Spectroscopic Investigation of the Reactivity of $Cp*Ru(P^iPr_2Ph)X$ toward H₂ and Silanes: Formation in Solution of Cp*Ru(PⁱPr₂Ph)(H)₃ and Cp*Ru(PⁱPr₂Ph)(H)₂Y (Y = Halide, OR, and **SiR'**₃)

Todd J. Johnson, Paul S. Coan, and Kenneth G. Caulton^{*}

Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Received April 21, 1993®

Reaction of Cp*RuLX (L = PⁱPr₂Ph; X = Br, I, OSiPh₃, NHPh, and OCH₂CF₃, called OR_f) with H₂ gives, at -60 °C, Cp*RuLX(H)₂, where the two hydride ligands are assigned cisoid positions using ¹H NMR spectra. These molecules (except X = Br and I) react with additional H_2 to give $Cp^*RuL(H)_3$ and liberate HX. Mechanistic possibilities are discussed. Reaction of $Cp^*RuL(OR_f)$ with HSiR₃ (R = Me, Ph, OMe) gives $Cp^*RuL(H)_2SiR_3$ and $(R_1O)SiR_3$. Reaction of Cp*RuL (OR_1) with H_2SiPh_2 gives the two products Cp*RuL $(H)_2(SiXPh_2)$ (X = H and OR_f). Reversible equilibria make these species unstable toward isolation. Mechanistic studies are consistent with the presence of a common intermediate, for which H_2SiPh_2 and $HSi(OR_f)Ph_2$ compete.

Introduction

We have studied compounds of the general form $Cp^*Ru(L)X$ $(X = Br, I, OR_f, OSiPh_3, OSiMe_2Ph, NHPh; L = PPr_2Ph, PCy_3)$ to establish whether the 15-electron fragment Cp*RuP forms a single or a multiple bond to X.¹ The consequence of these would be to produce a 16- or an 18-valence² electron ground state for $Cp^*Ru(L)X$. Our conclusion from structural studies (i.e., Ru/Xbond lengths) is that there is considerable multiple bond character, yet these molecules rapidly add Lewis bases (e.g., CO and ethylene). For this reason, Cp*Ru(L)X is termed operationally unsaturated or " π -stabilized unsaturated".

Our next step was to examine the reactivity of molecules of this class toward σ bonds of reactant partners. We report here the results for H_{2^1} and silanes, H-SiR₃. These are relatively weak reagents (e.g., they show no tendancy to react with conventional 18-electron compounds without thermal or photodissociation of a ligand), and each offers the potential to form a σ -bond complex (A or B) with retention of the reagent σ bond.

The pseudooctahedral geometry expected for a $d^6 Cp^*Ru(L)X(L)$ species ($L = H_2$ or R_3SiH) would seem to make retention of the ligand σ bond especially favorable. Indeed, the d⁶ electron configuration is the most common electronic environment for discovering complexes containing intact H_2 as a ligand,³ and this has been used to explain why the d⁴ dihydride alternative is not adopted for species like Ru(H)2(H2)(PPh3)34 and HRu(H2)(Ph2- $PC_2H_4PPh_2)_2^{+.5}$ The work reported here also provides insights into the effect of the electron donor power of the group X on the Lewis acidity and the reducing power of the molecule Cp*Ru-(L)X.

- Abstract published in Advance ACS Abstracts, September 15, 1993.
- (1) Johnson, T. J.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1992, 114, 2725.
- (2) An 18-electro count is the limiting case of "complete" π -donation of the lone pair of X.
- Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155
- (4) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126.
 (5) Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J. J. Am. Chem. Soc. 1991, 113, 4876.

Experimental Section

General Procedures. All manipulations were carried out under an N2 atmosphere using standard Schlenk techniques. All glassware was flame dried under vacuum prior to use. Solid transfers were accomplished in a Vacuum Atmospheres Corp. glovebox. Toluene, pentane, and diethyl ether were distilled under nitrogen from K/benzophenone and degassed (freeze/pump/thaw) prior to use. Toluene- d_8 was distilled from NaK prior to use and stored in the glovebox. Tricyclohexylphosphine (97%, Aldrich), H₂ (99.8%, Air Products), diphenylsilane (98%, Aldrich), trimethoxysilane (95%, Aldrich), triphenylsilane (97+%, Hüls), trimethylsilane (97+%, Hüls), and chlorotrimethylsilane (98%, Aldrich) were used as received without further purification. Cp*Ru(PiPr2Ph)(Cl) was made by following the procedure for $Cp^*Ru(PR_3)(Cl)$ {PR₃ = PCy₃, PⁱPr₃⁶ PⁱPr₂Ph,⁷ Tl(OCH₂CF₃),⁸ K(OSiPh₃),⁹ and Li(NHPh),¹⁰ were synthesized according to published procedures.

