Hexa- and Octanuclear Gold Complexes of *p***-Phenylenediphosphine**

Hubert Schmidbaur,' Edgar Zeller, and Joji Ohshita

Anorganisch-chemisches Institut der Technischen Universitat Miinchen, Lichtenbergstrasse 4, **D-85747** Garching, Germany

Received June 22, *1993'*

p-Phenylenediphosphine $1,4-C_6H_4(PH_2)_2$, synthesized according to a published procedure, has been fully characterized by its analytical and spectroscopic data. This diprimary phosphine was reacted with 2 equiv of $(LAu)3O^+BF_4^-$ (L $= t-Bu_3P$ or Ph₃P) to yield products of the type $[1,4-(LAu)_3P-C_6H_4-P(AuL)_3]^{2+}(BF_4-)$ with two trigold moieties in the dications. The reaction of 2 equiv of an equimolar mixture of $(Ph_3PAu)_3O^+BF_4^-$ and $Ph_3PAu^+BF_4^-$ with 1,4-C₆H₄(PH₂)₂ leads to the product [1,4-(Ph₃PAu)₄P-C₆H₄-P(AuPPh₃)₄]⁴⁺(BF₄⁻)₄ in quantitative yield, which features two tetranuclear units in trans positions. The compounds were obtained as polycrystalline solids, which were readily identified by means of a detailed NMR and mass spectrometric analysis.

Introduction

In previous studies,' carried out independently in two different laboratories, $2,3$ it could be demonstrated that primary amines, $4-8$ phosphines, $9,10$ and arsines¹¹ can be triply aurated on treatment with a stoichiometric amount of the oxonium reagent $(Ph_3PAu)_{3-}$ $O⁺BF₄$ ⁻ to give species of the type RE(AuPPh₃)₃⁺, where E = $N, P,$ and As, and $R =$ alkyl and aryl. In the case of the phosphorus compounds further auration could be accomplished by reaction with the more powerful electrophile $Ph_3PAu+BF_4$, which even leads to hypercoordinate dications $RP(AUPPh_3)_{4}^{2+}.^{11}$ This chemistry has now been extended to include the diprimary aromatic phosphine $1,4-C_6H_4(PH_2)_2$.

Experimental Section

General **Data.** All reactions were carried out in oven-dried glassware using standard inert-atmosphere techniques. All solvents were dried and distilled before use. Exposure to direct sunlight was avoided. NMR spectra were recorded on JEOL *GX* 270 and JEOL GX 400 NMR spectrometers (for ¹H and ¹³C, deuterated solvents as internal standards, converted to TMS; for ³¹P, external 85% aqueous H_3PO_4); mass spectra were recorded on an MAT 90 mass spectrometer (FAB, CI and FD ionization). Elemental analyses were performed in the microanalytical laboratory of this Institute.

Starting Materials. $(Ph_3PAu)_3O^+BF_4^- (2),^{12} (t-Bu_3PAu)_3O^+BF_4^-$ **(3),13** and Ph,PAu+BFd- **I2** were prepared according to reported methods.

1,4-C₆H₄(PH₂)₂ (1), prepared according to ref 14, has the following spectroscopic data. ¹H NMR (270 MHz, CDCl₃, 25 °C): δ 7.40 (4H,

