Magneto-Optical Investigation of the Broad Spin-Allowed Bands in the Metal-Metal-Bonded Complexes $Mo_2X_9^3$ ⁻ (X = Cl, Br)

Robert Stranger,^{*,†} Grainne Moran,[‡] Elmars Krausz,[§] and Greg Medley[†]

Department of Chemistry, The University of Queensland, St. Lucia, QLD 4072, Australia, Department of Analytical Chemistry, University of New South Wales, Kensington, NSW 2033, Australia, and Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Received November 4, 199P

The broad spin-allowed bands observed between 16 000 and 25 000 cm⁻¹ in Cs₃Mo₂X₉ (X = Cl, Br) have been Ine broad spin-allowed bands observed between 16 000 and 25 000 cm⁻¹ in Cs₃Mo₂X₉ ($X =$ Cl, Br) have been
investigated by low-temperature single-crystal absorption and MCD spectroscopy. Using the exchange-coupled pa single-ion excitation. Weaker, sharper features are also observed which are attributed to doubly-excited pair states arising from intraconfigurational transitions (spin-flips) within the t_{26} single-ion orbitals. The spectral features are successfully modeled as a function of the Racah B and C parameters, the splitting between the trigonal t_{2e} and e single-ion orbitals, and the metal-metal π exchange interaction. From the analysis, the metal-metal π interaction in the bromide complex is shown to be weaker than that of the chloride complex. Spin-polarized, transition-state calculations using the SCF-X α -SW method were carried out on Cs₃Mo₂Cl₉. Although the spin-singlet $\sigma(Mo_2) \rightarrow$ $\sigma^*(M_{O_2})$ transition is calculated around 21 000 cm⁻¹ and is electric-dipole allowed, the low intensity (ϵ_{max} < 130) in this region indicates that this transition lies to higher energy, above 27 000 cm⁻¹.

Introduction

In a number of reports, $1-3$ we have examined in detail the electronic spectrum of the metal-metal-bonded dimer $Cs₃Mo₂$ -C19 and shown that the exchange-coupled pair model provides a satisfying explanation for the observed band structure. Initially, the sharp multiplet structure observed below 16000 cm^{-1} (see Figure 1 in ref 1) was assigned using the exchange-coupled pair model involving the trigonal $(t_{2g}^3)_a(t_{2g}^3)_b$ pair configuration (a and b refer to the two single-ion centers), incorporating both metal-metal σ and π exchange interactions parametrized by J_{σ} and J_{π} , respectively. This configuration comprises singly- and doubly-excited pair states derived from the ${}^{4}A_{2g}$, ${}^{2}E_{g}$, ${}^{2}T_{1g}$, and ${}^{2}T_{2g}$ d³ single-ion states. From the spectral analysis, the metalmetal σ interaction was shown to be quite strong (J_{σ} = 20000 \pm 5000 cm-1) and the pair states converging to lowest energy corresponded to an effective $(t_{2e}^2)_a(t_{2e}^2)_b$ pair configuration in which the trigonal t_{2x} single-ion orbitals and accompanying electrons are essentially "factored out" energetically due to their participation in strong metal-metal σ bonding.

More recently, the theoretical model was extended to include the single-ion e_g orbitals as the exchange-coupled pair model involving the $(t_{2g}^3)_a(t_{2g}^3)_b$ configuration is only valid for small J_{τ} . In the extended model, all pair states arising from the $(t_{2a}^{2-n}e^{n})_{a}(t_{2a}^{2-n}e^{n})_{b}$ $(n = 0, 1, 2)$ configurations were included. As a result, it was possible to account for the anomalously low orbital *g* values found for the lowest lying pair multiplets around 8000 $cm⁻¹$ in terms of extensive mixing of the trigonal t_{2e} and e singleion orbitals by the metal-metal π interaction, $J_{\tau} = 7000 \pm 1000$ cm⁻¹. As noted previously,⁴ J_r is defined in terms of cubic orbitals,

- ***Abstract published in** *Advance ACS Abstracrs,* **September 1, 1993.**
- **(1) Dubicki, L.; Krausz, E.; Stranger, R.; Smith, P. W.; Tanabe, Y.** *Inorg.* **(2) Stranger, R.** *Chem. Phys.* **Lerr. 1989,** *157,* **472.** *Chem.* **1987, 26,2247.**
- **(3) Stranger, R.; Moran, G.; Krausz, E.; Dubicki, L.; Giidel, H.; Furer, N.** *Inorg. Chem.* **1992, 31,2860.**
- **(4) Stranger, R.** *Inorg. Chem.* **1990,** *29,* **5231.**

but if trigonally-adapted t_{2g} orbitals are used, the metal-metal π interaction is significantly smaller, only $\frac{1}{18}$ th of the value of *J,.*

Calculations using the extended model above indicated that a large number of pair states involving single-ion $t_{2e} \rightarrow e$ excitation were predicted to lie between 16 000 and 25 000 cm-1 and, therefore, may account for the broad spin-allowed bands previously observed above 16 000 cm⁻¹ in the absorption spectra of $Mo₂X₉³⁻$ $(X = Cl, Br)$ complexes.^{5,6} Because of the close resemblance to monomeric $M_0X_6^3$ (X = Cl, Br) spectra, these bands have been attributed to $d³$ single-ion excitations and, more recently, to transitions involving metal-metal-based molecular orbitals.' However, assignment of these bands, as well as the multiplet structure observed below 16 *OOO* cm-l, on the basis of one-electron molecular-orbital excitations is not justified due to the extensive configuration interaction.

