Two Isomers of WCl₃(PMe₂Ph)₃ and Their Potential for Equilibration with W₂Cl₆(PMe₂Ph)_n

Helmut Rothfuss, Jane T. Barry, John C. Huffman, Kenneth G. Caulton,* and Malcolm H. Chisholm*

Department of Chemistry and the Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Received April 15, 1993®

A new (comproportionation) synthesis of WCl₃(PMe₂Ph)₃, as well as the coexistence of two structural isomers, is reported. These are characterized by ¹H NMR spectroscopy and single-crystal X-ray diffraction. Equilibration of these two species is effected at 80 °C, with mer converting completely to fac. It is not possible to convert the WCl₃L₃ (L = PMe₂Ph) species to either of the known dimers W₂Cl₆L_n (n = 3, 4). The mer \rightarrow fac isomerization is shown to be catalyzed by WCl_4L_2 (but not by WCl_2L_4). The mechanism of the comproportionation synthesis of WCl_3L_3 strongly favors the *mer* isomer, and a mechanism is proposed to account for this. Photolysis of a mixture of [WCl₃(PMe₂Ph)₂]₂ in the presence of excess PMe₂Ph completely converts the dimer to mer-WCl₃(PMe₂Ph)₃. Mechanistic features which cause the stereoselectivity of this reaction are discussed. Cell parameters for fac- $WCl_3L_3(-165 \text{ °C}): a = 9.476(2) \text{ Å}, b = 18.091(5) \text{ Å}, c = 9.185(2) \text{ Å}, \alpha = 98.62(1)^\circ, \beta = 101.53(1)^\circ, \gamma = 93.49(1)^\circ$ with Z = 2 in space group $P\overline{l}$. Cell parameters for mer WCl₃L₃ at -155 °C, a = 16.031(3) Å, b = 10.297(1) Å, $c = 17.913(3), \beta = 113.86(1)^{\circ}, Z = 4$, and space group $P2_1/c$.

Introduction

The synthesis of a solid sample of WCl_3L_3 (L = PMe₂Ph) by zinc reduction of WCl₄L₃ in THF has been reported, and X-ray diffraction revealed the isomer formed to have mer stereochemistry.¹ A subsequent publication² clarified the original spectral data by showing that the ³¹P NMR signals of mer-WCl₃L₃ were broadened beyond detectability but that the ¹H NMR spectrum was diagnostic of the mer stereochemistry.³ The original report was made at a time when it was known that both molybdenum and tungsten form a variety of phosphine derivatives of different stoichiometry ([MCl₃(PR₃)_{1.5}]₂ and [MCl₃(PR₃)_{2.0}]₂), which were known to have face-shared and edge-shared octahedral structures (I and II).4-6 The earlier report¹ therefore mentions that efforts

to convert mer-WCl₃(PMe₂Ph)₃ to dimers of the type I or II (130

• Abstract published in Advance ACS Abstracts, September 15, 1993.

- (1) Hills, A.; Hughes, D. L.; Leigh, G. J.; Prieto-Alcan, R. J. Chem. Soc., Dalton Trans. 1991, 1515.
- (2) Yoon, K.; Parkin, G.; Hughes, D. L.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1992, 769.
- (3) The matter is significantly complicated by the case with which H_2O (surface bound) converts the compound to WOCl₂L₃, whose sharp NMR lines are very evident, yet subject to misinterpretation. It has also been reported that water converts $WCl_4(PMe_2Ph)_3$ to $WOCl_2(PMe_2Ph)_3$. See: Carmona, E.; Sanchez, L.; Poveda, M. L.; Jones, R. A.; Hefner, J. G. Polyhedron 1983, 2, 797.
- (4) (a) Mo₂Cl₆(EtSCH₂CH₂SEt)₂: Cotton, F. A.; Fanwick, P. E.; Fitch, J.
 (4) (a) Mo₂Cl₆(EtSCH₂CH₂SEt)₂: Cotton, F. A.; Fanwick, P. E.; Fitch, J.
 (4) W. Inorg. Chem. 1978, 17, 3254. (b) (LL)MoCl₂(µ-SR)₂MoCl₂(LL):
 (5) Cotton, F. A.; Diebold, M. P.; O'Connor, C. J.; Powell, G. L. J. Am.
 (6) Chem. Soc. 1985, 107, 7438. (c) Mo₂Cl₆(dppe)₂, Mo₂Cl₆(dedppe)₂,
 (7) W₂Cl₆(dppe)₂: Agaskar, P. A.; Cotton, F. A.; Dunbar, K. R.; Falvello,
 (1, R; O'Connor, C. J. Inorg. Chem. 1987, 26, 4051. (d) Mo₂Br₆(dppm)₂,
 (1) Cotton F. A.; Dunbar, K. R.; Falvello, $Mo_2I_6(dppm)_2, Mo_2CI_4I_2(dppm)_2: Cotto, F. A.; Daniels, L. M.; Dunbar, K. R.; Falvello, L. R.; O'Connor, C. J.; Price, A. C.$ *Inorg. Chem.* $1991, 30, 2509. (e) <math>Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Poli, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Cotto, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Poli, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Poli, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Poli, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Mui, H. D.; Poli, R. *Inorg. Chem.* 1989, 28, 3609. (f) $Mo_2CI_6(PEt_3)_4$: Poli, R.; Poli, Mui, H. D. Inorg. Chem. 1991, 30, 65. (g) Mo₂Cl₆(PMe_xEt_{3-x})₄ (x = $\begin{array}{l} \text{Aut, first, first, for the first, for the$