-
- **(1)** Schmidbaur, H. Gold Bull. **1990, 23,** 11. (2) Ramamoorthy, **V.;** Sharp, P. R. *Inorg.* Chem. **1990,** *29,* 3336.
- (3) Grohmann, A.; Ride, J.; Schmidbaur, H. *J.* Chem. *Soc., Dalton Trans.* **1991,** 783.
-
- (4) Schmidbaur, H.; Kolb, A.; Bissinger, P. *Inorg.* Chem. **1992.31,** 4370. (5) Kolb, A,; Bissinger, P.; Schmidbaur, H. *Z. Anorg. Allg. Chem.,* in press.
- (6) Grohmann, A.; Schmidbaur, H. *Inorg.* Chem. **1992, 31,** 3378. (7) Ramamoorthy, V.; Wu, Z.; Yi, Y.; Sharp, P. R. *J.* Am. *Chem.* **SOC.**
- **1992,114,** 1526.
- (8) Perevalova, E. G.; Grandberg, K. I.; Smyslova, E. I.; Kuzmina, L. G.; Korsunskii, V. I.; Kravtsov, D. N. Metalloorg. Khim. 1989, 1002; Organomet. Chem. USSR (Engl. Transl.) 1989, 523.
- (9) Schmidbaur, H.; Weidenhiller, G.; Steigelmann, 0. *Angew.* Chem., *Inr. Ed. Engl.* **1991,** *30,* 433.
- (10) Zeller, E.; Beruda, H.; Ride, J.; Schmidbaur, H. *Inorg.* Chem. **1993, 32,** 3068.
- (1 **1)** Scbmidbaur, H.; Zeller, E.; Weidenhiller, G.; Steigelmann, *0.;* Beruda, H. *Inorg.* Chem. **1992, 31,** 2370.
- (12) Nesmcyanov, A. N.; Perevalova, E. G.; Struchkov, *Y.* T.; Antipin, M. **Y.;** Grandberg, K. I.; Dyadchenko, **V.** P. *J. Orgunomet.* Chem. **1980, 201,** 343.
- (1 3) Schmidbaur, H.; Kolb, A.; Zeller, E.; Beruda, H.; Schier, A. *Z. Anorg. Allg. Chem.* **1993, 619,** 1575.
- (14) Evleth, E. M.; Freeman, L. **V.** D.; Wagner, R. I. *J. Org. Chem.* **1962, 27,** 2192.

Figure 1. Proposed structure and atomic numbering for the dication $[1,4-C_6H_4[P(AuP-t-Bu_3)_3]_2]^{2+}$ in 4.

Figure 2. Proposed structure and atomic numbering for the dication $[1,4-C_6H_4[P(AuPPh_3)_3]_2]^{2+}$ in 5.

Figure 3. Proposed structure and atomic numbering for the tetracation $[1,4-C_6H_4[P(AuPPh_3)_4]_2]^{4+}$ in 6.

 ψ -t, ³J(HP) = ⁴J(HP) = 4.2 Hz, C₆H₄), 3.97 (4H, d, ¹J(HP) = 202.5 Hz, PH₂). ¹³C{¹H} NMR (68 MHz, CDCl₃, 25 °C): δ 134.52 (dd, $2J(CP) = 9.9$ Hz, $3J(CP) = 5.5$ Hz, $C2/C3/C5/C6$), 128.65 (d, $1J(CP)$ **(s,** PH2). MS (CI): *m/e* = 141.9 [M+, loo%]. $= 8.3$ Hz, C1/C4). ${}^{31}P{^1H}NMR$ (109 MHz, CDCl₃, 25 °C): δ -123.9

Preparation of Compounds. [1,4-C₆H₄{P(AuP-t-Bu₃)₃}₂}²⁺(BF₄⁻)₂(4). A sample of $3(1.30 \text{ g}, 1.0 \text{ mmol})$ was dissolved in $CH_2Cl_2(25 \text{ mL})$ and treated with a solution of **1** (71 mg, 0.5 mmol) in the same solvent (10 mL) at -78 °C. The colorless reaction mixture was warmed to ambient temperature after ca. 3 h, and pentane (100 mL) was added. A colorless oil separated, which was dried in a vacuum to yield **4** as a polycrystalline solid: yield 1.29 g (95%). Anal. Calcd for $C_{78}H_{166}Au_6B_2F_8P_8$ (M_r 2707.38): C, 34.60; H, 6.18; Au, 43.65. Found: C, 34.32; H, 6.22; Au, 43.97. "H NMR (270 MHz, CDCI3,25 "C); 6 7.40 *(AzA'zXX',* 4H, C_6H_4), 1.44 (d, $3J(PH) = 13.8$ Hz, 162 H, t-Bu). ${}^{13}C(^{1}H)$ NMR (68 MHz, CDCl3, 25 "C): 6 139.45 *(AXX',* Cl), 134.56 *(AXX',* C2), 39.41 (d, IJ(CP) = 14.32 Hz, CP), 32.28 **(s,** br, CH3). 31P(lH) NMR (109 MHz, CDCl₃, 25 °C): δ 106.2 (d of $(AX_3)_2$, br, ²J(PP) = 233.8 Hz, MS (FD, CH₂Cl₂ solution): $m/e = 1265.9$ [M²⁺, 100%]. $t-Bu_3P$), 13.2 (q of $(AX_3)_2$, ²J(PP) = 233.8 Hz, ⁵J(PP) = 3.8 Hz, PAu₃).