As a result of the relatively weak metal-metal bonding in Cs3- $Mo₂Cl₉$, the multiplet energies arising from the trigonal $t₂e$ and e_{g} single-ion orbitals will be largely determined by electron repulsion and cubic field effects. Consequently, the exchangecoupled pair model is likely to be far more useful in describing the multiplet structure than any molecular-orbital based model. In order to test the validity of the exchange-coupled pair model in this region, we now report the low-temperature, magnetooptical study of the broad spin-allowed bands above 16 **000** cm-1 in single-crystal $Cs_3Mo_2Cl_9$ and $Cs_3Mo_2Br_9$.

Experimental Section

Crystals of $Cs_3Mo_2X_9$ ($X = Cl$, Br) were grown from their powders **by the Bridgeman method and sublimation. Thin axial plates suitable for** MCD **measurements were obtained by grinding and polishing sections** cut from the Bridgeman samples. Small sublimed crystals less than 100 **pm thick were used to measure the orthoaxial spectra. The apparatus used to measure low-temperature, single-crystal absorption and** MCD

t The University of Queensland.

³ University of New South Wales.

I Australian National University.

⁽⁵⁾ Smith, P. W.; Wcdd, A. G. *J. Chem. Soc. A* **1970, 2447.**

⁽⁶⁾ Nguen Hyu Chi, Zelentsov, V. V.; Subbotina, N. A.; Spitsyn, V. I.; Fal'kengof, A. T. *Russ. J. Inorg. Chem. (Engl. Transl.)* 1972, *17*, 1715.
(7) Trogler, W. C. *Inorg. Chem.* 1980, *19*, 697.

^{0020-1669/93/1332-4555\$04.00/0}

spectra has been described in detail elsewhere. $8 \text{ SCF}-X\alpha$ -SW calculations were performed **using a modified version** of the **XASW program package** written **by Cook** and **Case.11**

Results and Discussion

Theory. The multiplet structure of the $t_{2e}^2({}^3A_2 + {}^1E + {}^1A_1)$, t_{2c} ¹ $e^{1(3A_1 + 3A_2 + 3E + 1A_1 + 1A_2 + 1E)}$, and $e^{2(3A_2 + 1E + 1A_1)}$ single-ion configurations for trigonal C_{3v} symmetry has been previously described.⁴ Since the spin-allowed $t_{2e} \rightarrow e$ excitations should have large electric dipole intensity, only pair states derived from the single-ion spin-triplet states need be considered. The diagonal energies of these spin-triplet states with respect to the $3A_2$ ground state are given by⁴

$$
E(^{3}A_{1}) = \Delta - 3B
$$

$$
E(^{3}E) = \Delta + 3B
$$

$$
E(^{3}A_{2}) = \Delta + 9B
$$

where Δ is the separation of the trigonal t_{2e} and e orbitals (of the order of $10Dq$ in the octahedral limit) and B is the Racah electron repulsion parameter. A recent optical study⁸ of $MoCl₆³⁻$ found $Dq = 1880$ cm⁻¹ and $B = 490$ cm⁻¹. Therefore, on the basis of the above diagonal energies, one predicts the t_{2e} ¹ e¹ multiplets to lie between 17 000 and *24* 000 cm-l, and this is in reasonable agreement with the experimental spectrum as broad bands have been reported between 19 000 and *24* 000 cm-l for the absorption spectrum of $Mo₂Cl₉^{3–,5,6}$

In order to calculate the pair-state energies, it is necessary to diagonalize the single-ion and exchange Hamiltonians⁴ for the $(t_{2e}^{2-n}e^n)_n(t_{2e}^{2-n}e^n)_b$ $(n = 0, 1, 2)$ pair configurations. The appropriate D_{3h} pair basis functions can be constructed from

$$
|\pm S_{\rm a}\Gamma_{\rm a}S_{\rm b}'\Gamma_{\rm b}'STM\gamma\rangle = (1/\sqrt{2})(|S_{\rm a}\Gamma_{\rm a}S_{\rm b}'\Gamma_{\rm b}'STM\gamma\rangle \pm |S_{\rm a}'\Gamma_{\rm a}S_{\rm b}\Gamma_{\rm b}STM\gamma\rangle)
$$

where the \pm sign refers to the symmetric and antisymmetric combination of C_{3v} pair basis functions given by

$$
\begin{split} &|n_\mathrm{a} S_\mathrm{a} \Gamma_\mathrm{a} n_\mathrm{b} S_\mathrm{b} S_\mathrm{b} S \Gamma M \gamma\rangle = \\ &\sum_{\substack{M_\mathrm{a} M_\mathrm{b}^{\prime} \\ \gamma_{\mathrm{a}} \gamma_{\mathrm{b}}}} (-1)^{S_\mathrm{a} - S_\mathrm{b}^{\prime} + M} (2S+1)^{1/2} [\lambda(\Gamma)]^{1/2} \begin{pmatrix} S_\mathrm{a} & S_\mathrm{b}^{\prime} & S \\ M_\mathrm{a} & M_\mathrm{b}^{\prime} & M \end{pmatrix} \times \\ &\qquad \qquad V \begin{pmatrix} \Gamma_\mathrm{a} & \Gamma_\mathrm{b}^{\prime} & \Gamma \\ \gamma_\mathrm{a} & \gamma_\mathrm{b}^{\prime} & \gamma \end{pmatrix} |n_\mathrm{a} S_\mathrm{a} \Gamma_\mathrm{a} M_\mathrm{a} \gamma_\mathrm{a} \rangle |n_\mathrm{b}^{\prime} S_\mathrm{b}^{\prime} \Gamma_\mathrm{b}^{\prime} M_\mathrm{b}^{\prime} \gamma_\mathrm{b}^{\prime} \rangle \end{split}
$$