All NMR measurements were made in toluene- d_8 and the ¹H, ³¹P{¹H}, ¹³C{¹H}, and ¹⁹F NMR spectra were recorded on a Nicolet NT360 spectrometer at 361.1, 146.2, 90.8, and 339.7 MHz. Positive ¹H NMR chemical shifts are downfield of TMS (0.0 ppm). Negative ³¹P NMR chemical shifts are upfield from external 85% H₃PO₄ (0.0 ppm). Fluorine chemical shifts are referenced to CCl₃F; negative chemical shifts are upfield of this reference. All positive ²⁹Si chemical shifts are downfield of TMS (0.0 ppm) and were measured on a Bruker AM500 spectrometer at 99.4 MHz.

The $Cp^*RuL(H)_2X$ species reported here are generally unstable to vacuum and isolation because they are constituents of a rapidly reverisble equilibrium. As such, NMR is desirable as a nonperturbing method of characterization and of equilibrium mole ratios.

Reactions of Cp*Ru(PR3)(X) with H2. NMR tubes (3-mL total volume) were charged with $Cp^{\bullet}Ru(PR_3)(X)^{\$}$ (0.10 mmol) dissolved in 0.5 mL of toluene- d_8 . These were degassed and filled to 1 atm with H₂ (ca. 0.10 mmol). Within minutes after thawing, these solutions changed to colors of red and brown (OR_f) or green (halide).

X = Br. ¹H NMR (25 °C): δ 7.7–7.0 (m, 5H, Ph), 2.38 (d of septets, $J_{PH} = 10 \text{ Hz}, J_{HH} = 7 \text{ Hz}, 2H, CH), 1.60 \text{ (br singlet, 15 H, C_5Me_5)},$ 0.90 (two overlapping dd, 12H, C(CH₃)₂), -6.00 (d, $J_{PH} = 30$ Hz, 2H,

- (6) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Chem. Soc., Chem. Commun. 1988, 278.
- (7) Followed the published procedure for PMe₂Ph. Adams, D. M.; Raynor, J. B. Advanced Practical Inorganic Chemistry; Wiley & Sons, Ltd.: London, 1969; p 116.
- Johnson, T. J.; Folting, K.; Streib, W. E.; Martin, J. D.; Huffman, J. C.; Jackson, S. A.; Eisenstein, O.; Caulton, K. G. Manuscript in preparation.
- (9) McGeary, M. J.; Caulton, K. G. Polyhedron 1991, 10, 2699.
 (10) Burdon, J.; Westwood, W. T. J. Chem. Soc. C 1970, 1271. We modified
- this procedure by performing the reaction of n-butyllithium and aniline in pentane. The resulting salt was filtered, washed, and dried on a glass frit.
- (11) Johnson, T. J.; Caulton, K. G. Manuscript in preparation.

RuH). ³¹P NMR (25 °C): $\delta 82.7$ (s). Selected ¹H NMR (-80 °C): 1.58 (s, 15H, C₅Me₅), δ -5.5 and -6.5 (each is broad, each 1H, Ru-H). ³¹P NMR (-80 °C): 82.2 (s).

Cp*Ru(PiPr₂Ph)(H)₂(I). ¹H NMR (25 °C): δ 7.7–7.0 (m, 5H, Ph), 2.40 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.69 (s, 15, C₅Me₅), 1.24 and 0.73 (each a dd, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -7.00 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 82.3 (s). Selected ¹H NMR (-80 °C): δ 1.61 (s, 15H, C₅Me₅), -6.55 and -7.35 (each a d, $J_{PH} = 26$, 34 Hz, each 1H, RuH). ³¹P NMR (-80 °C): δ 81.6 (s).

Cp*Ru(PiPr_2Ph)(H)_2(OCH_2CF_3). ¹H NMR (25 °C): δ 7.5–7.0 (m, 5H, Ph), 3.98 (q, $J_{HF} = 9$ Hz, 2H, OCH_2CF_3), 2.05 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.95 (s, 15H, C₅Me₅), 0.93 and 0.68 (each a dd, $J_{PH} = 16$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -10.50 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 52.8 (s). Selected ¹H NMR (-85 °C): δ 1.98 (s, 15H, C₅Me₅), -10.00 and -10.85 (each a d, $J_{PH} = 27$, 45 Hz, each 1H, RuH).

Cp*Ru(PCy₃)(H)₂(OSiPh₃). ¹H NMR (25 °C): δ 7.6–7.1 (m, 15H, Ph), 2.20–1.19 (m, 33H, Cy), 2.11 (s, 15H, C₅Me₃), -11.95 (d, J_{PH} = 25 Hz, 2H, RuH). ³¹P NMR (25 °C): δ 50.6 (s).