°C in toluene) gave "... mixtures with a complex ³¹P NMR spectrum which we were unable to analyze." This failure was puzzling given the reported synthesis of the compounds W₂- $Cl_6(PMe_2Ph)_n$ with n = 3 and 4.7 It remained of interest to attempt an equilibration of $WCl_3(PMe_2Ph)_3$ with these W_2 species. We report here a straightforward synthesis of mer-WCl₃L₃ by the comproportionation reaction of WCl_2L_4 with WCl_4L_2 , along with its synthesis from the reaction between W2Cl6L4 and excess phosphine. We also show that the mer isomer is the kinetic product and that this isomerizes to fac-WCl₃L₃ under rather specific conditions.

Experimental Section

All manipulations undertaken at ambient conditions (25 °C, 1 atm) were carried out in a glovebox under an argon atmosphere. The heating experiments were done in flame-sealed glass containers to avoid any contamination with oxygen. The glassware was vigorously flame dried and silylated. Solvents were dried over alkali metal and freshly distilled before use. Due to the high sensitivity of the described tungsten monomers to oxygen and water, any contamination results in the formation of corresponding amounts of WOCl₂(PMe₂Ph)₃.⁸ ¹H NMR spectra were recorded on a Bruker AM 500 spectrometer at 500 MHz, ³¹P{¹H} NMR measurements were performed on a Nicolet NT 360 spectrometer at 146.2 MHz using 85% H₃PO₄ as an external standard (0.0 ppm); negative phosphorus chemical shifts are upfield.

- Cotton, F. A.; Mandal, S. K. Inorg. Chem. 1992, 31, 1267.
- (8) This "scavenging" of oxygen from any kind of oxygen source became most obvious in reactions carried out in flame-sealed NMR tubes at elevated temperatures. To avoid deforming the high-precision NMR tubes, these were not flame-dried but rather dried at 100 °C in an oven. Contamination with WOCl₂L₃, which was less than 1% at the beginning, increased by factors up to 10 for high temperatures (90-110 °C), implying that water surface-bound to the glass wall caused the formation of WOCl₂L₃.

⁽⁵⁾ Mixed-metal dimers are also known. (a) MoWCl₄(μ -Cl)(μ -H)(μ dppm)₂: Cotton, F. A.; James, C. A.; Luck, R. L. *Inorg. Chem.* 1991, 30, 4370. (b) MoWCl₆(dppe)₂, MoWCl₆(µ-dppm)₂, MoWCl₆(µ-dmpm)₂: Cotton, F. A.; Eglin, J. L.; James, C. A.; Luck, R. L. Inorg. Chem. 1992, 31, 5308.

 ^{(6) (}a) W₂Cl₂py: Jackson, R. B.; Streib, W. E. Inorg. Chem. 1971, 10, 1760. (b) Mo₂Cl₆(dmpm)₂, W₂Cl₆(dppm)₂: Canich, J. A. M.; Cotton, F. A.; Daniels, L. M.; Lewis, D. B. Inorg. Chem. 1987, 26, 4046. (c) $W_2Cl_6(PEt_3)_{\pi}$ where n = 3 or 4: Chacon, S. T.; Chisholm, M. H.; Streib, W. E.; Van Der Sluys, W. G. *Inorg. Chem.* **1989**, 28, 5. (d) $W_2Cl_6(PMe_3)_{4,7}$ $W_2Cl_6(PEt_3)_n$ where n = 3 and 4: Barry, J. T.; Chacon, S. T.; Chisholm, M. H.; DiStasi, V. F.; Huffman, J. C.; Streib, W. E.; Van Der Sluys, W. G. Inorg. Chem. 1993, 32, 2322. (7) $W_2X_6(PR_3)_n$ (X = Cl or Br; PR₃ = PMe₃, PMe₂Ph, PBu₃; n = 4 or 3):