- (8) **(a) Stranger, R.; Moran, G.; Krausz, E.; GUdel, H.; Furer, N.** *Mol. Phys.* **1990,69, 11. (b) Krausz, E.** *Aust. J. Chem.* **1993,46, 1041.**
- Piepho, **S. B.; Schatz, P. N.** *Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism;* **Wiley and Sons: New York, 1983.**
- **Slater, J. C.** *Quantum Theory of Molecules andSolids;* **McGraw-Hill:**
-
- New York, 1974; Vol. 4.
Cook, M.; Case, D. A. XASW-A Fortran Program Package for Atomic X-Alpha and Molecular Multiple-Scattering X-Alpha Electronic Structure Calculations, Version 2. QCPE Program 465, 1982.
(a) Levenson, (12) Sadeghi, B.; Santarsiero, B. D.; Gray, H. B. *Inorg. Chem.* 1984, 23,
1154. (d) Isci, H.; Mason, W. R. *Inorg. Chem.* 1985, 1761. (e) Newman, R. A. Martin, D. S.; Dallinger, R. F.; Woodruff, W. H.; Stiegman, A.
R. A.; Mart *Chem.* **1991,30,4647.** *(f)* **Gbkagac, G.; Isci, H.; Mason, W. R.** *Inorg. Chem.* **1992, 31, 2184.**
- (13) Hopkins, M. D.; Gray, H. B.; Miskowski, V. M. *Polyhedron* 1987, 6, **705. Stranger, R.; Smith, P. W.; Grey, I. E.** *Inorg. Chem.* **1989,** *28,* **1271.**
-
- (15) **Saillant, R.; Jackson, R. B.; Streib, W. E.; Folting, K.; Wentworth, R. A. D.** *Inorg. Chem.* **1971,10, 1453.**
- **GUdel, H. U.; Dubicki, L.** *Chem. Phys.* **1974,6, 272.**
- **Noodleman, L.; Norman, J. G.** *J. Chem. Phys.* **1979,** *70,* **4903.**

Here n_a , S_a , and Γ_a refer to the single-ion configuration, spin, and orbital representation on center a (similarly for center b), respectively, while S, Γ , M, and γ refer to the total pair spin, orbital representation, magnetic-spin, and magnetic-orbital components, respectively. The vector coupling coefficient for spin angular momentum corresponds to Wigner's $3j$ coefficient, 18 while the point group coupling coefficient is Griffith's real trigonal *V* coefficient.^{18,19}

In the kinetic exchange approximation where intercenter electron repulsion terms are neglected, the effective exchange Hamiltonian can be written as4

$$
H_{\rm ex} = 1/2 \sum_{\substack{\mathbf{a}(\alpha\alpha') \\ \mathbf{b}(\beta\beta')}} J(\alpha\alpha',\beta\beta')[-n_{\rm a}(\alpha\alpha')n_{\rm b}(\beta\beta') -
$$

$$
4S_{\rm a}(\alpha\alpha')S_{\rm b}(\beta\beta') + \delta(\beta\beta')n_{\rm a}(\alpha\alpha') +
$$

$$
\delta(\alpha\alpha')n_{\rm b}(\beta\beta')]\delta(\alpha\beta')\delta(\beta\alpha')
$$

where the localized orbitals $\alpha \alpha'$ and $\beta \beta'$ belong to metal centers a and b, respectively, and sum over both the t_{2e} and e single-ion orbitals. The generalized occupation number $n(\alpha\alpha')$, spinoperator $S(\alpha\alpha')$, and kinetic exchange parameter $J(\alpha\alpha',\beta\beta')$ are given by

$$
n(\alpha\alpha') = \sum_{\sigma} a_{\alpha\sigma}^{\dagger} a_{\alpha'\sigma}
$$

$$
S(\alpha\alpha') = \sum_{\sigma\sigma'} \langle \sigma | S | \sigma' \rangle a_{\alpha\sigma}^{\dagger} a_{\alpha'\sigma'}
$$

$$
J(\alpha\alpha',\beta\beta') = -2h(\alpha\beta')h(\beta\alpha')/U
$$

where $a_{\alpha\sigma}^{\dagger}$ and $a_{\alpha\sigma}$ are the creation and annihilation operators acting on spin orbitals in the second quantization scheme and $h(\alpha\beta)$ and U are the one-electron transfer integral and transfer energy, respectively. In the kinetic exchange approximation, if the metal-metal δ interaction is neglected, the various exchange parameters $J(\alpha\alpha',\beta\beta')$ can be expressed solely in terms of J_{τ} , where

$$
J_{\tau} = 4h_{\tau}^2/U
$$

and h_r is the transfer integral involving either the *xz* or *yz* cubic orbitals quantized down the trigonal axis of the dimer.

The matrix elements of H_{ex} can be evaluated using the expressions given previously.⁴ The single-ion matrix elements involving the electrostatic interaction and cubic ligand-field splitting have also been tabulated.⁴ For simplicity, spin-orbit coupling effects are neglected since J_{τ} is around an order of magnitude larger than $\zeta(Mo^{3+})$. Therefore, the analysis of the pair spectra of $Cs_3Mo_2X_9$ (X = Cl, Br) using the exchangecoupled pair model involves the fitting of four parameters, namely the Racah B and Celectron repulsion parameters, the cubic-field splitting parameter Δ corresponding to the separation of the trigonal t_{2e} and e single-ion orbitals, and J_{τ} , the metal-metal π exchange-interaction parameter. In the discussion to follow, we designate the multiplets arising from the various pair states using the notation $S\Gamma(S_a\Gamma_aS_b\Gamma_b)$ where *ST* denotes the D_{3h} pair state multiplet and $S_a \Gamma_a$ and $S_b \Gamma_b$ refer to the single-ion states on metal centers a and b, respectively.