Cp*Ru(PiPr₂Ph)(H)₂(NHPh). ¹H NMR (25 °C): δ 7.7–7.0 (m, 10H, Ph), 4.24 (broad, 1H, N*H*Ph), 2.42 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} =$ 7 Hz, 2H, CH), 1.52 (s, 15H, C₃Me₅), 1.08 and 0.88 (each a dd, $J_{PH} =$ 14 Hz, $J_{HH} =$ 7 Hz, 6H, C(CH₃)₂), -10.74 (d, $J_{PH} =$ 24 Hz, 2H, RuH). ³¹P NMR (25 °C): δ 76.6 (s).

Elevated Pressure H₂ Reactions. Typically, 3.0-mL NMR tubes fitted with Teflon closures were charged with 0.5 mL solution (toluene- d_8) containing 0.05-0.10 mmol of Cp*Ru(PiPr₂Ph)(X). These solutions were subjected to five degassing cycles. This evacuated tube was then opened to a large volume (1 L) of H₂ and the tube was cooled to -196 °C to cool the hydrogen inside. The NMR tube was then closed and warmed to room temperature, yielding a pressure of 2-3 atm (0.2-0.4 mmol).

Reaction of Cp[•]Ru(PⁱPr₂Ph)(OCH₂CF₃) with Silanes. In the drybox, a 10-mL pentane solution containing 2 equiv of liquid silane were added to a 100-mL flask charged with Cp[•]Ru(PⁱPr₂Ph)(OCH₂CF₃)¹¹ (0.10 mmol) dissolved in 25 mL of pentane. The purple solution changed to a reddish brown color within 1 min. Excess solvent was removed *in vacuo* to yield brown oils.

In the case of trimethylsilane 2 equiv was added to the flask containing $Cp^*Ru(P^iPr_2Ph)(OCH_2CF_3)$ from a calibrated gas manifold.

Cp*Ru(PiPr₂Ph)(H)₂(SiPh₃). ¹H NMR (25 °C): δ 8.1-6.9 (m, 20H, Ph), 2.09 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.32 (s, 15H, C₅Me₅), 0.95 and 0.61 (each a dd, $J_{PH} = 16$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -11.41 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 78.4 (s). Selected ¹H NMR (-60 °C): δ 1.32 (s, 15H, C₅Me₅), -11.11 and -11.52 (each a d, $J_{PH} = 25$, 33 Hz, each 1H, RuH).

Cp*Ru(P'Pr₂Ph)(H)₂(SiMe₃). ¹H NMR (25 °C): δ 7.6–7.0 (m, 5H, Ph), 2.02 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.66 (s, 15H, C₅Me₅), 0.99 and 0.74 (each a dd, $J_{PH} = 15$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂}, 0.52 (s, 9H, Si(Me)₃), -12.33 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 82.5 (s). Selected ¹H NMR (-80 °C): δ 1.56 (s, 15H, C₅Me₅), 0.83 (s, 9H, Si(Me)₃), -11.90 and -12.53 (each a d, $J_{PH} = 26$, 33 Hz, each 1H, RuH).

Cp*Ru(P'Pr₂Ph)(H)₂(Si(OMe)₃). ¹H NMR (25 °C): δ 7.4–7.0 (m, 5H, Ph), 3.67 (s, 9H, Si(OMe)₃), 2.35 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.67 (s, 15H, C₃Me₅), 1.11 and 0.77 (each a dd, $J_{PH} = 15$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -12.21 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 79.5 (s). ¹H NMR (-80 °C): δ 7.8–7.0 (m, 5H, Ph), 3.79 (s, 9H, Si(OMe)₃), 1.65 (s, 15H, C₅Me₅), 1.29, 1.07, 0.92, 0.52 (each a dd, $J_{PH} = 17-12$ Hz, $J_{HH} = 7$ Hz, 3H, C(CH₃)₂), 2.62 and 2.01 (each a d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 1H, CH), -11.76 and -12.55 (each a dd, $J_{PH} = 27$, 30 Hz, $J_{HH} = 10$ Hz, each 1H, RuH). ³¹P NMR (-80 °C): δ 77.9 (s).

Cp*Ru(PiPr₂Ph)(H)₂(SiHPh₂). ¹H NMR (25 °C): δ 7.9–7.0 (m, 15H, Ph), 5.90 (s, 1H, SiH), 2.41 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.51 (s, 15H, C₅Me₅), 0.91 and 0.66 (each a dd, $J_{PH} =$ 16 Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -11.52 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 80.1 (s). ²⁹Si NMR (25 °C): δ 25.9 (d, $J_{SiH} =$ 182 Hz). ²⁹Si{¹H} NMR (25 °C): δ 25.9 (d, $J_{SiP} = 10$ Hz). Selected ¹H NMR (-60 °C): δ 1.48 (s, 15H, C₅Me₅), -11.12 and -11.78 (each a d, $J_{PH} = 25$, 30 Hz, each 1H, RuH).