0020-1669/93/1332-4524\$04.00/0

 $[1,4-C₆H₄(P(AuPPh₃)₃]₂]²⁺(BF₄⁻)₂(5).$ The preparation followed the procedure outlined for compound **4** using reagent **2** (1.48 g, 1.0 mmol). **The** product separated as a red oil, which was dried to give a red polycrystalline solid: yield 1.38 g (90%). Anal. Calcd for $C_{114}H_{94}Au_6$ -B₂F₈P₈ (M_r 3067.20): C, 44.64; H, 3.09; Au, 38.53. Found: C, 44.18; (m,PPh3+C6&). **13C(1HJNMR(100MHz,CD2C12,25** "C): 6 135.79 (*AXX'*, br, C2), (C1 resonance obscured), 134.52 (d, $2J(CP) = 12.97$ Hz, C2'/6'), 132.35 **(8,** C4'), 129.79 (d, 'J(CP) = 10.3 Hz, C3'/5'), -80 °C): δ 45.81 (d, br, ²J(PP) = 245 Hz, Ph₃P), -5.59 (q, br, PAu₃). MS (FAB, matrix material 4-nitrobenzyl alcohol): *m/e* = 1445.9 [M2+, H, 3.17; Au, 39.04. 'H NMR **(400** MHz, CDzC12, 25 "C): 6 6.65-7.60 129.75 (d, 1 J(CP) = 52.64 Hz, C1'). 31 P{¹H} NMR (161 MHz, CD₂Cl₂, loo%].

[1,4-C₆H₄{P(AuPPh₃)4}₂}⁴⁺(BF₄⁻)₄ (6). Freshly prepared Ph₃PAu⁺BF₄⁻ (546 mg, 1.0 mmol) in THF (10 mL) was added dropwise to a solution of **2** (1.48 g, 1.0 mmol) in CH2C12 (20 mL) at -78 "C. Stirring was maintained for ca. 30 min, and a solution of **1** (71 mg, **0.5** mmol) in THF (10 mL) was slowly added. After 3 h cold pentane (100 mL) was added, and *6* separated as a yellow oil; drying in a vacuum gave a polycrystalline solid: yield 2.08 g (100%). Anal. Calcd for C₁₅₀H₁₂₄Au₈B₄F₁₆P₁₀ (M_r 4159.33): **C,43.31;H,3.00;Au,37.88.** Found: C,42.92;H,3.12;Au, C_6H_4), 7.65-7.05 (m, 120H, PPh₃). ¹³C{¹H} NMR: (68 MHz, CD₂Cl₂, 25 "C), 6: 132.4 (br, C2'/C6'), 131.0 (br, C4'), 128.2 (br, C3'/CS'), 126.0 (d, br, ¹J(CP) \approx 60 Hz, C1'), (C1, C2 resonances not detected). ³¹P{¹H} NMR (109 MHz, CD₂Cl₂, 25 °C), δ: 39.58 (X-part of an (AX₄)₂) spin system, Ph_3P , $^{2}J(PP) = 195.0 Hz$), -38.94 (A-part of an $(AX_4)_2$ spin system, PAu₄, ²J(PP) = 195.0 Hz, ⁵J(PP) = 6.8 Hz). MS (FAB, matrix material 4-nitrobenzylic alcohol): $m/e = 720.6$ [(Ph₃P)₂Au⁺, 100%], 458.8 [Ph₃PAu⁺, 63.6%]. 38.09. ¹H NMR (270 MHz, CD₂Cl₂, 25 °C), δ : 8.17 ($A_2A_2'XX'$, 4H,