In order to obtain some indication of the pair states likely to occur between 16 000 and 25 000 cm-1, calculations were performed with the single-ion parameters set to $B = 395$, $C =$ 1460, and $\Delta = 20800$ cm⁻¹, corresponding to the best-fit values for the lower lying pair states (below 16000 cm^{-1}), which have been well characterized in past studies.'-3 The *C/B* ratio was maintained at 3.7 corresponding to the value found from a recent detailed spectroscopic analysis⁸ of $MoCl₆³⁺$ doped in the cubic host material $Cs₂NaYCl₆$. The resulting energies of the spin-

- **(18) Silver, B. L.** *Irreducible Tensor Methods;* **Academic Press: New York, 1976.**
- **(19) Griffith, J. S.** *The Irreducible Tensor Method for Molecular Symmetry Groups;* **Prentice Hall: Englewood Cliffs, NJ, 1962.**

Figure 1. Calculated energy levels for the $(t_{2a}^{2-n}e^n)_a(t_{2a}^{2-n}e^n)_b$ $(n = 0, 1, 1)$ 2) pair configurations as a function of *J_x*. Single-ion parameters are set to $B = 395$, $C = 1460$, and $\Delta = 20800$ cm⁻¹. Only the $S = 0$ doublyexcited pair states belonging to the $(t_{2e}^2)_a (t_{2e}^2)_b$ configuration, and the $S = 0$ singly-excited pair states belonging to the $(t_{2e}^2)_a(t_{2e}^{\text{1e1}})_b$ config-
uration (denoted by an asterisk) are shown. Pair states are labeled on the left-hand side of the figure, while the resulting *Doh* multiplets are labeled on the right-hand side.

singlet pair states relative to the ${}^{1}A_{1}'({}^{3}A_{2}{}^{3}A_{2})$ ground state are plotted as a function of J_{τ} in Figure 1. Pair states involving the single-ion e2 configuration are not shown as they occur to higher energy, well above the region of spectroscopic interest.⁴ For J_{τ} \sim 6200 cm⁻¹, corresponding to the best fit for the lower lying pair multiplets, nine spin-singlet pair states fall within the specified range as can be seen from Figure **1.** If one includes spin-triplet pair states, the overall density of states in this region is quite high, approximately 30 pair states in all. However, only the spinsinglet pair states are considered in this analysis as they should dominate in intensity.

Cs₃M₀₂Cl₉. The single-crystal, orthoaxial (σ and π polarizations) absorption spectrum of Cs3Mo2Cl~ at *5* K is shown in Figure **2,** while the **1.8** K axial absorption and MCD *(5* T) spectra are shown in Figure 3. The MCD spectrum was not reliable above **22 000** cm-1 because of uncertainty in the baseline. Broad bands are observed at approximately **17** 000 (d), **18** 000 (e), **19** 250 (f/g), **20** 500 (h/i), **21** ⁵⁰⁰(j), **23** 000 (k), **23 700** (l), and **25** ⁵⁰⁰ **(m)** cm-1. The sharp structure observed between 12 **500** and **16 000** cm-1 (bands a+) has previously been assigned to the **1ElE** double excitation arising from the $(t_{2a}^2)_a(t_{2c}^2)_b$ pair configuration.^{1,2} These bands are strongly π polarized with $\epsilon_{\text{max}} \sim 80$ greater than that for the broad spin-allowed bands above **16** 000 cm⁻¹ in σ polarization. Furthermore, the π intensity for these bands has been shown to bevibronically induced.1.2 For the broad bands above 16 000 cm⁻¹, the π polarization is about twice the intensity of the σ polarization with ϵ_{max} values as large as 130.

From Figure 1 there is only one π polarized, spin-allowed pair state below 30 000 cm⁻¹, corresponding to ${}^{1}A_{2}^{\prime\prime}({}^{3}A_{2}{}^{3}A_{2}{}^{*})$ (an asterisk is used to denote states arising from the single-ion t_{2e} ¹e¹ configuration). Therefore, it must be concluded that the bulk of *7r* intensity observed between **12** 000 and **25** 000 cm-1 is vibronically induced and, consequently, the polarization behavior of the bandscannot be relied on for assignment purposes. Unfortunately, the temperature dependence of these bands is difficult to assess, due to their dramatic sharpening on cooling, and therefore cannot be used as a reliable indication of vibronic intensity. The π

Figure 2. Polarized absorption spectrum of a **70 pm** thick single crystal of Cs₃M_Q₂Cl₉ at 5 K. The π and σ spectra refer to light polarized along and perpendicular to the metal-metal axis of the dimer, respectively. **(See** Table I for the labeling of bands.)