Cp*Ru(P'Pr₂Ph)(H)₂(Si(OCH₂CF₃)Ph₂). ¹H NMR (25 °C): δ 8.1– 7.0 (m, 15H, Ph), 3.69 (q, $J_{HF} = 9$ Hz, 2H, OCH₂CF₃), 2.03 (d of septets, $J_{PH} = 10$ Hz, $J_{HH} = 7$ Hz, 2H, CH), 1.31 (s, 15H, C₃Me₃), 1.22 and 0.83 (each a dd, $J_{PH} = 16$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -11.14 (d, $J_{PH} = 29$ Hz, 2H, RuH). ³¹P NMR (25 °C): δ 77.8 (s). ²⁹Si NMR (25

Figure 1. ³¹P{¹H} NMR spectra (toluene, 25 °C) of Cp*Ru(PⁱPr₂Ph)I under varying mole ratios of H₂:Ru. The bottom spectrum was run after subjecting the 4:1 sample to vacuum.

°C): δ 59.9 (s). Selected ¹H NMR (-60 °C): δ 3.81 and 3.56 (each a br s, 1H, OCH₂CF₃), 1.26 (s, 15H, C₅Me₅), -10.80 and -11.32 (each a d, J_{PH} = 26, 29 Hz, each 1H, RuH).

Spectroscopic Data for Silyl Ethers. (MeO)₃SiOCH₂CF₃. ¹H NMR: δ 3.76 (q, J_{HF} = 9 Hz, 2H, OCH₂CF₃), 3.38 (s, 9H, OMe). ²⁹Si{¹H} NMR: δ -80.1 (s).

Me₃SiOCH₂CF₃. ¹H NMR: δ 3.49 (q, J_{HF} = 9 Hz, 2H, OCH₂CF₃), 0.19 (s, 9H, Me). ²⁹Si{¹H} NMR: δ 22.9 (s).

Ph₃SiOCH₂CF₃. ¹H NMR: $\delta 8.1-7.2$ (m, 15H, Ph), 3.77 (q, $J_{\text{HF}} = 9$ Hz, 2H, OCH₂CF₃). ²⁹Si{¹H} NMR: $\delta -17.6$ (s).

HSi(OCH₂CF₃)Ph₂. ¹H NMR: δ 7.6–7.1 (m, 10H, Ph), 5.48 (s, 1H, SiH), 3.61 (q, J_{HF} = 9 Hz, 2H, OCH₂CF₃). ²⁹Si{¹H} NMR: δ 51.7 (s).

Results

Reaction of H₂ with Cp*Ru(PiPr₂Ph)X (X = Cl, Br, I). Cp*RuLCl (L = PiPr₂Ph) shows no evidence (³¹P NMR) for reaction with 2 atm of H₂ at -80 °C in toluene-d₈. However, within 5 min of exposure of Cp*RuPBr to H₂ (Ru:H₂ ratio of 1:2) at 25 °C in toluene-d₈ some adduct forms. This is also evident by a color change from blue to green-blue. The ³¹P{¹H} NMR spectrum shows reactant and product in a mole ratio of 7:1. The equilibrium between these species is slow on the ³¹P NMR scale, as well as (*vide infra*) the ¹H NMR time scale. Cooling this solution to -80 °C does not appreciably alter the reactant-toproduct ratio. After this solution was subjected to vacuum, the ³¹P NMR spectrum showed complete conversion to blue Cp*RuLBr. Adduct formation (eq 1) is thus reversible. The

$$Cp^*RuL(X) + H_2 \Leftrightarrow Cp^*RuLH_2(X)$$
 (1)

X = Br, I

iodide analog, Cp*RuLI, rapidly (<5 min) takes up H₂ (Figure 1). Under 2 mol of H₂ per Ru in toluene- d_8 at 25 °C, the reactant: product ratio is 1:1, and the solution color is blue-green. At a H₂:Ru mole ratio of 4:1, the product:reactant ratio (by ³¹P NMR) is 3:1. Again, cooling to -80 °C does not appreciably alter the degree of binding of H₂. Intermittent evacuation of the NMR

tube shifts the equilibrium (eq 1) completely back to Cp*RuLI. Since $(\sigma + \pi)$ donor power of the halides decreases along the series Cl > Br > I,⁸ it appears that internal π -donation inhibits H₂ binding.

Proton NMR studies of each of these adducts show two inequivalent isopropyl methyl groups and one hydride doublet at 25 °C. This is due to intramolecular fluxionality. It is not associated with rapid (on the NMR time scale) H₂ dissociation (eq 1) since these equilibrium mixtures show separate Cp* and ⁱPr ¹H NMR signals for Cp*RuLX and Cp*RuLH₂(X) at 25 °C. The intramolecular site exchange is slowed at -80 °C, where it becomes possible to establish the molecular structure. The bromo complex shows two hydride chemical shifts (1:1 intensity) at low temperature, thereby ruling out either an H₂ complex (C)¹² or a *trans* Ru(IV) species (D). A *cis*-square-pyramidal

Ru(IV) species (E, X = Br) is in agreement with the observations. In the case of Cp*RuL(H)₂I, the resolution of the -80 °C ¹H NMR spectrum is sufficient to see doublet structure in each of the hydride resonances (H^a and H^b), due to distinct P-Ru-H coupling constants (26 and 34 Hz). These static spectra are also consistent with structure E in that the ⁱPr groups now show a total of four methyl chemical shifts. Thus, there is no molecular mirror plane of symmetry containing the Ru-P bond.

