcd for C28H29AlN6: C, 70.57; H, 6.13; N, 17.63. Found: C, 70.54; H, 6.22; N, 17.68. MS  $[EI, m/z \text{ (assignment, \%)}]: 419 (M^+ - iBu, 5). IR (Nujol, cm^{-1}): 1595$ (m), 1484 (m), 1362 (m), 1302 (s), 1286 (s), 1238 (m), 1210 (m), 1074 (w), 758 (s), 687 (s), 669 (m), 656 (m), 548 (w), 512 (w), 450 (w). NMR  $(C_6D_6, \delta)$ : <sup>1</sup>H, 7.50 [8H, d, J(H-H) = 8.0 Hz, o-CH], 7.06 [8H, t, J(H-H) = 8.0 Hz, m-CH, 6.91 [4H, t, J(H-H) = 7.9 Hz, p-CH], 2.02  $[1H, m, J(H-H) = 7.0 Hz, A1CH_2CH], 1.00 [6H, d, J(H-H) = 7.0 Hz,$  $AlCH_2CH(CH_3)_2$ , 0.63 [2H, d, J(H-H) = 7.0 Hz,  $AlCH_2$ ]; <sup>13</sup>C, 145.0 (NC), 129.5 (m-CH), 125.7 (p-CH), 119.2 (o-CH), 28.3 [AlCH<sub>2</sub>- $CH(CH_3)_2$ ], 26.3 (A1CH<sub>2</sub>CH), 22.0 (A1CH<sub>2</sub>); <sup>27</sup>Al, 47 ( $W_{1/2}$  = 4500 Hz).

Al('Bu)<sub>2</sub>[N(Ph)NN(Ph)] (3). A solution of Al('Bu)<sub>3</sub> (0.54 g, 2.75 mmol) in hexane (20 mL) was cooled to -78 °C, and (Ph)NNN(H)(Ph) (0.542 g, 2.75 mmol) in toluene (20 mL) was added dropwise via cannula. After the addition was complete, the reaction was warmed to room temperature and stirred for 1 h. Removal of the volatiles under vacuum gave a dark orange-brown solid. Yield: 0.66 g, 71%. Mp: 88-90 °C. Anal. Calc for C20H25AlN3: C, 71.19; H, 8.36; N, 12.45. Found: C,

**Table XI.** Fractional Atomic Coordinates (×10<sup>4</sup>) and Isotropic Thermal Parameters (×10<sup>3</sup> Å<sup>2</sup>) for  $Al(BHT)_2[N(Ph)NN(Ph)]$  (6)

| ``       | , ,                                                                                                                                                                                                                                                                                                                             | ,,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x        | у                                                                                                                                                                                                                                                                                                                               | Z                                                      | $U(eq)^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0        | 1709(2)                                                                                                                                                                                                                                                                                                                         | 7500                                                   | 18(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -779(1)  | 926(3)                                                                                                                                                                                                                                                                                                                          | 7121(1)                                                | 24(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 309(2)   | 3353(3)                                                                                                                                                                                                                                                                                                                         | 7127(1)                                                | 21(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0        | 4112(5)                                                                                                                                                                                                                                                                                                                         | 7500                                                   | 28(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 582(2)   | 4012(4)                                                                                                                                                                                                                                                                                                                         | 6627(2)                                                | 23(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1254(3)  | 3629(4)                                                                                                                                                                                                                                                                                                                         | 6477(2)                                                | 31(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1510(3)  | 4252(5)                                                                                                                                                                                                                                                                                                                         | 5978(2)                                                | 48(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1097(3)  | 5241(5)                                                                                                                                                                                                                                                                                                                         | 5646(2)                                                | 47(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 420(3)   | 5643(5)                                                                                                                                                                                                                                                                                                                         | 5810(2)                                                | 41(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 162(3)   | 5036(4)                                                                                                                                                                                                                                                                                                                         | 6302(2)                                                | 33(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1126(2) | -129(4)                                                                                                                                                                                                                                                                                                                         | 6784(2)                                                | 21(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1381(2) | -1219(4)                                                                                                                                                                                                                                                                                                                        | 7100(2)                                                | 20(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1625(2) | -2340(4)                                                                                                                                                                                                                                                                                                                        | 6747(2)                                                | 27(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1652(2) | -2403(4)                                                                                                                                                                                                                                                                                                                        | 6100(2)                                                | 29(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1468(2) | -1266(4)                                                                                                                                                                                                                                                                                                                        | 5802(2)                                                | 26(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1221(2) | -87(4)                                                                                                                                                                                                                                                                                                                          | 6122(2)                                                | 22(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1408(2) | -1228(4)                                                                                                                                                                                                                                                                                                                        | 7811(2)                                                | 24(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -606(3)  | -1322(5)                                                                                                                                                                                                                                                                                                                        | 8179(2)                                                | 48(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1842(3) | -2426(5)                                                                                                                                                                                                                                                                                                                        | 7997(2)                                                | 42(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1807(3) | 5(5)                                                                                                                                                                                                                                                                                                                            | 7979(2)                                                | 54(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1902(3) | -3649(5)                                                                                                                                                                                                                                                                                                                        | 5741(2)                                                | 48(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1094(2) | 1156(4)                                                                                                                                                                                                                                                                                                                         | 5744(2)                                                | 28(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -242(3)  | 1383(5)                                                                                                                                                                                                                                                                                                                         | 5760(2)                                                | 37(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1442(3) | 1000(5)                                                                                                                                                                                                                                                                                                                         | 5050(2)                                                | 50(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -1457(3) | 2390(5)                                                                                                                                                                                                                                                                                                                         | 5982(2)                                                | 38(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | $\begin{array}{c} x \\ 0 \\ -779(1) \\ 309(2) \\ 0 \\ 582(2) \\ 1254(3) \\ 1510(3) \\ 1097(3) \\ 420(3) \\ 162(3) \\ -1126(2) \\ -1381(2) \\ -1625(2) \\ -1652(2) \\ -1652(2) \\ -1468(2) \\ -1221(2) \\ -1468(2) \\ -606(3) \\ -1842(3) \\ -1842(3) \\ -1807(3) \\ -1094(2) \\ -242(3) \\ -1442(3) \\ -1457(3) \\ \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | x         y         z           0         1709(2)         7500           -779(1)         926(3)         7121(1)           309(2)         3353(3)         7127(1)           0         4112(5)         7500           582(2)         4012(4)         6627(2)           1254(3)         3629(4)         6477(2)           1510(3)         4252(5)         5978(2)           1097(3)         5241(5)         5646(2)           420(3)         5643(5)         5810(2)           162(3)         5036(4)         6302(2)           -1126(2)         -129(4)         6784(2)           -1625(2)         -240(4)         6747(2)           -1652(2)         -2403(4)         6100(2)           -1468(2)         -1266(4)         5802(2)           -1221(2)         -87(4)         6122(2)           -1408(2)         -1228(4)         7811(2)           -606(3)         -1322(5)         8179(2)           -1807(3)         5(5)         7979(2)           -1807(3)         5(5)         7979(2)           -1902(3)         -3649(5)         5741(2)           -094(2)         1156(4)         5744(2) |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

Table XII. Fractional Atomic Coordinate (×10<sup>4</sup>) and Isotropic Thermal Parameters (×10<sup>3</sup> Å<sup>2</sup>) for AlMe(salen)·MeCN

| _     | x         | y `      | Z        | $U(eq)^a$ |
|-------|-----------|----------|----------|-----------|
| Al(1) | 7663(3)   | 3666(2)  | 9928(2)  | 29(1)     |
| C(1)  | 7053(9)   | 2346(8)  | 10511(8) | 38(4)     |
| O(11) | 6652(5)   | 4697(5)  | 9393(5)  | 34(2)     |
| O(21) | 8080(6)   | 4526(5)  | 11103(5) | 36(3)     |
| N(11) | 7656(6)   | 3120(6)  | 8398(6)  | 23(3)     |
| N(21) | 9366(6)   | 3437(6)  | 9870(6)  | 20(3)     |
| C(11) | 5931(8)   | 4793(7)  | 8485(7)  | 26(4)     |
| C(12) | 4994(8)   | 5534(7)  | 8423(7)  | 31(4)     |
| C(13) | 4252(9)   | 5654(8)  | 7471(8)  | 34(4)     |
| C(14) | 4410(10)  | 5063(8)  | 6546(8)  | 45(4)     |
| C(15) | 5279(9)   | 4341(8)  | 6602(7)  | 32(4)     |
| C(16) | 6067(8)   | 4190(7)  | 7544(7)  | 29(4)     |
| C(17) | 6991(8)   | 3408(7)  | 7538(7)  | 30(4)     |
| C(18) | 8588(8)   | 2347(7)  | 8317(7)  | 29(4)     |
| C(21) | 9008(10)  | 4602(7)  | 11812(7) | 29(4)     |
| C(22) | 8981(9)   | 5132(7)  | 12791(7) | 32(4)     |
| C(23) | 9929(11)  | 5277(8)  | 13529(8) | 44(5)     |
| C(24) | 11004(11) | 4899(8)  | 13308(8) | 45(5)     |
| C(25) | 11085(10) | 4385(7)  | 12345(7) | 39(4)     |
| C(26) | 10090(9)  | 4218(7)  | 11591(7) | 27(4)     |
| C(27) | 10205(9)  | 3690(7)  | 10599(7) | 30(4)     |
| C(28) | 9660(9)   | 2905(7)  | 8895(7)  | 34(4)     |
| N(1)  | 2455(8)   | 6939(8)  | 5039(7)  | 50(4)     |
| C(2)  | 1956(11)  | 7394(9)  | 5578(8)  | 43(4)     |
| C(3)  | 1307(10)  | 7994(10) | 6258(9)  | 67(5)     |