Table I. Crystallographic Data for $mer-WCl_3(PMe_2Ph)_3$ and $fac-WCl_3(PMe_2Ph)_3$

formula	C ₂₄ H ₃₃ Cl ₃ P ₃ W	C ₂₄ H ₃₃ Cl ₃ P ₃ W
space group	$P2_1/c$	PI
a, Å	16.031(3)	9.476(2)
b. Å	10.297(1)	18.091(5)
c, Å	17.913(3)	9.185(2)
α , deg		98.62(1)
B. deg	113.86(0)	101.53(1)
γ , deg		93.49(1)
V, Å ³	2704.11	1518.78
Z	4	2
fw	704.65	750.73
<i>т</i> . °С	-155	-165
λ. Å	0.710 69	0.710 69
Dealer, g cm ⁻³	1.731	1.642
μ (MoK _a), cm ⁻¹	48.492	43.221
R ^a	0.0292	0.0270
R_{w}^{b}	0.0312	0.0282

 ${}^{a} R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b} R_{2} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}|^{2}]^{1/2} \text{ where } w$ = $4F^{2}/\sigma^{2}(F^{2}).$

fac-, mer-WCl₃(PMe₂Ph)₃. A 489-mg sample of WCl₂(PMe₂Ph)₄9 (0.606 mmol) was dissolved in 25 mL of toluene and added to 365 mg of WCl₄(PMe₂Ph)₂¹⁰ (0.606 mmol) in 50 mL of toluene. The orange solution was stirred for 12 h at 25 °C during which time the solution became pale brown. The solvent was removed under vacuum to yield a light brown powder. This solid is a mixture of fac- (~4%) and mer- $WCl_3(PMe_2Ph)_3$ (~96%) isomers contaminated by a trace of $WOCl_2$ -(PMe₂Ph)₃, which is responsible for the brown color. Washing three times with 3 mL of toluene removed the WOCl₂(PMe₂Ph)₃ impurity. The resulting yellow residue was fac- and mer-WCl₃(PMe₂Ph)₃ in ~ 50% yield. (Due to the high solubility of mer-WCl₃(PMe₂Ph)₃ in toluene, the washing procedure caused a considerable loss of this product.) To separate the two isomers, the residue was extracted twice with 3 mL of toluene. The remaining solid was completely dissolved in toluene. After 12 h at -20 °C, yellow crystals of fac-WCl₃(PMe₃Ph)₃ precipitated from the solution (yield: 3%). The combined extracts, which consisted mainly of mer-WCl₃(PMe₂Ph)₃ and only minor amounts of the fac-isomer, were concentrated and subsequently kept at -20 °C to give pure crystalline mer-WCl₃(PMe₂Ph)₃ after 12 h (yield: 30%). Abbreviations: lw - line width (Hz), br = broad, ax = axial, eq = equatorial, o, m, p = ortho, meta, and para. ¹H NMR (500 MHz, C₆D₆, 25 °C) for the mer isomer: δ -24.7 (br, lw = 57, 12H, CH₃), -16.4 (br, lw = 52, 6H, CH₃), 4.0 (t, J = 6 Hz, 1H, eq p), 6.2 (t, J = 5 Hz, 2H, ax p), 8.7 (br, lw = 50, 2H, eq o), 8.9 (d, lw = 8, 4H, ax m), 9.0 (d, J = 6, lw = 12, 2H, eq m), 12.2 (br, 1w = 43, 4H, ax o). ¹H NMR (500 MHz, C₆D₆, 25 °C) for the fac isomer: $\delta - 12.3$ (br, lw = 26, 18H, CH₃); 3.0 (t, J = 7 Hz, lw = 2, 3H, p), 3.5 (mult, 6H, m), 10.4 (mult, 6H, o).

Due to incompleteness and misinterpretations in former publications, we report here the ¹H NMR data (500 MHz, C₆D₆, 25 °C) of WCl₄L₂,¹¹ ^{a,b} WCl₄L₃,^{11a,b} WCl₂L₄,^{11c} and W₂Cl₆L₄.⁷ WCl₄(PMe₂Ph)₂: δ -27.6 (br, lw = 16, 12H, CH₃), 7.7 (t, J = 6 Hz, 2H, p), 8.2 (m, 4H, m), 10.4 (m, 4H, o). WCl₄(PMe₂Ph)₃: δ -12.6 (br, lw = 478, 18H, CH₃), 8.4 (br, lw = 14, 9H, p and m), 19.6 (br, lw = 24, 6H, o). WCl₂(PMe₂Ph)₄: δ 2.1 (br, lw = 298, 24H, CH₃), 7.6 (br, lw = 30, 8H, m), 8.5 (br, lw = 162, 8H, o), 10.8 (br, lw = 21, 4H, p). W₂Cl₆(PMe₂Ph)₄ ¹H NMR (500 MHz, toluene-d₈, 25 °C): δ 0.80 (s, lw = 6, 12H, CH₃), 1.25 (s, lw = 4, 12H, CH₃), 6.92-7.32 (m, 16H, phenyl), 8.04 (d, J = 7 Hz, 4H, phenyl). ³¹P{¹H}} NMR (146.2 MHz, toluene-d₈, 25 °C): δ -123.0 (s, br), -311.1 (s, br).