Figure 3. Axial absorption and MCD spectra (5 T) of Cs₃Mo₂Cl₉ at 1.8 K. Because of baseline uncertainty, the MCD spectrum is not reliable above 22 000 cm⁻¹. (See Table I for the labeling of bands.)

intensity most likely arises from vibronic mixing with the intensity most likely arises from vibronic mixing with the
z-polarized $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ transition or $M_0^{\text{III}}M_0^{\text{III}} \rightarrow M_0^{\text{II}}$. MoIV charge-transfer transition. A similar situation occurs in basic rhodo $[(NH₃)₅Cr-O-Cr(NH₃)₅]^{4+}$, where the intense z-polarized bands associated with the double excitations were shown to arise from a vibronically induced exchange mechanism, the intensity being borrowed from the higher energy π polarized Cr \leftrightarrow Cr charge-transfer transition.¹⁶ Strong, vibronically induced π intensity also occurs in the spectrum of the $Mn_2(CO)_{10}$ dimer complex and was attributed to mixing with the intense $\sigma(M_2) \rightarrow \sigma^*(M_2)$ transition to higher energy.^{12a,b}

The MCD spectrum (Figure 3) displays a prominent positive *A* term associated with the broad band **(f)** centered at 19 **250** cm^{-1} and another weaker positive A term corresponding to the weak band (h) at **20** 500 cm-l. The asymmetric nature of both A terms partly results from their overlap but it is also possible that a negative B term is contributing to this band region. The weak band (d) at \sim 17 000 cm⁻¹ exhibits very weak MCD in the form of a positive A term. The A terms observed in the MCD spectrum are associated with transitions from the ${}^{1}A_{1}'({}^{3}A_{2}{}^{3}A_{2})$ ground state to either E' or E'' excited pair states, though in the latter case the intensity will be vibronically induced.

For $J_{\pi} = 6200 \text{ cm}^{-1}$, the doubly-excited ¹E''(¹E¹A₁) pair state is calculated to lie at ~16 500 cm⁻¹. This transition is expected to be weak since it is electric-dipole forbidden. It should also be quite sharp as it is an intraconfigurational transition arising from the $(t_{2e}^2)_{a}(t_{2e}^2)_{b}$ pair configuration.⁴ However, for $J_{\tau} \sim 6200$ the $(12e^{-f})_a(12e^{-f})_b$ pair cominguration. Towever, for $J_{\tau} \approx 6200$
cm⁻¹, this state is significantly mixed with the singly-excited ¹E"-
 $(3A_2^3E^*)$ pair state which involves $t_{2e} \rightarrow e$ excitation, and this may result in a significant broadening of the $E''(E'A_1)$ state. The transition to the $E''({^{1}E^{1}A_{1}})$ state is expected to exhibit MCD on the basis of its diagonal orbital moment of $+2k$ determined previously,⁴ and this is consistent with the weak positive A term associated with the weak, broad absorption (d) at \sim 17 000 cm⁻¹ seen in both the axial and σ spectra (Figures 2 and 3). The positive sign of the A term implies coupling of the E'' origin with either A₁" or A₂" vibrations. This transition is also seen in π polarization (Figure 2) in the form of fine structure at \sim 17 000 cm⁻¹ superimposed on the broad, relatively intense shoulder (e) at \sim 18 000 cm⁻¹.

The transition to ${}^{1}A_{2}$ ['](${}^{3}A_{2}$ ³A₁^{*}), calculated at ~17 350 cm⁻¹, is predicted to be the lowest lying spin-allowed pair state involving $t_{2e} \rightarrow e$ excitation. On the basis of position, the broad, relatively intense π polarized shoulder (e) at \sim 18 000 cm⁻¹ is assigned to this pair state in which case the intensity must be induced through coupling with an A_1'' vibrational mode.

The ¹E'(³A₂³E^{*}) and ¹E'(¹E¹A₁) pair states are calculated to lie at approximately **19** 300 and **20 250** cm-', respectively. Transitions to both states are electric dipole allowed in σ polarization. Again, although the $E'(E^TA₁)$ state arises from the $(t_{2e}^2)_{a}(t_{2e}^2)_{b}$ pair configuration, it should be relatively broad since it is strongly mixed with the ¹E'(³A₂³E^{*}) pair state for J_{τ} \sim 6200 cm⁻¹. The ¹E'(³A₂³E^{*}) and ¹E'(E¹A₁) pair states are both orbital doublets which are expected to exhibit positive A MCD terms due to their diagonal orbital moments of *+k'* and $+2k$, respectively.⁴ The sign of the observed MCD for the bands seen in axial and σ polarization at approximately 19 250 (f) and 20 500 (h) cm⁻¹ is consistent with the ¹E'(³A₂³E^{*}) and ¹E'(¹E¹A₁) pair states, respectively.

On the assumption of a Gaussian band shape, the observed $(\Delta A/A)_{\text{max}}$ values for the ¹E''(¹E¹A₁), ¹E'(³A₂³E^{*}), and ¹E'(¹E¹A₁) pair states can be used to determine the experimental g-values which can then be compared with the theoretical values in order to verify the above assignments. The $(\Delta A/A)_{\text{max}}$ values are related to the MCD parameter ratio A_1/D_0 through the expression⁹

$$
\left(\frac{\Delta A}{A}\right)_{\text{max}} = \frac{1.428\beta H\left(\frac{A_1}{D_0}\right)}{\nu_{1/2}}
$$

where $\nu_{1/2}$ is the full width at half-height band parameter. For a nondegenerate groundstate, A_1 and D_0 are given by

$$
A_1 = \sum_{\lambda} g_{\lambda}(|\langle A|m_{-1}|J\lambda\rangle|^2 - |\langle A|m_{+1}|J\lambda\rangle|^2)
$$

$$
D_0 = \frac{1}{2}\sum_{\lambda}(|\langle A|m_{-1}|J\lambda\rangle|^2 + |\langle A|m_{+1}|J\lambda\rangle|^2)
$$

where A and J are the ground and excited states, λ 's are the components of *J,* $m_{\pm 1}$ is the electric-dipole operator, and g_{λ} = $\langle J\lambda | L_z + 2S_z | J\lambda \rangle$ is the excited-state g-value or Zeeman shift. Summing over the orbital components $\lambda = \pm 1$ in the above expressions for A_1 and D_0 gives the simple relation

$$
\frac{A_1}{D_0}=2g
$$

where g, the experimental g-value, can be compared to the theoretical value g_{λ} above.