<sup>*a*</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

71.10; H, 8.21; N, 12.48. IR (KBr, cm<sup>-1</sup>): 2922 (m), 2833 (m), 2864 (s), 1596 (s), 1489 (s), 1486 (s), 1465 (s), 1447 (m), 1414 (m), 1324 (m), 1310 (s), 1300 (s), 1283 (s), 1246 (m), 1209 (m), 1172 (w), 814 (m), 758 (s), 689 (s), 676 (w), 676 (w), 611 (m), 500 (w). NMR ( $C_6D_6$ ,  $\delta$ ): <sup>1</sup>H, 7.38 [4H, d, J(H–H) = 8.7 Hz, o-CH], 7.10 [4H, m, J(H–H) = 7.5 Hz, m-CH], 6.91 [2H, t, J(H–H) = 7.3 Hz, p-CH], 1.14 [18H, s, AlC(CH<sub>3</sub>)<sub>3</sub>]; <sup>13</sup>C, 144.6 (NC), 129.8 (m-CH), 125.9 (p-CH), 117.8 (o-CH), 29.4 [AlC(CH<sub>3</sub>)<sub>3</sub>], 14.9 [AlC(CH<sub>3</sub>)<sub>3</sub>]; <sup>27</sup>Al, 91 ( $W_{1/2}$  = 8460 Hz).

AIMe(BHT)[N(Ph)NN(Ph)] (4). A solution of (Ph)NNN(H)(Ph) (1.02 g, 5.17 mmol) in toluene (10 mL) was added dropwise to a toluene solution (15 mL) of AlMe<sub>2</sub>(BHT)(OEt<sub>2</sub>) (1.809 g, 5.16 mmol) maintained at -78 °C. A dark brown solution formed, which was left to stir at -78°C for 30 min and then warmed to room temperature. After 2 h at room

| Table XIII. | Atomic Coor | dinates (×10 <sup>4</sup> ) and | Isotropic Thermal |
|-------------|-------------|---------------------------------|-------------------|
| -           | (1103 83) 0 |                                 |                   |

| Parameters | $(\times 10^3 \text{ Å}^2)$ for | Al[N(2-MePh)]       | NN(2-McPh)]: | •С7H <sub>8</sub> (9) |
|------------|---------------------------------|---------------------|--------------|-----------------------|
|            | x                               | У                   | Z            | $U(eq)^a$             |
| Al(1)      | 1935(3)                         | 1090(3)             | 3594(1)      | 36(1)                 |
| N(1)       | 525(8)                          | 2081(8)             | 3641(3)      | 37(4)                 |
| N(12)      | 1063(10)                        | 3082(8)             | 3549(3)      | 43(4)                 |
| N(2)       | 2130(8)                         | 2767(7)             | 3453(3)      | 37(4)                 |
| N(3)       | 2699(8)                         | 1201(8)             | 4182(2)      | 39(4)                 |
| N(34)      | 3676(8)                         | 680(8)              | 4093(3)      | 43(4)                 |
| N(4)       | 3577(7)                         | 515(7)              | 3671(3)      | 34(3)                 |
| N(5)       | 1323(7)                         | -549(7)             | 3616(3)      | 34(4)                 |
| N(56)      | 1290(7)                         | -694(8)             | 3198(3)      | 40(4)                 |
| N(6)       | 1546(7)                         | 333(8)              | 3034(2)      | 34(3)                 |
| C(11)      | -641(10)                        | 2231(10)            | 3781(3)      | 42(3)                 |
| C(12)      | -816(11)                        | 3129(11)            | 4092(4)      | 63(4)                 |
| C(13)      | -1902(13)                       | 3193(13)            | 4250(5)      | 93(5)                 |
| C(14)      | -2/4/(13)                       | 2459(12)            | 4105(4)      | 77(4)                 |
| C(15)      | -2680(12)                       | 1620(11)            | 3807(4)      | /0(4)                 |
| C(10)      | -1515(12)<br>1297(11)           | (1491(12))          | 3030(4)      | 0/(4)                 |
| C(1)       | -138/(11)                       | 044(12)<br>3693(11) | 3318(3)      | 50(7)                 |
| C(21)      | 4128(10)                        | 3450(11)            | 3556(3)      | 57(4)                 |
| C(22)      | 5008(14)                        | 4243(12)            | 3477(4)      | 91(5)                 |
| C(24)      | 4658(13)                        | 5241(12)            | 3239(4)      | 75(4)                 |
| C(25)      | 3579(11)                        | 5466(11)            | 3070(4)      | 62(4)                 |
| C(26)      | 2665(13)                        | 4623(12)            | 3125(4)      | 69(4)                 |
| C(27)      | 1538(11)                        | 4847(12)            | 2915(4)      | 74(6)                 |
| C(31)      | 2648(9)                         | 1593(10)            | 4614(3)      | 45(3)                 |
| C(32)      | 2246(10)                        | 2704(10)            | 4660(4)      | 53(3)                 |
| C(33)      | 2093(11)                        | 3200(12)            | 5069(4)      | 78(4)                 |
| C(34)      | 2398(11)                        | 2478(12)            | 5408(4)      | 69(4)                 |
| C(35)      | 2775(10)                        | 1390(11)            | 5378(4)      | 59(4)                 |
| C(36)      | 2921(10)                        | 883(11)             | 4966(3)      | 46(3)                 |
| C(37)      | 3288(11)                        | -355(11)            | 4939(4)      | 72(6)                 |
| C(41)      | 4430(9)                         | -241(10)            | 3506(3)      | 33(3)                 |
| C(42)      | 4848(9)                         | -1205(9)            | 3747(3)      | 42(3)                 |
| C(43)      | 5619(10)                        | -1964(11)           | 3579(4)      | 56(4)                 |
| C(44)      | 5990(10)                        | -1760(10)           | 3172(3)      | 56(4)                 |
| C(45)      | 5588(9)                         | -830(10)            | 2936(3)      | 47(3)                 |
| C(46)      | 4802(10)                        | -24(10)             | 3101(3)      | 42(3)                 |
| C(47)      | 4437(9)                         | 1036(9)             | 2840(3)      | 50(5)                 |
| C(51)      | 1203(9)                         | -1309(9)            | 3804(3)      | 33(3)<br>50(2)        |
| C(52)      | 1/25(10)                        | -2620(10)           | 3/32(4)      | 50(3)                 |
| C(53)      | 1153(11)                        | -3620(11)           | 3964(4)      | 64(4)                 |
| C(55)      | 689(10)                         | -2528(10)           | 4505(4)      | 54(4)                 |
| C(55)      | 728(9)                          | -1503(10)           | 4259(3)      | 36(3)                 |
| C(57)      | 176(10)                         | -390(10)            | 4402(3)      | 52(5)                 |
| C(61)      | 1465(9)                         | 460(9)              | 2581(3)      | 37(3)                 |
| C(62)      | 1101(9)                         | 1553(10)            | 2438(3)      | 50(3)                 |
| C(63)      | 1018(10)                        | 1833(11)            | 2005(4)      | 59(4)                 |
| C(64)      | 1346(10)                        | 1001(11)            | 1726(4)      | 59(4)                 |
| C(65)      | 1708(9)                         | -74(10)             | 1851(3)      | 46(3)                 |
| C(66)      | 1806(10)                        | -384(11)            | 2300(3)      | 51(3)                 |
| C(67)      | 2270(10)                        | -1548(10)           | 2439(3)      | 61(5)                 |
| C(1)       | 4449(39)                        | 8505(34)            | -269(12)     | 220(22)               |
| C(2)       | 4626                            | 9503                | -95          | 49                    |
| C(3)       | 4937                            | 9618                | 344          | 123                   |
| C(4)       | 5369                            | 10683               | 508          | 247                   |
| C(5)       | 5490                            | 11633               | 234          | 115                   |
| C(6)       | 5179                            | 11518               | -204         | 252                   |
| C(7)       | 4748                            | 10453               | -369         | 175                   |
|            |                                 |                     |              |                       |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