X-ray Structure Determinations. mer-WCl₃(PMe₂Ph)₃. A well-formed red crystal was affixed to the end of a glass fiber using silicone grease and transferred to the goniostat where it was cooled to -155 °C for characterization (Table I) and data collection ($6^{\circ} < 2\theta < 45^{\circ}$). Standard inert atmosphere techniques were used during handling. A systematic search of a limited hemisphere of reciprocal space located a set of

Figure 1. ORTEP drawing of fac-WCl₃(PMe₂Ph)₃, viewed down a pseudo- C_3 axis.

Table II. Selected Bond Distances (Å) and Angles (deg) for mer-WCl₃(PMe₂Ph)₃

W(1)-Cl(2)	2.4182(16)	W(1)-P(5)	2.5183(17)
W(1) - Cl(3)	2.4347(16)	W(1) - P(14)	2.5564(17)
W(1) - Cl(4)	2.3627(17)	W(1) - P(23)	2.5344(17)
Cl(2)-W(1)-Cl(3)	92.00(6)	Cl(3)-W(1)-P(23)	82.09(5)
Cl(2) - W(1) - Cl(4)	174.79(6)	Cl(4) - W(1) - P(5)	87.36(6)
Cl(2)-W(1)-P(5)	89.66(6)	Cl(4) - W(1) - P(14)	101.23(6)
Cl(2)-W(1)-P(14)	83.18(6)	Cl(4)-W(1)-P(23)	89.49(6)
Cl(2)-W(1)-P(23)	86.61(6)	P(5)-W(1)-P(14)	92.76(5)
Cl(3)-W(1)-Cl(4)	90.88(6)	P(5)-W(1)-P(23)	96.59(5)
Cl(3)-W(1)-P(5)	177.81(5)	P(14)-W(1)-P(23)	166.10(5)
Cl(3)-W(1)-P(14)	88.85(5)		

diffraction maxima corresponding to the monoclinic space group $P_{2_1/c}$. Subsequent solution and refinement confirmed this choice. Data were collected using a continuous θ , two- θ scan with fixed background counts at each extreme of the scan. Equivalent data were averaged after Lorentz and polarization effects were applied. The structure was readily solved by direct methods (MULTAN78) and standard Fourier techniques. All hydrogen atoms were located in a difference Fourier on the non-hydrogen atoms and were included in the final least-squares refinement. A final difference Fourier was essentially featureless, the largest peaks being in the vicinity of the tungsten atom. The results are shown in Table II.

fac-WCl₃(PMe₂Ph)₃.0.5C₇H₈. A small yellow crystal was cleaved from a larger sample and affixed to the end of a glass fiber using silicone grease, and the mounted sample was then transferred to the goniostat where it was cooled to -165 °C for characterization (Table I) and data collection (6° < 2θ < 45°). Standard inert atmosphere handling techniques were used throughout the investigation. A systematic search of a limited hemisphere of reciprocal space located no symmetry or systematic absences indicating a triclinic space group. Subsequent solution and refinement of the structure confirmed the proper space group to be $P\overline{1}$. Data were collected using a standard moving crystal-moving detector technique with fixed background counts at each extreme of the scan. Data were corrected for Lorentz and polarization terms and equivalent data averaged to yield 3629 observed data. The structure was solved by Patterson and Fourier techniques. A difference Fourier phased on the non-hydrogen atoms clearly located all hydrogen atoms, and these were included in the subsequent least-squares refinement. A final difference Fourier was essentially featureless, the largest peaks lying at the site of the tungsten atom. The results are shown in Table III and Figure 1.

Thermal Reaction of W₂Cl₆(PMe₂Ph)₄ with PMe₂Ph. W₂Cl₆(PMe₂-Ph)₄¹² (0.020 g, 0.017 mmol) was dissolved in toluene- d_8 (0.5 mL) in an NMR tube. PMe₂Ph (16 μ L, 0.113 mmol, >6 equiv) was added via syringe. The tube was frozen in liquid N₂, evacuated and flame-sealed. Subsequently, the sample was kept at 90 °C for 1 week. After this time, ¹H and ³¹P{¹H} NMR spectra revealed the formation of WCl₄L₃ (2.6%), WCl₄L₂ (<0.3%), WOCl₂L₃ (26.0%), fac-WCl₃L₃ (1.7%), and mer-WCl₃L₃ (2.9%) in addition to the bulk amount of unreacted W₂Cl₆L₄ and free PMe₂Ph. The sample also showed a small amount of precipitate with the appearance of colloidal metal.

Photochemical Reaction of $W_2Cl_6(PMe_2Ph)_4 + PMe_2Ph$. A sample (Pyrex glass) identical to that above was irradiated for 4 h at 25 °C with

⁽⁹⁾ Sharp, P. R.; Bryan, J. C.; Mayer, J. M. Inorg. Synth. 1990, 28, 326.
(10) The synthesis of WCl₄(PMe₂Ph)₂ was carried out in analogy to the preparation of WCl₄(PMe₃)₃.⁹ The additional phosphine ligand in the resulting WCl₄(PMe₂Ph)₃ was removed at 110 °C under high vacuum for 1 h.^{11b}

 ^{(11) (}a) Butcher, A. V.; Chatt, J.; Leigh, G. J.; Richards, P. L. J. Chem. Soc., Dalton Trans. 1972, 1064. (b) Moss, J. R.; Shaw, B. L. J. Chem. Soc. A 1970, 595. (c) Bell, B.; Chatt, J.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1972, 2492.