Results

Synthesis and Characterization of $[1,4-C_6H_4]P(AuP-t$ p-Phenylenediphosphine **(1,4-diphosphinylbenzene)** 1 ,4-C6H4- $(PH₂)₂$ (1) was found to react with 2 equiv of the trinuclear $\text{gold}(I)$ oxonium compounds $(LAu)_{3}O^{+}BF_{4}^{-}(2, L = t-Bu_{3}P)$ and $(3, L = Ph₃P)$ in CH₂Cl₂ to give products in which both phosphinyl groups are triply aurated in high yields of 95% **(4)** and 90% **(5),** respectively *(eq* 1). $\text{Bu}_3|_{3}^3{}_{2}^1{}^{2+}(\text{BF}_4^-)_2$ (4) and $[1,4-\text{C}_6\text{H}_4(\text{P}(\text{AuPPh}_3)_{3}^1{}_{2}^1{}^{2+}(\text{BF}_4^-)_2)$ (5).

Compounds 4 and 5 separate from CH₂Cl₂ solutions on addition of pentane as colorless and red oils, respectively, which solidify to give polycrystalline products on drying in a vacuum. The compounds are insensitive to air and moisture and dissolve readily in polar solvents. While solutions of **4** are stable, **5** slowly undergoes decomposition in solution with precipitation of metallic gold. No single crystals could be grown from such solutions. The compounds have therefore been characterized by H , ^{13}C {¹H}, and ³¹P{¹H} NMR spectroscopy, elemental analyses, and mass spectrometry.

Proton, carbon and phosphorus NMR spectra of compounds **4 and 5 in CDCl₃ and CD₂Cl₂ solutions show only one set of** resonances for the tertiary phosphine ligands. These data suggest equivalent bonding of all six AuL units in the dications.

According to the 31P(1H) spectrum of compound **4** the phenylene-bound phosphorus atoms are magnetically inequivalent; the quartet pattern for these atoms is further split by $5J(PP)$ coupling to give an $(AX_3)_2$ spin system. The ³¹P chemical shift values of the $C_6H_4(PH_2)_2$ resonance ($\delta = -123.8$ ppm for 1) is increased by 137 ppm to + 13.2 ppm for **4.** For compound **5** only a broad doublet and a multiplet in the intensity ratio of about 3: 1

are discernible at a temperature as low as -80 °C, indicating some site exchange of the bulky $[LAu]^+$ units in CD_2Cl_2 .

The H and $^{13}C{^1H}$ resonances of the phenylene groups are of high diagnostic value for establishing the structures of **4** and **5.** The ¹H NMR signals are $A_2A_2'XX'$ spin systems, while the carbon spectra exhibit AXX' patterns for the two distinguishable groups of phenylene carbon atoms C1/C4 and C2/C3/C5/C6 (Fig **1).** The dications of **4** and **5** can be detected directly by means of field desorption or fast atom bombardment mass spectrometry with the base peaks at $m/e = 1265.9$ and 1445.9, respectively, representing half of the masses of the parent ions.

Synthesis and Characterization of $[1,4-C_6H_4]P(Au-$ **PPh₃)₄** $^{4+}$ (**BF₄**)₄ (6). The conversion of 1 into the doubly tetraaurated phosphonium salt *6* was achieved in quantitative yield by reaction with 2 equiv of an equimolar mixture of the trifunctional oxonium compound **2** and the monofunctional reagent Ph₃PAu+BF₄- at -78 °C in THF/CH₂Cl₂ (eq 2). The

1,4-C₆H₄(PH₂)₂ + 2 (Ph₃PAu)₃O⁺BF₄⁻ +
\n1
\n2 Ph₃PAu⁺BF₄<sup>-
$$
\frac{THF/CH_2Cl_2}{-2H_2O}
$$

\n[1,4-C₆H₄{P(AuPPh₃)₄}₂]⁴⁺(BF₄⁻)₄ (2)
\n6</sup>

product *(6)* separates as a yellowish oil upon addition of pentane to the reaction mixture and is converted into a polycrystalline solid when dried in a vacuum. The dry material is air-stable, but solutions in CH_2Cl_2 or CH_3CN decompose slowly at ambient temperature. Unfortunately, no single crystals of *6* could be obtained as yet.