Reaction of H₂ with Cp*Ru(L)(OR_f). Addition of < 2 H₂ to a solution of $Cp^*Ru(P^iPr_2Ph)(OR_f)$ in toluene-d₈ also gives an adduct. The adduct is fluxional at 25 °C, showing a hydride doublet and only two isopropyl methyl chemical shifts. At -80 °C, the fluxionality is slowed to the point where two unit intensity hydride doublets (P-Ru-H coupling; ${}^{2}J_{HH'}$ is not resolved) are observed. At -80 °C, four isopropyl methyl signals are resolved. These aspects of structure and nonrigidity are analogous to those in the halide complexes and thus the "adduct" is cis-Cp*RuP- $(H)_2(OR_f)(E, with X = OR_f)$. What is different is the subsequent reactivity observed for the OR_f example: excess H₂ causes the production of R_fOH (¹H NMR evidence) and Cp*Ru(PⁱPr₂Ph)-(H)₃.¹³ The latter is a classical trihydride;^{14,15} once its temperature-dependent and non-first-order ¹H NMR pattern (AB₂X at low temperature) are recognized, its identity follows readily. It is important to recognize that reductive elimination of alcohol is not a (spontaneous) unimolecular process (eq 2), but requires the

$$Cp^*RuL(H)_2(OR_f) \neq Cp^*RuLH + R_fOH$$
 (2)

presence of H₂. If the reaction of Cp*RuL(OR_f) is carried out at 25 °C and with excess H₂ (>2 H₂ per Ru), then only Cp*RuL(H)₃ and R_fOH are observed. Excess H₂ reacts with Cp*RuL(H)₂(OR_f) even at -60 °C to give Cp*RuL(H)₃ and R_fOH. On the other hand, evacuating a solution containing $Cp^*RuL(H)_2(OR_f)$ reverses the H_2 oxidative addition, and regenerates $Cp^*RuL(OR_f)$.

A solution which contains both Cp*RuL(H)₂(OR_f) and R_f-OH shows variable ³¹P and hydride NMR chemical shifts for the dihydride. These vary (5 ppm downfield in ³¹P NMR in the presence of 20 equiv of R_fOH) with the concentration of alcohol present and are attributed to hydrogen bonding of free alcohol to the coordinated alkoxide. While the ³¹P NMR resonance shifts only 0.2 ppm in the presence of equimolar R_fOH, the alkoxy methylene protons move 1 ppm upfield. Since alkoxide in Cp*RuL(H)₂(OR_f) is a pure σ ligand, its high (two lone pair) electron density makes it a good participant in a hydrogen bond.

Other Hydrogenolysis Reactions. Reaction of equimolar H_2 with Cp*Ru(PCy₃)(OSiPh₃) or Cp*Ru(PiPr₂Ph)(NHPh) in toluene- d_8 at 25 °C produces the corresponding Cp*RuL(H)₂X and Cp*RuL(H)₃, as well as Ph₃SiOH or aniline, respectively. Additional H_2 causes further conversion, to leave only the corresponding Cp*RuL(H)₃ and HX. The first (oxidative addition) step is again reversible: evacuation of a solution containing either Cp*RuL(H)₂X species regenerates Cp*RuLX. For either of the above species, there is no coalescence of either ¹H or ³¹P NMR signals for the species Cp*RuLX and Cp*RuL-(H)₂X when they are together in toluene- d_8 at 25 °C; any exchange between these is slow on the NMR time scale.

Reaction of Cp*RuL(OR_f) with Tertiary Silanes. Reaction of Cp*RuL(OR_f) with two equivalents of HSiR₃ (R = OMe, Me or Ph) at 25 °C in pentane gives, within 15 min, complete conversion to the corresponding Cp*RuL(H)₂(SiR₃). The ¹H NMR spectrum of each reaction also showed signals consistent with formation of R₃SiOR_f (eq 3). Vacuum transfer of the

$$Cp*RuL(OR_f) + 2 HSiR_3 \rightarrow$$

 $Cp*RuL(H)_2(SiR_3) + R_3SiOR_f$ (3)

volatiles from the HSi(OMe)₃ reaction permitted additional confirmation (*via* ¹H NMR spectroscopy) of the formation of (MeO)₃SiOR_f. The ²⁹Si{¹H} NMR spectrum of this volatile product is a singlet at -80.1 ppm, while the ²⁹Si NMR signal of Cp*RuL(H)₂Si(OMe)₃ was observed as a singlet at -55.2 ppm. The corresponding values observed for R_fOSiPh₃ and Cp*RuL(H)₂(SiPh₃) are -17.6 and -8.5 ppm. For Cp*RuL(H)₂(SiMe₃), the ²⁹Si resonance was a doublet (²J_{PSi} = 8 Hz) at 10.7 ppm, with R_fOSiMe₃ observed at 22.9 ppm. A previous relevant report is the reaction of HSiMe₂Ph with *trans*-Ir(PPh₃)₂CO(OMe) to yield Ir(H)₂(PPh₃)₂CO(SiMe₂Ph) and (MeO)SiMe₂Ph.¹⁶