⁽¹²⁾ The preparation of $W_2Cl_6(PMe_2Ph)_4$ followed the procedure for $W_2-Cl_6(PEt_3)_4$.^{6d}

Table III. Selected Bond Distances (Å) and Angles (deg) for fac-WCl₃(PMe₂Ph)₃

W(1) - Cl(2)	2.4416(16)	W(1) - P(5)	2.5172(16)
W(1) - Cl(3)	2.4475(16)	W(1) - P(14)	2.5101(16)
W(1)-Cl(4)	2.4545(15)	W(1)–P(23)	2.5109(17)
C (2)-W(1)-C (3)	89.84(5)	Cl(3) - W(1) - P(23)	163.76(5)
Cl(2)-W(1)-Cl(4)	91.75(5)	Cl(4) - W(1) - P(5)	80.94(5)
Cl(2) - W(1) - P(5)	170.86(5)	Cl(4)-W(1)-P(14)	163.63(5)
Cl(2) - W(1) - P(14)	82.70(5)	Cl(4)-W(1)-P(23)	83.30(6)
Cl(2)-W(1)-P(23)	78.30(5)	P(5)-W(1)-P(14)	102.83(5)
Cl(3) - W(1) - Cl(4)	86.05(6)	P(5)-W(1)-P(23)	106.06(5)
Cl(3)-W(1)-P(5)	84.22(5)	P(14)-W(1)-P(23)	110.41(5)
Cl(3)-W(1)-P(14)	78.57(5)		

a 450-W medium-pressure Hg lamp. After this time, ¹H and ³¹P{¹H} NMR spectra showed complete conversion of the dimer $W_2Cl_6L_4$ to a trace of WOCl₂L₃, 21.6% WCl₄L₃, 5.2% WCl₄L₂, and 73.2% mer-WCl₃L₃ (as estimated from ¹H NMR spectroscopy). Precipitation of a black solid suggests the possible formation of tungsten metal. In the ¹H NMR spectrum, no signals for *fac*-WCl₃L₃ were observed.

Results

Synthesis and Characterization of fac- and mer-WCl₃-(PMe₂Ph)₃. We synthesized WCl₃L₃ by the comproportionation reaction of equimolar WCl₄L₂ with trans-WCl₂L₄.¹³ This redox (atom transfer) reaction occurs within 12 h at 25 °C in toluene. The reaction produces two isomers, one pale yellow (fac) and the other apparently dark red (mer).¹⁴ Each of these, when pure, was subsequently shown not to equilibrate (isomerize) detectably within 3 d at 25 °C. The comproportionation was quantitative and resulted in the formation of 96% mer- and 4% fac-WCl₃L₃ in addition to a trace of WOCl₂L₃.

A mixture of isomers can be separated since the *fac* isomer, with its larger dipole moment, is only poorly soluble in toluene, while the *mer* isomer is more soluble. Exhaustive washing of a mixture extracts mainly the *mer* isomer (and the ubiquitous impurity *mer*-WOCl₂L₃), leaving behind a solution highly enriched in the *fac* isomer. Crystallization gives pure *fac*-WCl₃L₃. Further concentration of this solution leads to a deposit of crystals of the *fac* and *mer* isomers.

NMR Spectra. Although no ³¹P NMR signal is detectable for either isomer due to paramagnetism (d³ configuration), the ¹H NMR spectra serve as a wholly satisfactory method for characterization of both structure, integrity in solution, and thermal reactivity. The range of chemical shifts of both compounds is +12 to -25 ppm, and line widths ($\Delta v_{1/2}$) range from 0.01 to 0.11 ppm. The *P*-methyl proton resonances are broader than the aryl signals,¹⁵ and all resonances of the *fac* isomer are narrower than those of *mer*. The *fac* isomer shows one resonance for all methyls and one ortho, one meta and one para resonance, all consistent with C₃ symmetry. The *mer* isomer shows two methyl resonances (2:1 integrated intensity) and a total of six aryl resonances. For each isomer, the broadest aryl resonance(s) can be assigned to the *ortho* protons.

None of the resonances show resolvable coupling to phosphorus, but the meta and para protons generally show doublet and triplet structure (i.e., mutual coupling). The aryl hydrogen chemical shifts range from 2.99 to 12.2 ppm, and show no regular pattern from ortho to meta to para.