temperature, the solvent was removed in vacuo, leaving a sticky brown solid. Washing with pentane and drying under vacuum at 40 °C gave a brown powder. Yield: 1.98 g, 84%. Mp: 114–116 °C. Anal. Calc for C<sub>28</sub>H<sub>36</sub>AlN<sub>3</sub>O: C, 73.49; H, 7.93; N, 9.18. Found: C, 69.10; H, 7.91; N, 8.77. IR (KBr, cm<sup>-1</sup>): 2957 (m), 1602 (m), 1488 (m), 1465 (m), 1427 (m), 1309 (s), 1301 (s), 1284 (m), 761 (s), 691 (s), 669 (m), 502 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.26, 7.21 (8H, m, o- and m-CH), 7.04 [2H, t, J(H-H) = 7.0 Hz, p-CH], 6.81 (2H, s, C<sub>6</sub>H<sub>2</sub>), 2.06 (3H, s, CH<sub>3</sub>), 1.17 [18H, s, C(CH<sub>3</sub>)<sub>3</sub>], -0.39 (3H, s, Al(CH<sub>3</sub>); <sup>13</sup>C, 152.3 (OC), 143.4 (NC), 138.2, 126.9, 126.0 (C<sub>6</sub>H<sub>2</sub>), 129.2, 125.7, 118.9 (C<sub>6</sub>H<sub>5</sub>), 34.7 (p-CH<sub>3</sub>), 30.8 [C(CH<sub>3</sub>)<sub>3</sub>], 21.1 [C(CH<sub>3</sub>)<sub>3</sub>], -9.9 (AlCH<sub>3</sub>).

| Table XIV. | Atomic Co                             | ordinates (×10 <sup>4</sup> ) | and Iso | tropic Therma | al  |
|------------|---------------------------------------|-------------------------------|---------|---------------|-----|
| Parameters | (×10 <sup>3</sup> Å <sup>2</sup> ) fo | r AlIN(4-MeOI                 | Ph)NN(4 | 4-MeOPh)]3 (  | 11) |

| Table XV.  | Atomic Coordinate                           | s (×104) and Isotropic Therma         |
|------------|---------------------------------------------|---------------------------------------|
| Parameters | (×10 <sup>3</sup> Å <sup>2</sup> ) for A1[N | (4-C1Ph)NN(4-C1Ph)] <sub>3</sub> (13) |

|       | - /                 |                    |          |           |
|-------|---------------------|--------------------|----------|-----------|
|       | x                   | У                  | z        | $U(eq)^a$ |
| A1(1) | 8328(1)             | 6384(1)            | 932(2)   | 32(1)     |
| N(1)  | 8680(3)             | 6969(3)            | 1198(4)  | 27(3)     |
| N(12) | 9105(3)             | 6764(3)            | 1192(4)  | 35(3)     |
| N(2)  | 9032(3)             | 6314(3)            | 1023(4)  | 28(3)     |
| N(3)  | 8156(3)             | 6174(3)            | 1805(4)  | 33(3)     |
| N(34) | 8075(3)             | 5702(3)            | 1623(4)  | 35(3)     |
| N(4)  | 8140(3)             | 5697(3)            | 978(4)   | 30(3)     |
| N(5)  | 7707(3)             | 6635(3)            | 588(4)   | 33(3)     |
| N(56) | 7855(3)             | 6666(3)            | -8(4)    | 35(3)     |
| N(6)  | 8306(3)             | 6525(3)            | -6(3)    | 31(3)     |
| C(11) | 8676(3)             | 7455(3)            | 1392(4)  | 27(3)     |
| C(12) | 8236(3)             | 7688(3)            | 1419(4)  | 33(3)     |
| C(13) | 8213(4)             | 8162(3)            | 1607(5)  | 39(3)     |
| C(14) | 8617(4)             | 8415(4)            | 1775(5)  | 41(3)     |
| C(15) | 9047(4)             | 8173(3)            | 1768(5)  | 41(3)     |
| C(16) | 9086(3)             | 7698(3)            | 15/8(5)  | 34(3)     |
| O(1)  | 8639(3)             | 8880(3)            | 1952(4)  | 50(3)     |
| C(17) | 8203(3)             | 9122(4)            | 2034(5)  | 50(5)     |
| C(21) | 9437(3)             | 6020(3)            | 957(5)   | 28(3)     |
| C(22) | 9905(4)             | 61/0(4)<br>5850(4) | 1033(5)  | 43(3)     |
| C(23) | 102/0(4)            | 5850(4)            | 962(5)   | 47(3)     |
| C(24) | 10197(4)<br>0721(2) | 5221(4)            | 729(5)   | 30(3)     |
| C(25) | 9751(5)             | 5231(4)            | 783(5)   | 36(3)     |
| O(2)  | 10536(3)            | 5032(3)            | 803(4)   | 55(3)     |
| C(27) | 11013(4)            | 5180(5)            | 786(6)   | 79(6)     |
| C(21) | 8112(3)             | 6246(3)            | 2476(5)  | 29(3)     |
| C(32) | 8135(3)             | 6719(3)            | 2670(5)  | 35(3)     |
| C(33) | 8129(3)             | 6848(4)            | 3325(5)  | 35(3)     |
| C(34) | 8078(3)             | 6489(4)            | 3782(5)  | 35(3)     |
| C(35) | 8045(3)             | 6012(3)            | 3588(5)  | 34(3)     |
| C(36) | 8065(3)             | 5894(3)            | 2947(5)  | 29(3)     |
| O(3)  | 8067(3)             | 6563(2)            | 4441(3)  | 50(3)     |
| C(37) | 8173(4)             | 7033(4)            | 4659(5)  | 62(5)     |
| C(41) | 8087(3)             | 5251(4)            | 683(5)   | 33(3)     |
| C(42) | 8258(3)             | 4832(3)            | 964(5)   | 34(3)     |
| C(43) | 8198(3)             | 4395(3)            | 651(5)   | 37(3)     |
| C(44) | 7987(4)             | 4381(4)            | 47(5)    | 40(3)     |
| C(45) | 7826(3)             | 4799(4)            | -238(5)  | 37(3)     |
| C(46) | 7884(3)             | 5231(4)            | 71(5)    | 43(3)     |
| O(4)  | 7911(3)             | 3970(3)            | -297(3)  | 56(3)     |
| C(47) | 8043(5)             | 3528(4)            | 4(5)     | 70(6)     |
| C(51) | 7209(3)             | 6699(3)            | 698(5)   | 28(3)     |
| C(52) | 7048(3)             | 6727(3)            | 1327(5)  | 29(3)     |
| C(53) | 6560(3)             | 6779(3)            | 1435(5)  | 37(3)     |
| C(54) | 624/(3)             | 6816(3)            | 926(5)   | 31(3)     |
| C(55) | 0400(4)             | 6801(3)            | 294(3)   | 30(3)     |
| C(56) | 6769(3)             | 6772(3)            | 1/0(3)   | 32(3)     |
| O(5)  | 5/00(3)             | 60/2(3)            | 576(5)   | 43(3)     |
| C(57) | 2433(4)<br>8562(4)  | 6500(3)            | _570(5)  | 36(3)     |
| C(61) | 8202(4)             | 6800(2)            | -1083(5) | 37(3)     |
| C(62) | 8663(4)             | 6971(3)            | -1644(5) | 45(3)     |
| C(64) | Q108(4)             | 6771(4)            | -1706(6) | 48(3)     |
| C(66) | 9276(4)             | 6472(4)            | -1226(5) | 48(3)     |
| C(66) | 9006(3)             | 6388(3)            | -664(5)  | 42(3)     |
| O(6)  | 9347(3)             | 6875(3)            | -2271(3) | 66(3)     |
| C(67) | 9832(4)             | 6733(5)            | -2316(6) | 82(6)     |
|       |                     |                    | ()       | (-)       |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