From the observed $(\Delta A/A)_{\text{max}}$ values, experimental g-values of 1.4 ± 0.6 , 0.8 ± 0.4 , and 1.8 ± 0.5 are obtained for the MCD A terms associated with the bands observed at approximately **¹⁷**000 (d), **19 250** *(0,* and **20** 500 (h) cm-1, respectively. The uncertainty in the last two g -values arises from the asymmetric nature of the observed MCD A terms, whereas the uncertainty for the first g-value is due to the inherent weakness of both *AA* and \vec{A} for the 17 000 (d) cm⁻¹ band. Although the sign of the g-values is consistent with the proposed assignments, their magnitudes deviate from the theoretical g-values of $+2k$, $+k'$, and $+2k$ for the ¹E'(¹E¹A₁), ¹E'(³A₂³E^{*}), and ¹E'(¹E¹A₁) pair states, respectively, where the orbital reduction parameters k and k' are assumed to be \sim 1. However, the theoretical values ignore configuration interaction which has already been shown to be significant for these pair states. A calculation for $J_r =$ 6200 cm^{-1} with $k = k' = 1$, which takes account of configuration interaction, results in g-values of approximately **1.2,** 1 .O, and 1.8 for the ${}^{1}E''({}^{1}E^{1}A_{1}), {}^{1}E'({}^{3}A_{2}{}^{3}E^{*}),$ and ${}^{1}E'({}^{1}E^{1}A_{1})$ pair states, respectively, which are now in good agreement with the above experimental values.

The doubly-excited ${}^{1}A_{1}'({}^{1}A_{1}{}^{1}A_{1})$ and singly-excited ${}^{1}A_{1}''$ - $(3A_2{}^3A_1{}^*)$ pair states are calculated at approximately 19 350 and **20 600** cm-I, with the former pair state being significantly mixed with ${}^{1}A_{1}'({}^{3}A_{2}{}^{3}A_{2}{}^{*})$ for $J_{\tau} = 6200$ cm⁻¹. On the basis of position, the shoulder (i) at \sim 20 500 cm⁻¹ in π polarization is assigned to ${}^{1}A_{1}$ "(${}^{3}A_{2}{}^{3}A_{1}{}^*$) but it is also possible that all or part of this band is due to ${}^{1}E'({}^{1}E^{1}A_{1})$ since from the MCD spectrum this state is associated with the weak **20** 500 cm-I band (h) observed in both the axial and σ polarized spectra. From the calculated position for ${}^{1}A_{1}'({}^{1}A_{1}{}^{1}A_{1})$, it is anticipated that this state will overlap with ¹E'(³A₂³E^{*}) and therefore contribute to the band intensity observed in both σ and π polarization at ~19 250 cm⁻¹.

Higher lying spin-singlet pair states are calculated at approximately 23 350, 24 450, and 25 300 cm⁻¹ for the ¹E"(³A₂³E^{*}), ${}^{1}A_{1}$ '(${}^{3}A_{2}{}^{3}A_{2}$ *), and ${}^{1}A_{2}$ ''(${}^{3}A_{2}{}^{3}A_{2}$ *) pair states, respectively. With the exception of ${}^{1}A_{2}''({}^{3}A_{2}{}^{3}A_{2}{}^{*})$, the remaining pair states are electric-dipole forbidden in both σ and π polarization and, therefore, any intensity will bevibronically induced. **On** the basis of calculated position, the band (k) observed at \sim 23 000 cm⁻¹ in both σ and π polarization is assigned to the ¹E''(³A₂3E^{*}) pair state. This state should exhibit MCD, but since it was not possible to obtain reliable MCD above **22** 000 cm-I, this prediction cannot be tested. The π polarized bands at approximately 23 700 (1) and 25 500 (m) cm⁻¹ are assigned to the ${}^{1}A_{1}'({}^{3}A_{2}{}^{3}A_{2}{}^{*})$ and ${}^{1}A_{2}''$ - $(3A₂3A₂*)$ pair states, respectively.

Weak shoulders are observed in both σ and π polarization between **21** 000 and **22** 000 cm-I, and since no spin-singlet pair state transitions are calculated in this region, they are assigned to the spin-triplet ³E''(3A₂³E^{*}) pair state calculated at \sim 21 850 cm⁻¹. This pair state comprises $A_1' + A_2' + E' + E''$ spin-orbit levels of which the transition to E' will be σ polarized. The observed and calculated energy levels for $Cs₃Mo₂Cl₉$ are given in Table I.

It is conceivable that part of the observed band structure In 1able 1.
It is conceivable that part of the observed band structure
between 16 000 and 27 000 cm⁻¹ is due to $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ It is conceivable that part of the observed band structure
between 16 000 and 27 000 cm⁻¹ is due to $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$
and $\sigma(Mo_2) \rightarrow \sigma^*(Mo-Cl)$ type molecular-orbital transitions.⁷ Since the exchange-coupled pair model is unable to account for such transitions due to its inherent single-ion based formalism, we undertook spin-polarized, transition-state calculations **on** Cs3 we undertook spin-polarized, transition-state calculations on Cs₃-
Mo₂Cl₉ using the SCF-X α -SW method.^{10,11} From these cal-
culations, the $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ spin-singlet transition, which culations, the $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ spin-singlet transition, which should be π polarized, is predicted at approximately 21 000 cm⁻¹

Table I. Observed and Calculated Band Positions (cm-I) and Assignments for the Polarized, Single-Crystal Absorption Spectra of $Cs_3Mo_2X_9$ $(X = Cl, Br)$