Temperature Dependance of the Chemical Shifts. The chemical shifts of methyl signals of the two isomers as well as of WCl_4L_2 are temperature-dependant. For the *mer* isomer, the signals at -24.7 and -16.4 ppm (25 °C) shift to -15.8 and -10.3 ppm at

90 °C. For the same temperatures, the *fac* isomer shows only a difference of 2.9 ppm from -12.3 to -9.6 ppm. The methyl signal of WCl₄L₂ at -27.6 ppm at 25 °C appears at -20.3 ppm at 90 °C.

Structures. The *fac* isomer is previously unknown, while the *mer* isomer was reported in 1991,¹ but its structure was soon thereafter² shown to suffer from compositional disorder: *mer*-WOCl₂(PMe₂Ph)₃ occupying some sites in the unit cell of WCl₃(PMe₂Ph)₃ and causing an erroneous shortening of (only one of) the W–Cl bond lengths in the *trans* Cl–W–Cl unit. Our redetermination of the structure of *mer*-WCl₃(PMe₂Ph)₃ shows these two W–Cl bond lengths (expected to be equivalent, based on chemical arguments and the average C_{2V} symmetry of this coordination geometry) are more similar than previously observed (2.418–2.363 *vs* 2.423–2.342 Å in ref 2), but nevertheless suffer some degree of the same effect.¹⁶ There is excellent agreement between this work and that of Parkin on the remaining W–Cl distance and the three W–P distances.

The fac isomer displays C_3 symmetry of the bond lengths and angles of the inner coordination sphere.¹⁷ Even the conformation of the phosphine substituents (Figure 1) is faithful to C_3 symmetry, with all phenyl groups in phase and projecting away from the WCl₃ end of the molecule and one methyl of an adjacent phosphine oriented over the face of each phenyl ring.

W-Cl and W-P distances with identical groups *trans* to themselves show insignificant differences in the *fac vs mer* isomers. For comparison, bond lengths in $[WCl_3(PMe_2Ph)_2]_2$ (C_2 crystallographic symmetry) are⁷

These show no major differences from the corresponding values in fac- and mer-WCl₃(PMe₂Ph)₃.

Conditions for fac/mer Isomerization. Isomerization of mixtures of fac and mer isomers or of pure mer (in the presence of WCl₄L₂ impurity) led to a complete conversion to fac-WCl₃L₃ at 80 °C. At temperatures above 90 °C, decomposition of the isomers to PMe₂Ph, WCl₄L₂, and WCl₄L₃ was detected (¹H NMR). Simultaneously, a black precipitate formed, which is presumably tungsten metal. We suggest that disproportionation (eq 1) may be the pathway for the observed decomposition. In

$$4WCl_{3}L_{3} \rightarrow W \downarrow + 3WCl_{4}L_{2} + 6L$$
(1)

the presence of free PMe_2Ph , WCl_4L_2 is in equilibrium with WCl_4L_3 .^{11b} At no time or temperature was dimerization of WCl_3L_3 to $W_2Cl_6L_3$ (I) or $W_2Cl_6L_4$ (II) detectable by ¹H NMR.

Mechanism of the Comproportionation Reaction. To follow the course of the comproportionation of WCl₄L₂ and WCl₂L₄, the reaction was monitored by ¹H NMR. Spectra were taken after 10, 90, and 300 min and 24 h. Already after 10 min, a small amount of the *fac* isomer (4.4% of the formed WCl₃L₃)¹⁸ was detected along with the major product *mer*-WCl₃L₃. Throughout the 24 h, the proportion of *fac*-WCl₃L₃ remained at 4% (±0.4) of the overall WCl₃L₃ formed. After 24 h, the consumption of

 ⁽¹³⁾ Rothfuss, H.; Folting, K.; Caulton, K. G. Inorg. Chim. Acta, in press.
 (14) We find that the red color assigned to mer-WCl₃(PMe₂Ph)₃ is incorrect

⁽¹⁴⁾ We find that the red color assigned to mer-WCl₃(PMe₂Ph)₃ is incorrect and is caused by varying amounts of purple WOCl₂(PMe₂Ph)₃ impurity. Both fac- and mer-WCl₃(PMe₂Ph)₃ are yellow.

⁽¹⁵⁾ For other examples of ¹H NMR of phosphines on paramagnetic 4d and 5d metals, see: Over, D. E.; Critchlow, S. C.; Mayer, J. M. Inorg. Chem. 1992, 31, 4643 and references cited therein.

⁽¹⁶⁾ It is noteworthy that $10B_{iso}$ values in the *mer* isomer are 15, 16, and 19. While the Cl with the short W–Cl distance has the largest *B*, it is only marginally larger *and* all are smaller than the values (18–22) for the *fac* isomer. Finally, the thermal ellipsoid of Cl(4) of the *mer* isomer shows no elongation along the W–Cl bond, which reemphasizes² how difficult it can be to detect <20% oxo impurity in the present case.

⁽¹⁷⁾ The structure (and color) of the fac isomer shows no evidence for cocrystallization with mer-WOCl₂L₃ since the latter has the wrong molecular shape to incorporate in the growing lattice of fac-WCl₃L₃.