**A**(BHT)[N(Ph)NN(Ph)]<sub>2</sub> (5). AlH<sub>2</sub>(BHT)(NMe<sub>3</sub>) (1.00 g, 3.27 mmol) was dissolved in toluene (10 mL), the solution was cooled in an ice bath, and (Ph)NNN(H)(Ph) (1.29 g, 6.54 mmol) in toluene (20 mL) was added dropwise over a period of 30 min. After 12 h of stirring, the solvent was removed, and the brown residue was washed once with pentane (20 mL) and then vacuum-dried. Yield: 1.20 g, 57%. Mp: 188–190 °C. Anal. Calc for C<sub>39</sub>H<sub>43</sub>AlN<sub>6</sub>O: C, 73.33; H, 6.78; N, 13.16. Found: C, 71.27; H, 6.89; N, 12.85. IR (KBr, cm<sup>-1</sup>): 2914 (w), 2870 (w), 1604 (m), 1501 (m), 1486 (m), 1467 (m), 1443 (m), 1427 (m), 1413 (m), 1328 (m), 1311 (s), 1283 (s), 1247 (s), 1203 (m), 764 (m), 753 (m), 687 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.27 [8H, d, J(H-H) = 8.1 Hz, o-CH], 7.18 [8H, m, J(H-H) = 7.9 Hz, m-CH], 7.08 [4H, t, J(H-H) = 7.6 Hz, p-CH], 7.01 (2H, s, C<sub>6</sub>H<sub>2</sub>), 2.25 (3H, s, CH<sub>3</sub>), 1.33 [18H, s, C(CH<sub>3</sub>)<sub>3</sub>]; <sup>13</sup>C,

|       | x        | у       | z       | $U(eq)^a$     |
|-------|----------|---------|---------|---------------|
| Al(1) | 7025(2)  | 2859(1) | 4020(1) | 25(1)         |
| N(1)  | 7997(4)  | 1913(2) | 4035(2) | <b>23(</b> 1) |
| N(12) | 6879(4)  | 1588(2) | 3752(2) | <b>26(1)</b>  |
| N(2)  | 5893(4)  | 2086(2) | 3615(2) | 25(1)         |
| N(3)  | 5712(4)  | 2848(2) | 4725(2) | <b>24(</b> 1) |
| N(34) | 4951(4)  | 3425(2) | 4581(2) | 28(1)         |
| N(4)  | 5476(4)  | 3617(2) | 4070(2) | 26(1)         |
| N(5)  | 8725(4)  | 3454(2) | 4330(2) | 25(1)         |
| N(56) | 9247(4)  | 3643(2) | 3814(2) | 28(1)         |
| N(6)  | 8338(4)  | 3327(2) | 3435(2) | 25(1)         |
| C(11) | 9256(5)  | 1502(2) | 4214(2) | 24(1)         |
| C(12) | 10511(5) | 1851(3) | 4450(2) | 30(1)         |
| C(13) | 11762(6) | 1473(3) | 4644(2) | 34(1)         |
| C(14) | 11764(6) | 743(3)  | 4606(2) | 41(1)         |
| C(15) | 10525(6) | 386(3)  | 4380(2) | 50(2)         |
| C(16) | 9256(6)  | 762(3)  | 4176(2) | 42(1)         |
| Cl(1) | 13330(2) | 258(1)  | 4848(1) | 75(1)         |
| C(21) | 4486(5)  | 1856(3) | 3370(2) | 25(1)         |
| C(22) | 4052(5)  | 1143(3) | 3352(2) | 33(1)         |
| C(23) | 2634(6)  | 957(3)  | 3125(2) | 39(1)         |
| C(24) | 1668(6)  | 1477(3) | 2925(2) | 36(1)         |
| C(25) | 2081(6)  | 2184(3) | 2932(2) | 39(1)         |
| C(25) | 2081(6)  | 2184(3) | 2932(2) | 39(1)         |
| C(26) | 3503(6)  | 2374(3) | 3158(2) | 36(1)         |
| C1(2) | -144(1)  | 1243(1) | 2668(1) | 50(1)         |
| C(31) | 5283(5)  | 2499(2) | 5244(2) | 24(1)         |
| C(32) | 5973(5)  | 1858(3) | 5365(2) | 35(1)         |
| C(33) | 5588(6)  | 1478(3) | 5862(2) | 38(1)         |
| C(34) | 4511(6)  | 1751(3) | 6231(2) | 38(1)         |
| C(35) | 3817(6)  | 2394(3) | 6123(2) | 40(1)         |
| C(36) | 4194(6)  | 2772(3) | 5624(2) | 37(1)         |
| C1(3) | 4044(2)  | 1278(1) | 6856(1) | 63(1)         |
| C(41) | 4957(5)  | 4267(2) | 3836(2) | 23(1)         |
| C(42) | 4374(5)  | 4810(3) | 4179(2) | 31(1)         |
| C(43) | 3944(6)  | 5445(3) | 3931(2) | 39(1)         |
| C(44) | 4089(5)  | 5538(3) | 3334(2) | 33(1)         |
| C(45) | 4659(5)  | 5007(3) | 2991(2) | 33(1)         |
| C(46) | 5108(5)  | 4371(3) | 3242(2) | 29(1)         |
| Cl(4) | 3615(2)  | 6359(1) | 3027(1) | 52(1)         |
| C(51) | 9534(5)  | 3697(2) | 4820(2) | 26(1)         |
| C(52) | 9110(6)  | 3439(3) | 5357(2) | 33(1)         |
| C(53) | 9855(6)  | 3658(3) | 5867(2) | 38(1)         |
| C(54) | 11033(6) | 4135(3) | 5827(2) | 35(1)         |
| C(55) | 11495(6) | 4390(3) | 5293(2) | 39(1)         |
| C(56) | 10764(5) | 4176(3) | 4788(2) | 35(1)         |
| CI(5) | 11975(2) | 4420(1) | 6449(1) | 55(1)         |
| C(61) | 8669(5)  | 3426(3) | 2842(2) | 29(1)         |
| C(62) | 9679(5)  | 3954(3) | 2645(2) | 36(1)         |
| C(63) | 10023(6) | 3981(3) | 2059(2) | 38(1)         |
| C(64) | 9404(5)  | 3489(3) | 16/7(2) | 34(1)         |
| C(65) | 8336(6)  | 2997(3) | 1865(2) | 3/(1)         |
| C(66) | /991(5)  | 296/(3) | 2450(2) | 31(1)         |
| CI(0) | 9934(2)  | 3489(1) | 952(1)  | 49(1)         |
|       |          |         |         |               |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

152.5 (OC), 143.9 (NC), 138.5, 127.5, 126.0 ( $C_6H_2$ ), 129.2, 126.5, 120.0 ( $C_6H_5$ ), 34.8 (p-CH<sub>3</sub>), 31.6 [C(CH<sub>3</sub>)<sub>3</sub>], 21.1 [C(CH<sub>3</sub>)<sub>3</sub>]; <sup>27</sup>Al, 35 ( $W_{1/2}$  = 4300 Hz).

Al(BHT)<sub>2</sub>[N(Ph)NN(Ph)] (6). AlMe(BHT)<sub>2</sub> (2.00 g, 4.16 mmol) was dissolved in toluene (20 mL), and a solution of (Ph)NNN(H)(Ph) (0.82 g, 4.16 mmol) in toluene (10 mL) was added dropwise. A deep red solution formed, which was stirred for 3 h. Removal of the solvent under vacuum gave a thick, red oil, which was triturated with pentane (15 mL) to give an orange solid. The red pentane solution was decanted and the solid washed once more with cold (-30 °C) pentane (15 mL). Drying in vacuum gave a yellow powder. X-ray-quality crystals were obtained by recrystallization from hexane. Yield: 1.04 g, 38%. Mp: 160–161 °C. Anal. Calc for C<sub>42</sub>H<sub>56</sub>AlN<sub>3</sub>O<sub>2</sub>: C, 76.21; H, 8.53; N, 6.35. Found: C, 75.70; H, 8.75; N, 6.21. IR (KBr, cm<sup>-1</sup>): 2957 (m), 2917 (m), 2868 (m), 1602 (m), 1485 (w), 1424 (m), 1390 (w), 1360 (w), 1303 (s), 1287 (s), 1266 (s), 1251 (s), 1209 (m), 926 (w), 891 (w), 859 (w), 767 (m), 755 (m), 693 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.48 [4H, d, J(H–H) = 7.7 Hz, o-CH], 7.33 [4H, m, J(H–H) = 7.3 Hz, m-CH], 7.21 [2H, t, J(H– H) = 7.0 Hz, p-CH], 6.94 (4H, s, C<sub>6</sub>H<sub>2</sub>), 2.21 (6H, s, CH<sub>3</sub>), 1.30 [36H, s, C(CH<sub>3</sub>)<sub>3</sub>]; <sup>13</sup>C, 151.7 (OC), 143.1 (NC), 138.3, 127.3, 126.5 (C<sub>6</sub>H<sub>2</sub>), 129.0, 126.1, 120.5 (C<sub>6</sub>H<sub>3</sub>), 35.0 (p-CH<sub>3</sub>), 31.5 [C(CH<sub>3</sub>)<sub>3</sub>], 21.1 [C(CH<sub>3</sub>)<sub>3</sub>]; <sup>27</sup>Al, 31 ( $W_{1/2}$  = 7300 Hz).