$Cs_3Mo_2Cl_9$		$Cs3Mo2Br9$			
calc ^a	obs	calc ^o	obs	label	assgntc
12 250	12450	11700	12 100	a	${}^{1}A_{1}$ "(${}^{1}E^{1}E$)
13 350	13 150	12750	12 700	b	1A_1 (1E_1E_1)
15 600	15 300	14 750	14 800	c	${}^{1}E'({}^{1}E{}^{1}E)$
16 500	17 000	15750	16 000	d	${}^{1}E''({}^{1}E^{1}A_{1})$
17350	18 000	15 300	15 500	e	${}^{1}A_{2}$ '(${}^{3}A_{2}{}^{3}A_{1}{}^{*}$)
19 300	19 250	17400	17 500	f	${}^{1}E'({}^{3}A_{2}{}^{3}E^{*})$
19 350	19 250	18 150	18800	g	${}^{1}A_{1}'({}^{1}A_{1}{}^{1}A_{1})$
20 250	20 500	19 250	19 200	h	${}^{1}E'({}^{1}E^{1}A_{1})$
20 600	20 500	18 250	19 700		${}^{1}A_{1}$ "(${}^{3}A_{2}{}^{3}A_{1}{}^{*}$)
21850	21 500	19 550	19 700		${}^{3}E''({}^{3}A, {}^{3}E^{*})$
23 350	23 000	21 200	21 000	k	${}^{1}E''({}^{3}A_{2}{}^{3}E")$
24 450	23 700	23 500	d		${}^{1}A_{1}$ '(${}^{3}A_{2}{}^{3}A_{2}{}^{*}$)
25 300	25 500	22800	d	m	$^{1}A_{2}$ "($^{3}A_{2}^{3}A_{2}^{*}$)

^{*a*} Calculated energies for B = 395, $C = 1460$, $\Delta = 20800$, and $J_{\tau} =$ **6200 cm⁻¹.** *b* Calculated energies for $B = 390$, $C = 1450$, $\Delta = 18450$, and J_{τ} = 5350 cm⁻¹. ^c Assignments are given as D_{3h} multiplets with the associated pair state in parentheses. *An* asterix denotes a single-ion state arising from the $(t_{2e})^1(e)^1$ configuration. Only transitions to $E'(\sigma)$ and $A_2''(\pi)$ states are electric-dipole allowed. Observed intensity for all other states is vibronically induced. d Absorption spectrum not measured beyond $22\,500\,$ cm⁻¹ for $Cs_3Mo_2Br_9$.

and with an oscillator strength approaching 1. However, below and with an oscillator strength approaching 1. However, below
27 000 cm⁻¹ the maximum π intensity ($\epsilon_{\text{max}} = 130$) is very low
in comparison with other $\sigma(M_2) \rightarrow \sigma^*(M_2)$ transitions, where **emax** is around 2 orders of magnitude larger.I2 **In** fact, the observed in comparison with other $\sigma(M_2) \rightarrow \sigma^*(M_2)$ transitions, where ϵ_{max} is around 2 orders of magnitude larger.¹² In fact, the observed
intensity is similar to that for $\delta(M_2) \rightarrow \delta^*(M_2)$ transitions in d⁴d⁴ quadruple-bonded M_2L_8 complexes,¹³ where SCF-X α -SW calculations underestimate the transition energy by a factor of nearly 2. The discrepancy has been attributed to the large ionic dependence and metal-localized character associated with this transition due to the weakness of the metal-metal **6** interaction.13 **In** the case of the quadruple metal-metal-bonded complex $Mo_2Cl_8^+$, the calculated $\delta(Mo_2) \rightarrow \delta^*(Mo_2)$ transition energy was dramatically improved using the X_{α} -VB valence bond model." We are currently carrying out such calculations for $Cs₃Mo₂Cl₉.$

With regard to $Cs₃Mo₂Cl₉$, we have previously shown¹⁴ that the t_{2z} electrons are not fully paired-off into a metal-metal σ bond, and although this will obviously result in greater ionic the t_{2z} electrons are not fully paired-off into a metal-metal σ
bond, and although this will obviously result in greater ionic
character and a lower transition intensity for the ¹A₁' \rightarrow ¹A₂'' (σ
 $\rightarrow \sigma^*$ as 130 for this type of transition. Other metal-metal σ bonded dimers exhibit very intense $\sigma \rightarrow \sigma^*$ transitions, with oscillator dimers exhibit very intense $\sigma \rightarrow \sigma^*$ transitions, with oscillator strengths approaching 1.^{12b} It is therefore concluded that the $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ transition in Cs₃Mo₂Cl₉ lies above 27 000 cm-l. $\sigma(Mo_2) \rightarrow \sigma^*(Mo_2)$ transition in Cs₃Mo₂Cl₉ lies above 27 000 cm⁻¹.
The $\sigma(Mo_2) \rightarrow \sigma^*(Mo-Cl)$ spin singlet transitions are cal-

culated to lie above 30 000 cm-l, and this seems too high to be associated with the observed band structure between 21 000 and 25 000 cm⁻¹. The broad rising band seen in σ polarization above 25 000 cm-1 may in part be due to these transitions or the corresponding spin-triplet transitions.