⁽¹⁸⁾ All percentages reported here derive from integration of the single methyl signal of fac-WCl₃L₃ to the two methyl signals of the mer isomer in ¹H NMR.

the two starting materials was complete and only the two isomers were detected (and traces of $WOCl_2L_3$).

Due to its constant proportion over 24 h, we suggest that fac-WCl₃L₃ is formed during the comproportionation and is not a product of a subsequent isomerization. An isomerization $mer \rightarrow fac$ should show a dependence on the concentration of mer-WCl₃L₃ formed during the comproportionation. Thus, the proportion of *fac* would change over time. Furthermore, at 25 °C, solutions of pure *mer* isomer did not convert to *fac* over 24 h in the presence of WCl₄L₂, although this is an isomerization catalyst at higher temperatures (see below).

Given the fact that the very crowded *trans*-WCl₂L₄ dissociates phosphine to a small extent,¹⁹ this reaction could go by a halidebridged, inner-sphere mechanism. If so, the reaction proceeds through species III, and thus W^{II} immediately forms 1 mol of

mer product. The fate of the former W^{IV} in **III** will then determine the degree of stereoselectivity in the reaction. If WCl₃L₂ (or **III** itself) were attacked by phosphine to give only *mer*-WCl₃L₃, then complete stereospecificity would result. Obviously, this attack is something less than perfect, and a small amount of *fac* is formed.

Mechanism of the Interconversion of the Isomers. A sample of *mer*-WCl₃L₃ (containing less than 5% *fac* isomer and 2% WCl₄L₂) was monitored over time in C₆D₆ by ¹H NMR. It is nearly unchanged over 4 h in the temperature range 40–70 °C in C₆D₆, but at 75 °C, it begins to show the growth of the *fac* isomer. After 12 h at 85 °C, it has been transformed mainly (>90%) to the *fac* isomer. This result shows that the *fac* isomer is thermodynamically favored.

To investigate the possible influence of tungsten complexes in different oxidation states on the interconversion of the two isomers,²⁰ three samples of *mer*-WCl₃L₃ in toluene- d_8 were flame-sealed in NMR tubes. All of them contained initially ~0.5% of the *fac* isomers as well as ~1.5% of WCl₄L₂.²¹

To one sample, WCl_4L_2 was added, to increase its proportion to 11% (sample W^{IV}). To the second sample was added WCl_2L_4 , which consumed all WCl_4L_2 (by comproportionation) and kept the amount of WCl_2L_4 at 18% (sample W^{II}). The third sample was kept unchanged ("control"). Each sample was kept for 30 min in an oil bath at 50, 70, or 90 °C and was assayed by ¹H NMR spectra obtained with the probe at that temperature. Each was then heated for 30 min at 110 °C outside of the probe, and the ¹H NMR spectra were subsequently measured at 30 °C.

In all three cases, the ratio of *fac* to *mer* stayed almost unchanged up to 50 °C. For sample W^{II}, the amount of *fac*-WCl₃L₃ remained completely unchanged even at 90 °C. This observation shows that WCl₂L₄ is not an isomerization catalyst. It also makes clear that the interconversion of *mer* to *fac* is not thermally facile. Comparison of the behavior of samples W^{IV} to the control shows that isomerization is catalyzed by WCl_4L_2 . For both samples, the proportion of *fac*- WCl_3L_3 began to grow significantly at 70 °C, but in sample W^{IV} , containing more WCl_4L_2 , the growth of *fac* is definitely faster than in the control. The amount of *fac*- WCl_3L_3 was 7.0% for W^{IV} , compared to 3.0% for the control. At 90 °C, the concentrations were 12.6% for W^{IV} and 5.3% for the control. After the heating period at 110 °C, sample W^{IV} contained 17.5% *fac*, whereas the control had only 7.7%.

In all three samples, partial decomposition of both isomers occurred at 110 °C (¹H NMR), with the formation of WCl₄L₃ and some WCl₄L₂ in sample W^{II}. As a consequence of the formation of WCl₄L₂ at 110 °C, sample W^{II} for the first time showed signals for *fac*-WCl₃L₃. Keeping the samples for 3 d at 130 °C caused complete decomposition of WCl₃L₃.

It is thus clear that pure WCl_3L_3 decomposes before it isomerizes or forms $W_2Cl_6L_4$ and free PMe₂Ph. Redox catalysis by WCl_4L_2 is required for isomerization.