Al(<sup>i</sup>Bu)(salen) (7). A solution of Al(<sup>i</sup>Bu)<sub>2</sub>[N(Ph)NN(Ph)] (0.50 g, 1.50 mmol) in pentane (50 mL) was added to a solution of H<sub>2</sub>salen (0.475 g, 1.77 mmol) in pentane/THF (15 mL, 25 mL). As the addition proceeded, the solution color changed from amber to golden yellow. The flask was placed in a freezer at -24 °C overnight, after which the yellow needlelike crystals that had formed were isolated by filtration. Yield: 0.185 g, 36%. MS [EI, m/z (assignment, %)]: 293 (M<sup>+</sup> - <sup>i</sup>Bu, 100). NMR (C<sub>6</sub>D<sub>6</sub>,  $\delta$ ): <sup>1</sup>H, 8.24 (2H, s, N=CH), 7.36 (2H, m, C<sub>6</sub>H<sub>4</sub>), 7.10 (4H, m, C<sub>6</sub>H<sub>4</sub>), 6.69 (2H, m, C<sub>6</sub>H<sub>4</sub>), 3.69 (2H, m, C<sub>2</sub>H<sub>4</sub>), 3.99 (2H, m, C<sub>2</sub>H<sub>4</sub>), 1.53 [1H, m, J(H-H) = 6.5 Hz, AlCH<sub>2</sub>CH], 0.69 [6H, d, J(H-H) = 6.8 Hz, AlCH<sub>2</sub>].

Al(salen)[N(Ph)NN(Ph)] (8). A solution of AlMe(salen) in MeCN (30 mL) was prepared from H<sub>2</sub>salen (0.910 g, 3.40 mmol) and AlMe<sub>3</sub> (3.4 mL, 1.0 M hexane solution, 3.4 mmol) as described previously. A solution of 1,3-diphenyltriazene (0.672 g, 3.40 mmol) in MeCN (20 mL) was added to the above dropwise, via cannula. The clear orange reaction mixture was then refluxed until the reaction was complete, as judged by the precipitation of an orange solid. Additional MeCN was added, with heating, to dissolve the bulk of the precipitated material. After filtration, the hot solution was cooled slowly to room temperature and then to -24 °C overnight. Orange needles of  $8 \cdot \frac{1}{2}$  MeCN were isolated by filtration and vacuum-drying. Yield: 1.08 g, 62%. Mp: 226-227 °C. IR (KBr, cm<sup>-1</sup>): 3044 (w), 2938 (w), 2251 (w), 1645 (m), 1632 (s), 1603 (m), 1547 (s), 1475 (m), 1455 (m), 1409 (w), 1394 (w), 1330 (m), 1303 (s), 1279 (s), 1246 (m), 1208 (m), 907 (m), 759 (s), 693 (m), 641 (m), 632 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 8.25 (2H, s, N=CH), 7.31 (2H, m, C<sub>6</sub>H<sub>4</sub>), 7.22 [4H, d, J(H-H) = 8.1 Hz, o-CH], 7.12 (6H, m, m-CH and C<sub>6</sub>H<sub>4</sub>), 6.98 [2H, t, J(H-H) = 8.5 Hz, p-CH], 6.62 (2H, m, C<sub>6</sub>H<sub>4</sub>), 4.02 (2H, m, C<sub>2</sub>H<sub>4</sub>), 3.55 (2H, m, C<sub>2</sub>H<sub>4</sub>); <sup>27</sup>Al, 11 ( $W_{1/2}$  = 940 Hz).

Synthesis of 1,3-Diaryltriazene Ligands. All ligands were prepared by procedures adapted from the literature, through one of two methods: method 1, diazotization and coupling of anilines with aqueous NaNO<sub>2</sub>/ HCl, followed by neutralization with NaO<sub>2</sub>CMe;<sup>32</sup> method 2, diazotization and coupling of anilines employing isoamyl nitrite in Et<sub>2</sub>O. The crude triazenes were purified by crystallization in the presence of activated charcoal in order to remove traces of isomeric aminoazobenzene side products.<sup>34</sup> Yields given are those after crystallization from the stated solvent(s), and characterization by IR and <sup>1</sup>H NMR spectroscopy follows.

(2-MePh)NNN(H)(2-MePh). Prepared by method 2, the compound crystallizes from hexane with one molecule of 2-methylaniline. Yield: 30%, based on amount of triazene formed. Mp: 56 °C. IR (KBr, cm<sup>-1</sup>): 3430 (w), 3389 (w), 3185 (w), 2972 (w), 1589 (m), 1527 (m), 1513 (m), 1501 (m), 1483 (m), 1159 (m), 1407 (m), 1248 (s), 1213 (s), 1186 (m), 1174 (m), 755 (s), 715 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.53 (1H, br s, NH), 7.61 (2H, m, C<sub>6</sub>H<sub>4</sub>), 7.23 (5H, m, C<sub>6</sub>H<sub>4</sub>), 7.07 (1H, m, C<sub>6</sub>H<sub>4</sub>), 7.04, 6.70 [2H, 2H, m, C<sub>6</sub>H<sub>4</sub>, (2-MePh)NH<sub>2</sub>], 3.54 (2H, br s, NH<sub>2</sub>), 2.41 (6H, br s, CH<sub>3</sub>), 2.17 [3H, s, CH<sub>3</sub>, (2-MePh)NH<sub>2</sub>].

(4-MePh)NNN(H)(4-MePh).<sup>35</sup> Prepared by method 1. Yield: 82% (hexane). Mp: 115 °C. IR (KBr, cm<sup>-1</sup>): 3200 (w), 2920 (w), 1600 (m), 1525 (s), 1501 (m), 1436 (m), 1397 (m), 1309 (m), 1294 (m), 1245 (s), 1193 (m), 1176 (m), 813 (s), 655 (w), 613 (w), 506 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.54 (1H, br s, NH), 7.29 [4H, d, J(H-H) = 8.3 Hz, o-CH], 7.16 [4H, d, J(H-H) = 8.3 Hz, m-CH], 2.35 (6H, s, CH<sub>3</sub>).

(4-MeOPh)NNN(H)(4-MeOPh).<sup>35</sup> Prepared by method 1. Yield: 80% (hexane). Mp: 97 °C. IR (KBr, cm<sup>-1</sup>): 3167 (w), 2961 (w), 2835 (w), 1603 (m), 1539 (m), 1509 (s), 1500 (s), 1437 (m), 1401 (m), 1316 (m), 1299 (m), 1251 (s), 1241 (s), 1181 (m), 1160 (m), 1105 (w), 1031 (s), 825 (s), 653 (w), 608 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.42 (1H, br s, NH), 7.32 [4H, d, J(H-H) = 8.8 Hz, o-CH], 6.89 [4H, d, J(H-H) = 8.8 Hz, m-CH], 3.81 (6H, s, OCH<sub>3</sub>).

(4-FPh)NNN(H)(4-FPh).<sup>36</sup> Prepared by method 1. Yield: 29% (2:1 hexane/EtOH). Mp: 112 °C. IR (KBr, cm<sup>-1</sup>): 3183 (w), 1598 (w), 1505 (m), 1449 (m), 1398 (m), 1303 (w), 1225 (m), 1194 (s), 1116 (m),

(36) Miles, P.; Suschitzky, H. Tetrahedron 1983, 19, 385.