In the ¹H NMR spectrum (25 °C), the dihydride products each showed a Cp* singlet, two iPr methyl chemical shifts, one methine signal, and a hydride doublet (due to P-Ru-H coupling). Cooling the sample from the HSiMe₃ reaction to -80 °C causes the hydride doublet to resolve into two doublets, with $J_{\rm PH}$ values of 26 and 30 Hz. This is consistent with these molecules undergoing rapid hydride fluxionality at 25 °C. Also resolved at -80 °C are four iPr methyl chemical shifts, indicating that there is no mirror plane of symmetry containing the Ru-P bond. Taken together, these observations are consistent with a fourlegged piano-stool structure with the hydrides cisoid (E, with X = SiR_3).¹⁷ The fluxional process, which cannot involve dissociation of either $P^{i}Pr_{2}Ph$ or H_{2} , must pass through a transition state or intermediate with a mirror plane of symmetry containing Ru, P, Si, and the Cp* ring centroid. Both F ("planar") and G require consideration as a transition state or intermediate, respectively, in this fluxional process.

Since the 1:2 stoichiometry of eq 3 implies the occurrence of two hydrogen transfers, we have sought evidence for intermediates by studying reactions at equimolar reagent ratios. Upon mixing equimolar Cp^{*}RuL(OR_f) and HSi(OMe)₃ at 25 °C in toluene-

⁽¹²⁾ Rapid rotation of coordinated H₂ on the chemical shift time scale is universally observed, since the rotational barrier is typically less than 3 kcal/mol.³

⁽¹³⁾ This overall reaction was reported for Cp*Ru(PCy₃)(OMe). See: Chaudret, B.; Duteil, A.; He, X. D. J. Organomet. Chem. 1990, 391, C45.

^{(14) (}a) Arliguie, T.; Border, C.; Chaudret, B.; Devillers, J.; Poilblanc, R. Organometallics 1989, 8, 1308. (b) A structure determination of Cp*Ru-(PPh₃)(H)₃ shows that coordinated H₂ is not present. See: Suzuki, H.; Lee, D. H.; Oshima, N.; Moro-oka, Y. Organometallics 1987, 6, 1569.

Let, D. H.; Oshima, N.; Moro-oka, Y. Organometallics **1987**, *6*, 1569. (15) Selected spectroscopic data for Cp*Ru(PPr₂Ph)(H)₃ (25 °C). ¹H NMR: δ 1.96 (s, 15H, C₅Me₅), 0.99 and 0.78 (each a dd, $J_{PH} = 12$ Hz, $J_{HH} = 7$ Hz, 6H, C(CH₃)₂), -10.77 (d, $J_{PH} = 22$ Hz, 3H, RuH). ³¹P{¹H} NMR: δ 92.7 (s).

⁽¹⁶⁾ Rappoli, B. J.; Janik, T. S.; Churchill, M. R.; Thompson, J. S.; Atwood, J. D. Organometallics 1988, 7, 1939.

 d_{8} , one immediately observes resonances consistent with equimolar amounts of Cp[°]RuL(OR_f), Cp[°]RuL(H)₂Si(OMe)₃, and (MeO)₃-SiOR_f. When this reaction was repeated by combining the reagents (equimolar) in a cold NMR tube at -78 °C and recording (within 5 min of mixing) NMR spectra in a probe precooled to -80 °C, both ¹H and ³¹P nuclei revealed only Cp[°]RuL(OR_f), Cp[°]RuL(H)₂Si(OMe)₃, (MeO)₃SiOR_f, and unreacted HSi-(OMe)₃. Over the next 30 min at -80 °C, all of the silane was consumed, leaving only Cp[°]RuL(OR_f), Cp[°]RuL(H)₂Si(OMe)₃, and (Me₃O)₃SiOR_f. Scheme I shows a proposed mechanism,

Scheme I

and the intermediate H is evidently extremely short-lived. To enable reductive elimination of $(RO)_3SiOR_f$ from H, this intermediate must have the $(RO)_3Si$ and OR_f groups cisoid.