The tetracations of *6* have not been observed by mass spectrometry owing to the high formal +4 charge. FAB ionization leads to a base peak at $m/e = 720.6$ for the very stable fragment (Ph3P)2Au+. Peaks with low intensity found at higher *m/e* ratios could not be assigned to plausible degradation products.

The ³¹P{¹H} NMR spectra of CD_2Cl_2 solutions of compound 6 indicate that all PPh₃ groups are equivalent at room temperature. They show a sharp doublet/quintet pattern with $2J(PP) = 195.0$ Hz, with some additional splitting caused by long-range coupling of $5J(PP) = 6.8$ Hz. In the spectra no evidence was obtained for impurities such as compound **5** or other byproducts with a lower degree of auration.

The proton and 13C resonances are slightly broadened probably owing to restricted rotation of the congested PPh₃ groups. The $A_2A_2'XX'$ pattern of the phenylene protons ($\delta_A = 8.17$ ppm) is clearly separated from the PPh₃ proton resonances, and the intensity ratio of 4:120 (1 \times C₆H₄/24 \times C₆H₅) is in agreement with the proposed stoichiometry.

Discussion

This study has shown that a diprimary aromatic phosphine, $1,4-C_6H_4(PH_2)_2$, can be aurated on reaction with 2 equiv of the oxonium reagent $(LAu)_{3}O^{+}BF_{4}^{-}$ $(L = t-Bu_{3}P$ or $Ph_{3}P)$ to yield hexanuclear products of the type $[1,4-(LAu)_3P-C_6H_4-P (AuL)₃$ ²⁺(BF₄⁻)₂ with two η ³-PAu₃ units in the para positions. These results complement previous studies concerning the auration of primary amines, phosphines, and arsines which gave triply aurated cations of the type $RE(AuL)₃$ ⁺, where $E = N$, P, and As and $R =$ alkyl and aryl, with a pseudotetrahedral pnicogenium coordination.^{3,9,11}

While with difunctional *amines* only the corresponding *hexa*nuclear aurated species could be isolated,⁶ it has now been found that the reaction of 2 equiv of an equimolar mixture of $(Ph₃PAu)₃O⁺BF₄$ - and Ph₃PAu⁺BF₄- with 1,4-C₆H₄(PH₂)₂ leads to an octanuclear product, $[1,4-(Ph_3PAu)_4P-C_6H_4-P (AuPPh_3)_4]^{4+}(BF_4^-)_4$, in quantitative yield, which features two

tetranuclear η^4 -PAu₄ units in the trans positions of the central arene ring. Each of these two η^4 -PAu₄ units resembles those detected in $\mathbb{RP}(\text{AuL})_4^{2+}$ species, which are known to have a square pyramidal structure.¹¹

It is noteworthy that the octanuclear complex cation is stable in spite of the exceedingly high positive charge **(+4).** The two η^4 -P(AuL)₄²⁺ units are well separated owing to the transpositioning at the central arene ring, with the **2+** charges delocalized over the two PAu4 pyramids, which are known to be stabilized by significant Au---Au bonding.^{1,11}

Acknowledgment. This work has been supported by the Deutsche Forschungsgemeinschaft, by the Fonds der Chemischen Industrie, and, through the donation of chemicals, by Hoechst AG, Degussa AG, and Heraeus GmbH. Prof. F. R. Kreissl is thanked for obtaining the mass spectra. **J.O.** acknowledges an A.v.H. Fellowship.