Dimer-to-Monomer Conversion. The failure of WCl₃L₃ to form $W_2Cl_6L_4$ at higher temperatures (>90 °C) leads to the conclusion that either the kinetic barrier for the reaction lies too high (and decomposition of the W(III) monomers occurs first), or dimers I and Π are not the thermodynamic product in this system. Therefore, we reinvestigated the possibility of cleaving the dimers7 in the presence of free phosphine. Two identical samples of W2- Cl_6L_4 in d₈-toluene containing excess free phosphine (6.4P:1W₂) were flame-sealed into NMR tubes. One sample was heated for 1 week at 90 °C, at which point its composition was slightly changed (1H and 31P NMR assay). Small amounts of mer- (2.9%) and fac-WCl₃L₃ (1.7%) were detected by ¹H NMR. Again, the amount of produced WOCl₂L₃ increased by a factor >10 (as in the heating experiments with the monomers). Additionally, 2.5% of WCl₄L₃ and a trace of WCl₄L₂ (<0.3%), were observed; a black precipitate with a metallic appearance also formed. The thermal reaction of P with $W_2Cl_6L_4$ is thus characterized by a very high activation energy. Due to the fact that the reaction was carried out in a large excess of free PMe₂Ph, the equilibrium $WCl_4L_2 + P \Longrightarrow WCl_4L_3$ was shifted far to the right, resulting in barely detectable amounts of WCl_4L_2 . This is obviously the reason why there was still a higher yield of mer-WCl₃L₃ than of its fac isomer under these conditions. Apparently, WCl₄L₃ is not a catalyst for the interconversion of the two isomers, and the WCl_4L_2 present was insufficient to convert all mer to fac.

The second sample was irradiated (450-W medium-pressure Hg lamp, filtered through Pyrex glass) for 4 h at 25 °C. This showed bleaching (from the original purple-brown to pale yellow) and ¹H NMR evidence for the production of primarily mer-WCl₃L₃. Proton NMR signals for the fac isomer were absent, as were ³¹P NMR signals for $W_2Cl_6L_4$. The amount of $WOCl_2L_3$ remained below 1% during the irradiation showing that only at temperatures >25 °C does a reaction with glass surface-bound water occur. Beside the cleavage of the dimer to mer-WCl₃L₃, the irradiation caused a concomitant disproportionation, leading to significant amounts of WCl₄L₃ (21.6%), WCl₄L₂ (5.2%), and a metallic-like precipitate. The fact that only the mer isomer (i.e., not the thermodynamic isomer) is produced indicates that this product is formed under conditions of kinetic control. An examination of the bridge bonds to be broken shows that scission either at **a** or at **b** will give only the mer isomer of WCl_3L_3 . See structure IV. It is remarkable that such stereoselectivity is

displayed, but a similar stereoselectivity was recently reported by

⁽¹⁹⁾ Sharp, P. R. Organometallics 1984, 3, 1217. Rabinovich, D.; Parkin, G. J. Am. Chem. Soc. 1993, 115, 353.

⁽²⁰⁾ Isomerization of a kinetically-inert molecule is often greatly accelerated by one-electron transfer. See: Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1982, 21, 1037. Connelly, N. G.; Geiger, W. E. Adv. Organomet. Chem. 1984, 23, 1.

⁽²¹⁾ Determination of the proportions of the tungsten monomers was done by ¹H NMR. For all but WCl₄L₃, integration of the methyl signal of the phosphine ligand was employed. Due to the very broad methyl resonance of WCl₄L₃, we used instead its ortho phenyl signal at 19.6 ppm, which is clearly distinct from all other phenyl signals.

Isomers of WCl₃(PMe₂Ph)₃

Cotton and co-workers 22 in the cleavage of chloride-bridged Rh-(III)-Rh(III) dimers.

Concluding Remarks

We have reported a stereoselective formation of mer-WCl₃L₃ by the comproportionation reaction involving WCl₄L₂ and WCl₂L₄. The redox reaction can be understood in terms of atom transfer by way of a mixed-valent chloride-bridged dimer, III. The isomerization of *mer*-WCl₃L₃ to *fac*-WCl₃L₃ is thermodynamically favored but does not occur readily upon thermolysis up to 90 °C in hydrocarbon solvents. However, above 50 °C, WCl₄L₂ acts as a catalyst for the isomerization of *mer*-to-*fac*-

(22) Cotton, F. A.; Eglin, J. L.; Kang, S.-J. J. Am. Chem. Soc. 1992, 114, 4015.

WCl₃L₃. Prolonged heating of WCl₃L₃ yields only products of decomposition but no formation of $W_2Cl_6L_4$ which could have been formed by (i) dissociation of PMe₂Ph and (ii) dimerization of two WCl₃L₂ fragments. However, photolysis of $W_2Cl_6L_4$ in the presence of excess PMe₂Ph did yield *mer*-WCl₃L₃. Thus, it is shown that the dinuclear compound can be converted to the mononuclear W(III) compound under appropriate conditions but we have found it impossible to form $W_2Cl_6L_4$ from WCl₃L₃.

Acknowledgment. This work was supported by the National Science Foundation.

Supplementary Material Available: Tables giving full crystallographic details, fractional coordinates and thermal parameters for fac- and mer-WCl₃(PMe₂Ph)₃ (7 pages). Ordering information is given on any current masthead page.