Cs₃Mo₂Br₉. The detailed, low-temperature, polarized singlecrystal absorption spectrum of $Cs₃Mo₂Br₉$ below 15 000 cm⁻¹ will be reported in a later study.²⁰ Above 15 000 cm⁻¹ the lowtemperature, orthoaxial single-crystal absorption spectrum at **5** K, shown in Figure 4, bears some similarity to that of the chloride complex with relatively broad bands observed at $21 000 (k)$, 19 700 (i/j), 19 200 (h), 18 800 (g), 17 **500 (f),** and 15 500 (e) cm-I. Weak, sharper features are superimposed on the latter broad π polarized band at approximately 16 000 (d) and 14 800 (c) cm-l with corresponding absorptions also seen in σ polarization. Analogous to the chloride complex, the lower energy sharp

Figure 4. Polarized absorption spectrum of a 35 μ m thick single crystal of Cs₃Mo₂Br₉ at 5 K. The π and σ spectra refer to light polarized along and perpendicular to the metal-metal axis of the dimer, respectively. Note that interference fringes are observed in σ polarization between **13** 000 and **16** 500 cm-I. (See Table I for the labeling of bands.)

structure (bands a and b) can be assigned to the E/E double excited-pair state.20

On the basis of the above assignments for the chloride complex, the bands at 15 500 (e), 17 500 **(f),** 19 200 (h), and 21 000 (k) cm⁻¹ are assigned to the ¹A₂'(3A₂3A₁*), ¹E'(3A₂3E*), ¹E'(¹E¹A₁), and ${}^{1}E''({}^{3}A_{2}{}^{3}E^{*})$ pair states, respectively. Likewise, the additional weak bands in π polarization at 18 800 (g) and 19 700 (i/j) cm⁻¹ are assigned to the ${}^{1}A_{1}$ "(${}^{3}A_{2}{}^{3}A_{1}{}^*$) and ${}^{3}E$ "(${}^{3}A_{2}{}^{3}E^*$) pair states, while the weaker sharper features to lower energy at 16 000 (d) and 14 800 (c) cm^{-1} , indicative of doubly-excited pair transitions arising from the $(t_{2e}^2)_{a}(t_{2e}^2)_{b}$ configuration, are assigned to the ${}^{1}E''({}^{1}\text{E}^{1}\text{A}_{1})$ and ${}^{1}E'({}^{1}\text{E}^{1}\text{E})$ pair states, respectively. The ${}^{1}\text{A}_{1}'$ -
 ${}^{1}A_{1}A_{1}$ pair state is calculated at \sim 18 150 cm⁻¹, very close to ${}^{1}A_{1}$ "(${}^{3}A_{2}$ ${}^{3}A_{2}$ ^{*}) and, therefore, possibly contributes intensity to the π polarized band (g) at \sim 18 800 cm⁻¹.

The sharp multiplet structure²⁰ below 15 000 cm⁻¹ as well as the broad bands above 15 000 cm-I can be best-fitted for the parameter values $B = 390$, $C = 1450$, $\Delta = 18\,500$, and $J_{\tau} \sim 5300$ cm-1. The observed and calculated energies for these parameter values are given in Table I. The smaller value of J_{τ} for the bromide complex (cf. $J_x = 6200$ cm⁻¹ for Cs₃Mo₂Cl₉) implies weaker metal-metal π bonding, and this is consistent with the increased metal-metal distance of 0.16 *8,* for the bromide complex.¹⁵ That the Racah B and C parameters are almost the same as those found for the chloride complex is coincidental. The expected decrease in Band Cdue to covalency effects **on** replacing chloride with bromide is offset by a reduction in covalency due to reduced M-M σ and π bonding for the bromide complex. The $1000-2000$ -cm⁻¹ shifts to lower energy observed for the broad bands above 15 000 cm⁻¹ in Cs₃Mo₂Br₉ is largely due to the reduction in Δ whereas the smaller 500-1000-cm⁻¹ shifts observed for the multiplet structure below **15** 000 cm-l is mainly due to a reduction in the metal-metal π -bonding for the bromide complex as evidenced by the smaller value of *J,.*

Conclusion

The present analysis has shown that the broad spin-allowed bands observed between 16 000 and 25 000 cm⁻¹ in $Cs₃Mo₂X₉$ **(X** = C1, Br) can be assigned **on** the basis of the exchange-coupled pair model in which the single-ion trigonal t_{2z} orbitals have been

effectively "factored out" energetically due to strong metal-metal *u* bonding. The majority of bands observed in this region are consistent with pair-state transitions which largely involve trigonal $t_{2e} \rightarrow e$ single-ion excitation, accounting for their broadness in relation to the sharp multiplet structure observed below 16 000 $cm⁻¹$.

The detailed analysis of the electronic spectrum of $Cs₃Mo₂Cl₉$ has clearly demonstrated that the exchange-coupled pair model is quite successful in describing, semiquantitatively, the electronic structure of polynuclear complexes exhibiting moderate to strong metal-metal bonding. However, it must be recognized that this model deals only with states arising from metal-metal interactions in which electrons are not fully paired off into metal-metal bonds. In this respect, the edge-shared M_2L_{10} bioctahedra complexes of Mo(II1) and W(II1) are likely candidates for the application of this model as they display metal-metal bond lengths, roomtemperature paramagnetism, and electronic spectra similar to their face-shared M_2L_9 counterparts.²¹⁻²⁴

Acknowledgment. **R.S.** gratefully acknowledges the financial support of the Australian Research Council.

- **(21) Cotton, F. A.** *Polyhedron* **1987, 6,** *661.*
- **(22) Cotton, F. A.; Diebold, M. P.; O'Connor, C. J.; Powell, G. L.** *J. Am. Chem. Soc.* **1985. 107.1438. (23) Canich, J. M.; Cotton,F. A.; Daniels, L. M.; Lewis, D. B.** *Inorg. Chem.*
- **1987, 26, 4046.**
- (24) Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Falvello, L. R.; O'Connor, C. J.; Price, A. C. *Inorg. Chem.* **1991**, 30, 2509.