Table XVI. Atomic Coordinates (×10<sup>4</sup>) and Isotropic Thermal Parameters (×10<sup>3</sup> Å<sup>2</sup>) for (C<sub>6</sub>F<sub>5</sub>)NNN(H)(C<sub>6</sub>F<sub>5</sub>)

|       | x       | y        | Z        | U(eq) <sup>a</sup> |
|-------|---------|----------|----------|--------------------|
| N(1)  | 1831(2) | 106(2)   | -131(2)  | 53(1)              |
| N(2)  | 1019(2) | -435(2)  | 1294(2)  | 55(1)              |
| N(12) | 2095(2) | -133(2)  | 841(2)   | 50(1)              |
| C(11) | 2953(2) | 536(3)   | -617(2)  | 47(1)              |
| C(12) | 3021(3) | 168(3)   | -1629(2) | 53(1)              |
| F(12) | 2069(2) | -665(2)  | -2100(1) | 77(1)              |
| C(13) | 4006(3) | 627(3)   | -2201(2) | 61(1)              |
| F(13) | 4046(2) | 239(2)   | -3182(1) | 91(1)              |
| C(14) | 4960(3) | 1498(3)  | -1748(2) | 58(1)              |
| F(14) | 5927(2) | 1984(2)  | -2302(1) | 81(1)              |
| C(15) | 4934(3) | 1868(3)  | -740(2)  | 55(1)              |
| F(15) | 5876(2) | 2699(2)  | -290(1)  | 83(1)              |
| C(16) | 3941(3) | 1404(3)  | -181(2)  | 51(1)              |
| F(16) | 3930(2) | 1839(2)  | 793(1)   | 70(1)              |
| C(21) | 1173(2) | -614(3)  | 2368(2)  | 47(1)              |
| C(22) | 2092(3) | 70(3)    | 3048(2)  | 50(1)              |
| F(22) | 2939(2) | 961(2)   | 2703(1)  | 70(1)              |
| C(23) | 2154(3) | -124(3)  | 4099(2)  | 58(1)              |
| F(23) | 3057(2) | 559(2)   | 4726(1)  | 87(1)              |
| C(24) | 1283(3) | -985(3)  | 4507(2)  | 59(1)              |
| F(24) | 1316(2) | -1167(2) | 5553(1)  | 84(1)              |
| C(25) | 343(3)  | -1652(3) | 3852(3)  | 59(1)              |
| F(25) | -534(2) | -2480(2) | 4244(2)  | 94(1)              |
| C(26) | 311(3)  | -1476(3) | 2801(2)  | 53(1)              |
| F(26) | -617(2) | -2158(2) | 2172(1)  | 79(1)              |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

838 (m), 828 (m), 653 (w), 606 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.36 (1H, br s, NH), 7.35 (4H, m, m-CH), 7.06 (4H, m, o-CH); <sup>19</sup>F, -117.2 ( $W_{1/2}$  = 12 Hz).

(4-ClPh)NNN(H) (4-ClPh).<sup>35</sup> Prepared by method 2. Yield: 66% (1:1 hexane/EtOH). Mp: 125 °C. IR (KBr, cm<sup>-1</sup>): 3191 (w), 1599 (m), 1507 (m), 1483 (m), 1438 (m), 1392 (m), 1303 (w), 1283 (w), 1243 (s), 1199 (m), 1174 (m), 1093 (m), 1010 (w), 826 (s), 589 (m), 504 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.52 (1H, br s, NH), 7.32 (8H, s, o- and m-CH).

(4-BrPh)NNN(H)(4-BrPh). Prepared by method 2. Yield: 77% (2:3 hexane/EtOH). Mp: 136 °C. IR (KBr, cm<sup>-1</sup>): 3192 (w), 1593 (m), 1506 (m), 1480 (m), 1437 (m), 1390 (m), 1302 (w), 1243 (s), 1198 (m), 1174 (m), 1070 (s), 1006 (m), 825 (m), 811 (w), 502 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.52 (1H, br s, NH), 7.47 [4H, d, J(H–H) = 9.3 Hz, m-CH], 7.28 [4H, d, J(H–H) = 9.3 Hz, o-CH].

 $(C_6F_5)$ NNN(H) $(C_6F_5)$ .<sup>37</sup> Prepared by method 1, with the modification that concentrated HCl was used as the reaction solvent. Yield: 80% (heptane). Mp: 133 °C. IR (KBr, cm<sup>-1</sup>): 3165 (w), 1546 (s), 1510 (s), 1468 (m), 1438 (w), 1415 (s), 1217 (s), 1041 (m), 988 (s), 975 (s), 891 (w), 813 (w), 790 (w), 761 (w), 693 (w), 666 (w), 606 (w), 566 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 9.45 (br s, NH); <sup>19</sup>F, -150.9 ( $W_{1/2}$  = 315 Hz,  $\rho$ -CF), -156.6 ( $W_{1/2}$  = 233 Hz, m-CF), -162.2 ( $W_{1/2}$  = 315 Hz, p-CF).

(Ph)NNN(H)(4-MeOPh).<sup>35</sup> Prepared by method 1, with the modification that aniline was diazotized in the presence of 10% excess HC1 and then treated with a solution of 4-methoxyaniline hydrochloride in H<sub>2</sub>O to give the unsymmetrical triazene compound. Yield: 77% (hexane). Mp: 184–85 °C. IR (KBr, cm<sup>-1</sup>): 3173 (w), 3005 (w), 2935 (w), 1560 (s), 1500 (m), 1459 (s), 1440 (s), 1410 (s), 1312 (s), 1239 (s), 1192 (s), 1158 (m), 1106 (m), 1029 (s), 839 (s), 752 (m), 692 (m), 653 (m), 607 (m). NMR (C<sub>6</sub>D<sub>6</sub>,  $\delta$ ): <sup>1</sup>H, 9.10 (br s, NH), 7.55 [2H, d, J(H-H) = 8.2 Hz, o-CH, Ph], 7.08, 6.80 (7H, m, Ph, 4-MeOPh), 3.28 (3H, s, OCH<sub>3</sub>).

Al[N(2-MePh)NN(2-MePh)]<sub>3</sub> (9). To a suspension of (2-Me-Ph)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub> (3.38 g, 10.2 mmol) in toluene (30 mL) was added AlEt<sub>3</sub> (5.0 mL, 1.0 M solution in hexane, 5.0 mmol). A clear yellow solution resulted in a yellow oil upon removal of the solvent under vacuum. The oil was triturated with hexane (30 mL) to produce a bright yellow crystalline solid, which was filtered off and dried under vacuum. Yield: 2.20 g, 93%. Toluene-free crystals were grown from hexane/CH<sub>2</sub>Cl<sub>2</sub> (2:1) through selective evaporation of CH<sub>2</sub>Cl<sub>2</sub> under vacuum. Mp: 176 °C. Anal. Calc for C<sub>42</sub>H<sub>42</sub>AlN<sub>9</sub>: C, 72.08; H, 6.05; N, 18.01. Found: C, 71.42; H, 6.18; N, 17.72. IR (KBr, cm<sup>-1</sup>): 2992 (w), 1512 (w), 1488 (m), 1459 (w), 1303 (m), 1276 (s), 1247 (m), 1211 (m), 757 (s), 714 (w), 668 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.06 (2H, m,

<sup>(34)</sup> Hill, D. T.; Stanley, K. G.; Karoglanwilliams, J. E.; Loev, B.; Fowler, P. J.; McCafferty, J. P.; Macko, E.; Berkhoff, C. E.; Ladd, C. D. J. Med. Chem. 1983, 26, 865.

<sup>(35)</sup> Coppinger, G. M. J. Am. Chem. Soc. 1951, 73, 4687 and references therein.

<sup>(37)</sup> Brooke, G. M.; Forbes, E. J.; Richardson, R. D.; Stacey, M.; Tatlow, T. C. J. Chem. Soc. 1965, 2088.

o-CH), 7.01 (6H, m, p-CH), 2.03 (6H, s, o-CH<sub>3</sub>);  ${}^{13}$ C, 143.5 (NC), 131.5, 130.4, 126.3, 125.4, 122.8 (C<sub>6</sub>H<sub>4</sub>), 19.5 (o-CH<sub>3</sub>);  ${}^{27}$ Al, 28 ( $W_{1/2}$  = 1600 Hz).