Given that I is an authentic 16-electron hydride (i.e., devoid of π -stabilized unsaturation) it might be considered unattractive (unlikely) as a species formed rapidly at -78 °C. Thus, we consider alternative, *bimolecular* routes from H to product. These could be direct attack of HSiR₃ on H (" σ bond metathesis"),¹⁸ with concurrent displacement of (RO)₃SiOR_f, or direct attack after $\eta^5 \rightarrow \eta^3$ -Cp^{*} rearrangement.¹⁹ Alternatively, the electronrich (pure σ Ru-O bond) OR_f in H could effect nucleophilic attack $(S_N 2)$ on silicon of the incoming $HSi(OR)_3$.²⁰ Yet another alternative to highly unsaturated I would be J, the product of silyl migration to the electron-rich OR_f ligand.

Reaction of Cp*RuL(OR_f) with Secondary Silanes. Studies with a difunctional silane are mechanistically enlightening. A pentane solution of Cp*RuL(OR_f) reacts with 1 mol of H₂SiPh₂ (25 °C, 15 min) to yield, after removal of solvent, a brown oil which exhibits two ³¹P{¹H} NMR singlets of equal intensity. The ¹H NMR spectrum of this oil is consistent with the presence of two *cis*-Cp*RuL(H)₂(SiXPh₂) products, where X = H or OR_f. Detected are an RuSi*H*Ph₂ singlet (5.86 ppm) and a quartet due to RuSi(OCH₂CF₃)Ph₂, as well as signals due to HSi(OR_f)Ph₂.²¹ The ²⁹Si NMR spectrum of the silyl groups attached to ruthenium, when proton *coupled*, shows a doublet (¹J_{SiH} = 182 Hz) at 25.9 ppm and a singlet at 59.9 ppm. No Si-P coupling was observed, nor was there any Si-H coupling (expected²² magnitude 30–65 Hz) due to incipient interactions of the sort shown in K (i.e., η^2 -H-SiR₃).

Of particular significance is the observation that H_2SiPh_2 does not convert $Cp^*RuL(H)_2(SiOR_fPh_2)$ into $Cp^*RuL(H)_2(SiHPh_2)$ in toluene, even over a period of 1 h at 90 °C. Once formed, these molecules (which are coordinatively *saturated*) are therefore inert to interconversion by added silane.

On the other hand, when the mole ratio of $Cp^*RuL(OR_f)$ to H₂SiPh₂ at the time of the initial reaction was changed to 1:5, the mole ratio of $Cp^*RuL(H)_2(SiXPh_2)$ changed to 1:2 for X = OR_f to X = H. Analogously, when the $Cp^*RuL(OR_f)$:H₂SiPh₂ mole ratio was reduced to 2:1, unreacted $Cp^*RuL(OR_f)$ was accompanied by $Cp^*RuL(H)_2(SiXPh_2)$ in a mole ratio of 1 (X = H) to 1 (X = OR_f). These results indicate that partitioning between the X = H and X = OR_f products occurs at some reaction intermediate and that H₂SiPh₂ is in competition with another reagent (HSi(OR_f)Ph₂) for capture of this intermediate. This is nicely accommodated by a small elaboration of Scheme I, shown as Scheme II. Species I is the 16-electron transient common to

Scheme II

both Scheme I and II, and it is captured by two competitive bimolecular processes, a and b of Scheme II. As the concentration

- (21) HSi(OR_t)Ph₂ was independently synthesized from HSiClPh₂ and TlOR_t to confirm its spectral parameters.
- (22) Schubert, U. Adv. Organomet. Chem. 1990, 30, 151. See also: Wang, W.; Eisenberg, R. Organometallics 1992, 11, 908, and references therein.

⁽¹⁷⁾ In contrast to the situation in square-planar and octahedral complexes, the transoid ²J_{PH} coupling constant is not much larger than the cisoid $^{2}J_{PH}$ value in a four-legged piano-stool compound CpM(H)(PR₃)L₂. In fact, there is evidence that the cisoid J is larger than the transoid one. However, examples are known, for square-pyramidal compounds, of cisoid (16 Hz) and transoid (8 Hz) coupling constants of nearly equal magnitude, and coupling constants assigned as transoid vary from zero to 30 Hz, while those assigned as cisoid vary from 16 to 75 Hz.^{34–39} This warning has also been sounded elsewhere recently. See: Casey, C. P.; Tanke, R. S.; Hazin, P. N.; Kemnitz, C. R.; McMahon, R. J. Inorg. Chem. 1992, 31, 5474. This confusing situation may arise because the H-M-Hangles in Cp*MLL'(H)₂ species can vary greatly with variation in repulsion between L and L' and especially between L or L' and the Cp^{*} ring. Thus, the names transoid and cisoid may encompass such a wide variation in H-M-H angles (and J values) that stereochemical assignment based on J values becomes unreliable. In this regard, it is decisive to note that the trans- and (two) cis-H-Ir-P angles in Cp*Ir-(PMe₃)(H)₃⁺ are³⁵ 98.3(4)° vs 74.7(4) and 75.8(3)° (i.e., very similar). Our $J_{\rm PH}$ values are similar to each other and are thus not compelling for stereochemical asignment. We prefer to decide stereochemistry based on the number of hydride chemical shifts in $Cp^*Ru(H)_2L(SiR_3)$. We consistently see two chemical shifts (and resolve ${}^{2}J_{HH} = 10$ Hz in Cp*RuL- $(H)_2[Si(OMe)_3])$, which is inconsistent with a transoid structure but consistent with cisoid stereochemistry. Our assignment is also required by the observation of four methyl chemical shifts for the iPr methyl groups in Cp*Ru(PⁱPr₂Ph)(H)₂(SiMe₃). However, for an alternative stereochemistry in a closely related molecule, see: Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Chem. Soc., Chem. Commun. **1992**, 1201.