 $\dot{Al}$ [N(4-MePh)NN(4-MePh)]<sub>3</sub> (10). To a suspension of (4-Me-Ph)NNN(H)(4-MePh) (1.69 g, 7.50 mmol) in hexane (30 mL) was added AlEt<sub>3</sub> (2.6 mL, 1.0 M in hexane, 2.6 mmol) via syringe. A deep orange precipitate formed, and the reaction mixture was refluxed gently for 30 min, whereupon all gas evolution had ceased. Afterward, the reaction mixture was cooled to room temperature and then placed in a freezer (-24 °C) overnight. Filtration, washing with pentane (20 mL), and vacuum-drying gave orange-yellow crystals. Yield: 1.57 g, 90%. Mp: 273 °C. Anal. Calc for C<sub>42</sub>H<sub>42</sub>AlN<sub>9</sub>: C, 72.08; H, 60.5; N, 18.01. Found: C, 71.89; H, 6.06; N, 17.83. IR (KBr, cm<sup>-1</sup>): 2919 (w), 1507 (s), 1303 (s), 1278 (s), 1248 (m), 1202 (m), 1177 (w), 821 (m), 771 (w), 662 (w), 623 (w), 566 (w), 512 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.21 [4H, d, J(H-H) = 8.3 Hz, o-CH], 6.98 [4H, d, J(H-H) = 8.3 Hz, m-CH], 2.25 (6H, s, CH<sub>3</sub>); <sup>13</sup>C, 157.7 (NC), 139.0, 119.4, 115.4 (C<sub>6</sub>H<sub>4</sub>), 54.9 (CH<sub>3</sub>); <sup>27</sup>Al, 25 ( $W_{1/2}$  = 1580 Hz).

**Å**[N(4-MeOPh)NŃ(4-MeOPh)]<sub>3</sub> (11). Prepared in a manner similar to that for 10 using (4-MeOPh)NNN(H)(4-MeOPh) (10.33 g, 40.2 mmol) and AlMe<sub>3</sub> (7.0 mL, 2.0 M solution in hexane, 14.0 mmol) to give an orange solid. Yield: 9.35 g, 84%. Mp: 261–263 °C. Anal. Calc for  $C_{42}H_{42}AlN_9O_6$ : C, 63.38; H, 5.32; N, 15.84. Found: C, 63.02; H, 5.21; N, 15.57. IR (KBr, cm<sup>-1</sup>): 2957 (w), 2833 (w), 1505 (s), 1464 (w), 1440 (w), 1322 (m), 1293 (m), 1240 (s), 1179 (m), 1162 (s), 1033 (s), 831 (s), 662 (m), 618 (m), 559 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.24 [4H, d, J(H-H) = 9.0 Hz, o-CH], 6.73 [4H, d, J(H-H) = 9.0 Hz, m-CH], 3.73 [6H, s, OCH<sub>3</sub>]; <sup>12</sup>C, 142.3 (NC), 134.3, 129.9, 117.9 (C<sub>6</sub>H<sub>4</sub>), 20.9 (OCH<sub>3</sub>); <sup>27</sup>Al, 27 ( $W_{1/2} = 2460$  Hz).

AI[N(4-FPh)NN(4-FPh)]<sub>3</sub> (12). Prepared in a manner similar to that for 10 using (4-FPh)NN(4-FPh) (1.74 g, 7.46 mmol) and AlEt<sub>3</sub> (2.5 mL, 1.0 M solution in hexane, 2.5 mmol) to give a brown-orange solid. Yield: 1.63 g, 91%. Mp: 258 °C. Anal. Calc for  $C_{36}H_{24}AlF_6N_9$ : C, 59.75; H, 3.34; N, 17.42. Found: C, 59.27; H, 3.37; N, 17.20. IR (KBr, cm<sup>-1</sup>): 2552 (w), 1807 (w), 1502 (w), 1448 (w), 1320 (s), 1306 (s), 1286 (s), 1222 (s), 1197 (m), 1150 (m), 1097 (w), 863 (w), 834 (w), 661 (m), 617 (m), 565 (m), 514 (m), 449 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.24 (4H, m, m-CH), 6.93 (4H, m, o-CH); <sup>13</sup>C, 160.0 [d, J(C-F) = 243 Hz, p-CF], 140.3 (s, NC), 119.2 [d, J(C-F) = 23 Hz, m-CH], 116.5 [d, J(C-F) = 6.3 Hz, o-CH]; <sup>27</sup>Al, 25 ( $W_{1/2}$  = 1400 Hz); <sup>19</sup>F, -117.2.

**A**[N(4-CIPh)NN(4-CIPh)]<sub>3</sub> (13). A solution of (4-CIPh)NNN(H)(4-CIPh) (4.00 g, 15.0 mmol) in toluene (30 mL) was treated with AlEt<sub>3</sub> (5.2 mL, 1.0 M hexane solution, 5.2 mmol). After 1.5 h of heating, the solvent was removed in vacuo to give a bright yellow-orange microcrystalline solid, which was washed with pentane (30 mL) and vacuumdried. Yield: 3.73 g, 88% 13·1/4C<sub>7</sub>H<sub>8</sub>. Solvent-free crystals of 13 suitable for X-ray analysis were obtained by recrystallization from pentane/ CH<sub>2</sub>Cl<sub>2</sub> (1:1). Mp: 239 °C. Anal. Calc for C<sub>36</sub>H<sub>42</sub>AlCl<sub>6</sub>N<sub>9</sub>: C, 52.58; H, 2.94; N, 15.33. Found: C, 52.24; H, 2.87; N, 15.19. IR (KBr, cm<sup>-1</sup>): 1507 (s), 1311 (s), 1295 (s), 1273 (s), 1208 (w), 1093 (m), 1008 (w), 852 (w), 829 (s), 594 (w), 558 (w), 510 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.19 (s, o- and m-CH); <sup>13</sup>C, 142.3 (NC), 131.2, 129.9, 119.1 (C<sub>6</sub>H<sub>4</sub>); <sup>27</sup>Al, 26 (W<sub>1/2</sub> = 1720 Hz).

 $A[[N(4-BrPh)NN(4-BrPh)]_{3}$  (14). Prepared in a manner similar to that for 10, using (4-BrPh)NNN(H)(4-BrPh) (4.25 g, 12.0 mmol) in toluene (50 mL) and AlEt<sub>3</sub> (4.1 mL, 1.0 M solution in hexane, 4.1 mmol) to give a bright orange, microcrystalline solid. Yield: 3.90 g, 88% 14·1/  $_{4}C_{7}H_{8}$ . Solvent-free, analytically pure 14 was obtained by dissolving in hexane/CH<sub>2</sub>Cl<sub>2</sub> (1:1) and removing the more volatile CH<sub>2</sub>Cl<sub>2</sub> under vacuum until crystallization was imminent. Mp: 260 °C. Anal. Calc for C<sub>36</sub>H<sub>24</sub>AlBr<sub>6</sub>N<sub>9</sub>: C, 39.70; H, 2.22; N, 11.57. Found: C, 39.26; H, 2.11; N, 11.36. IR (KBr, cm<sup>-1</sup>): 1485 (s), 1438 (w), 1308 (s), 1293 (s), 1271 (s), 1207 (m), 1071 (s), 1006 (m), 848 (m), 825 (s), 564 (m), 505 (m). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>1</sup>H, 7.34 [4H, d, J(H-H) = 8.7 Hz, o-CH], 7.13 [4H, d, J(H-H) = 8.7 Hz, m-CH]; <sup>13</sup>C, 142.6 (NC), 132.9, 119.4, 119.1 (C<sub>6</sub>H<sub>4</sub>); <sup>27</sup>Al, 26 ( $W_{1/2}$  = 1860 Hz).

 $AI[N(C_6F_5)NN(C_6F_5)]_3$  (15). Prepared in a manner similar to that for 10 using (C<sub>6</sub>F<sub>5</sub>)NNN(H)(C<sub>6</sub>F<sub>5</sub>) (2.26 g, 6.70 mmol) and AlMe<sub>3</sub> (2.3 mL, 1.0 M solution in hexane, 2.3 mmol) to give a yellow-green solid. Yield: 1.84 g, 80%. Mp: 179 °C. Anal. Calc for C<sub>36</sub>AlF<sub>30</sub>N<sub>9</sub>: C, 37.92; N, 10.91. Found: C, 39.01; N, 12.22. IR (KBr, cm<sup>-1</sup>): 1530 (s), 1326 (w), 1284 (s), 1254 (m), 1221 (w), 1068 (w), 982 (s), 812 (w), 696

**Table XVII.** Atomic Coordinates  $(\times 10^4)$  and Isotropic Thermal Parameters  $(\times 10^3 \text{ Å}^2)$  for (2-MePh)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub>

|       | x         | у        | Z        | $U(eq)^a$ |
|-------|-----------|----------|----------|-----------|
| N(1)  | -738(5)   | 33(5)    | -3822(4) | 59(2)     |
| N(12) | -1253(5)  | 1163(5)  | -3703(4) | 60(3)     |
| N(2)  | -164(5)   | 2276(5)  | -2689(5) | 64(3)     |
| C(11) | -1887(7)  | -1152(6) | -4883(5) | 56(3)     |
| C(12) | -3434(7)  | -1046(6) | -5701(6) | 66(3)     |
| C(13) | -4505(7)  | -2247(7) | -6683(6) | 77(4)     |
| C(14) | -4043(8)  | -3540(7) | -6839(6) | 82(4)     |
| C(15) | -2509(8)  | -3625(6) | -6034(6) | 76(4)     |
| C(16) | -1410(7)  | -2445(6) | -5040(5) | 61(3)     |
| C(17) | 232(7)    | -2594(6) | -4182(6) | 77(3)     |
| C(21) | -560(7)   | 3609(6)  | -2507(6) | 59(3)     |
| C(22) | -2016(7)  | 3815(6)  | -3352(6) | 72(4)     |
| C(23) | -2336(8)  | 5159(8)  | -3134(8) | 88(4)     |
| C(24) | -1208(10) | 6289(7)  | -2069(9) | 96(5)     |
| C(25) | 219(9)    | 6058(6)  | -1238(7) | 79(4)     |
| C(26) | 590(7)    | 4735(6)  | -1428(6) | 64(4)     |
| C(27) | 2171(8)   | 4530(6)  | -502(6)  | 82(4)     |
| N(3)  | 2761(5)   | 934(5)   | -1474(5) | 71(3)     |
| C(31) | 3132(7)   | 931(5)   | -140(6)  | 61(3)     |
| C(32) | 2074(8)   | 170(6)   | 44(8)    | 77(4)     |
| C(33) | 2429(12)  | 220(9)   | 1394(13) | 114(7)    |
| C(34) | 3793(14)  | 1002(12) | 2535(10) | 128(8)    |
| C(35) | 4813(9)   | 1756(9)  | 2338(7)  | 103(5)    |
| C(36) | 4541(7)   | 1749(6)  | 1014(7)  | 70(4)     |
| C(37) | 5669(7)   | 2547(6)  | 801(7)   | 83(4)     |

<sup>a</sup> Equivalent isotropic U defined as one-third of the trace of the orthogonalized  $U_{ij}$  tensor.

(w), 621 (w), 538 (w). NMR (CDCl<sub>3</sub>,  $\delta$ ): <sup>13</sup>C, 141.4 [dd, <sup>1</sup>*J*(C-F) = 255 Hz, <sup>2</sup>*J*(C-F) = 10.5 Hz, o-CF], 140 [dt, <sup>1</sup>*J*(C-F) = 256 Hz, <sup>2</sup>*J*(C-F) = 14.3 Hz, p-CF], 138.0 [dt, <sup>1</sup>*J*(C-F) = 254 Hz, <sup>2</sup>*J*(C-F) = 13.9 Hz, m-CF], 118.4 [t, *J*(C-F) = 12.0 Hz, NC]; <sup>27</sup>Al, 34 (*W*<sub>1/2</sub> = 625 Hz); <sup>19</sup>F, -151.8 [d, *J*(F-F) = 19.9 Hz, o-CF], -155.4 [m, *J*(F-F) = 21.3 Hz, m-CF], -161.4 [t, *J*(F-F) = 19.9 Hz, p-CF].

**Å**[[N(Ph)NN(4-MeOPh)]<sub>3</sub> (16). Prepared in a manner similar to that for 10 using (Ph)NNN(H)(4-MeOPh) (2.73 g, 12.0 mmol) and AlMe<sub>3</sub> (4.2 mL, 1.0 M solution in hexane, 3.4 mmol) to give a dark orange solid. A second washing with warm hexane was necessary to remove traces of unreacted ligand. Yield: 2.52 g, 89%. Mp: 163–165 °C. Anal. Calc for C<sub>39</sub>H<sub>36</sub>AlN<sub>9</sub>O<sub>3</sub>: C, 66.37; H, 5.14; N, 17.86. Found: C, 64.84; H, 5.19; N, 17.22. IR (KBr, cm<sup>-1</sup>): 3053 (w), 2941 (w), 2833 (w), 1595 (w), 1583 (w), 1508 (m), 1488 (m), 1326 (s), 1310 (s), 1291 (s), 1253 (s), 1241 (s), 1210 (m), 1165 (m), 1034 (m), 830 (m), 756 (m), 688 (m), 679 (m), 558 (m). NMR (C<sub>6</sub>D<sub>6</sub>,  $\delta$ ): <sup>1</sup>H, 7.66 (6H, m, o-CH), 7.62 (6H, m, o-CH), 7.03 (6H, m, m-CH), 6.81 [3H, t, J(H-H) = 8.0 Hz, p-CH], 6.61 (6H, m, m-CH), 3.10 (3H, s, OCH<sub>3</sub>), 3.09 (6H, s, OCH<sub>3</sub>); <sup>13</sup>C, 158.2 (OC), 145.4, 145.3 (NC, Ph), 138.7, 138.6, 138.5 (NC, 4-MeOPh), 129.9, 124.9, 119.8, 118.2, 115.4 (Ph, 4-MeOPh), 54.9 (OCH<sub>3</sub>); <sup>27</sup>Al, 26 ( $W_{1/2} = 2530$  Hz).

X-ray Crystallographic Studies. A crystal data summary is given in Table IX; fractional atomic coordinates are listed in Tables X-XVII. Crystals of compounds 1, 6, AlMe(salen), 9, 11, 13,  $(C_6F_5)$ -NNN(H)( $C_6F_5$ ), and 2-MePh)NNN(H)(2-MePh)·(2-MePh)NH<sub>2</sub> were mounted directly onto the goniometer with silicone grease. Unit-cell parameters and intensity data were obtained by following previously detailed procedures,<sup>14</sup> using a Nicolet R3m/v diffractometer operating in the  $\theta$ -2 $\theta$  scan mode. Data collection was controlled by using the Nicolet P3 program.<sup>38</sup> Empirical absorption corrections were applied to the data using the program PSICOR. Further experimental data are given in Table IX.

The structures were solved using the direct methods program XS, which revealed the position of most of the heavy atoms; the remainder were located using standard difference method techniques. Most, but not all, of the hydrogens were visible in the final difference mpa. Hydrogens were included as fixed atom contributors in the final cycles, d(C-H) = 0.96 Å and U(iso) = 0.08 Å<sup>2</sup>. The hydrogen atom in  $(C_6F_5)NN(H)(C_6F_5)$  was located in the electron density map and refined. The hydrogen atoms in  $(2-MePh)NN(H)(2-MePh)\cdot(2-MePh)NH_2$  were all located in the electron density map and refined with

<sup>(38)</sup> P3/R3 Data Collection Manual; Nicolet Instrument Corp.: Madison, WI, 1987.

a fixed thermal parameter,  $U(iso) = 0.08 \text{ Å}^2$ . All hydrogen atoms were fixed in the final refinement. Since standard deviations are meaningless for N-H distances and X-N-H angles when the H atoms are included as invariants, they have been omitted from the text and Tables VII and VIII.

The difference Fourier map for compound 1 revealed two alternative positions for the methine and one methyl carbon of one of the isobutyl ligands. These were initially included in the refinement such that equivalent atoms were treated with linked thermal parameters and the group occupancies were constrained to total 1. The latter converged at values of 0.489(5) and 0.511(5) and were fixed at 0.5 for the final refinement. The disorder can be imagined as being due to inversion of the methylenic carbon. In this inversion, the methylene, C(31), and one of the methyls, C(33), remain fixed within the resolution of the experiment. Hydrogen atoms were given appropriate site occupancy factors. Details of the refinements for all structures are given in Table IX. Atomic scattering factors and anomalous scattering parameters were as given in the literature.<sup>39</sup>

Acknowledgment. Financial support was provided in part by the National Science Foundation, the Aluminum Research Board, and the Harvard University Undergraduate Work-Study program. Professor R. M. Kren (University of Michigan—Flint) is acknowledged for providing the impetus for this work. Richard Miller (Akzo Chemicals) is gratefully acknowledged for the gift of AlMe<sub>3</sub> and AlEt<sub>3</sub>.

**Supplementary Material Available:** Tables of bond distances, bond angles, anisotropic displacement coefficients, and hydrogen atomic coordinates (22 pages). Ordering information is given on any current masthead page.

<sup>(39)</sup> International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. 4.