⁽¹⁸⁾ σ-Bond metathesis probably demands an empty orbital on the metal, making this mechanism less attractive for our 18-electron Ru(IV) species H. There is, however, one postulate of σ-bond metathesis for a saturated iridium compound. See: Klein, D. P.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 3079.

⁽¹⁹⁾ A ring slip mechanism was suggested for the phosphine-induced elimination of alcohol from Cp*Ir(PPh₃)(H)(OEt): Glueck. D. S.; Newman Wilson, L. J.; Bergman, R. G. Organometallics 1991, 10, 1462.

⁽²⁰⁾ Corriu, R. J. P. J. Organomet. Chem. 1990, 400, 81.

Scheme III

(i.e., mole ratio Si:Ru) of H₂SiPh₂ rises, path a becomes more important. To the extent that the chemistry of a difunctional silane also reflects that of HSiR₃, the results summarized in Scheme II suggest that the initial molecule of silvl ether formed in either mechanism departs the coordination sphere to a significant extent before or while the second molecule of Si-H reagent attacks.

Other Ligand Exchanges. The Si-Cl bond energy might be strong enough to allow SiH/RuCl redistribution. In fact, reaction of Cp*RuLCl with Me₃SiH (1:3 mole ratio) in toluene- d_8 gives quantitative conversion (<5 h, 25 °C) to Cp*RuL(H)₂(SiMe₃) and Me₃SiCl. The presumed intermediate Cp*RuL(Cl)(H)-(SiMe₃) therefore does not survive at 25 °C in the presence of Me₃SiH.²³ This contrasts with the lack of reactivity of Cp*Ru-(PiPr₃)(Cl)(SiH₂Ph)H toward PhSiH₃.⁶

Discussion

The facility with which all of these reactions occur supports the idea that all Cp*RuLX species, while possessing varying degrees of Ru/X multiple bonding, are operationally unsaturated: the approach of H_2 or a silane effectively "displaces" a lone pair to the group X. This also supports the idea that the many high-temperature C-H activation reactions involving²⁴ CpRu- $(PR_3)_2(CH_3)$ begin with PR₃ dissociation, which has a high activation energy because CH₃ lacks a lone pair.

The examples of H-G bond cleaveage below 25 °C reported here are summarized in Scheme III. The mechanism of step b is challenging, since the metal complex is saturated.

Possible mechanisms when H-G is a silane have been discussed above and we will discuss Ru-O hydrogenolysis below. Step a occurs because the Cp*RuIIL moiety is quite electron-rich for all X. Step b occurs because of the strength of the X-G bond and/or the four-electron destabilization²⁵ (d_{π}/X lone-pair repulsion) in $Cp^*RuL(H)(X)G$. The multiple appearance of Ru(IV) in this scheme clearly indicates that we underestimated the electronrich character of Cp*RuLX species at the outset of this work. The $d^6 \rightarrow d^4$ redox change is accessible here with even weak oxidants. The same is true for the protonation of $Cp{\boldsymbol{\ast}}RuL_2H$ species,²⁶ where the (low-temperature) kinetic product is a dihydrogen complex (Ru(II)), but this readily rearranges to $Cp^*Ru^{IV}L_2(H)_2^+$

It is clear that ΔG° for loss of H₂ from a species Cp*RuL- $(H)_2 X$ (i.e., the reverse of eq 1) shows a systematic dependence on X. When X has lone pairs (halides, OR_f, OSiPh₃, NHPh), the free-energy change is less positive than when X is H or SiR_3 . This trend is clearly correlated with the presence or absence of lone pairs on X, to the point where H_2 dissociation is undetectable when X is a pure σ -bonding group. For example, we find that $Cp^*Ru(PPh_3)(H)_3$ shows no exchange under 1 atm D_2 over 48 h at 25 °C. These results are in accord with the quantitative

determination of E_a^{27} for eq 4, where E_a ranges from 29 kcal/mol for X = OH to over 47 kcal/mol for X = H.

> $Cp^*Ru(PMe_3)_2X \rightarrow Cp^*Ru(PMe_3)X + PMe_3$ (4)

Stereochemistry of $Cp^*Ru(PR_3)(H)_2X$. The dihydride compounds reported here show a distinct preference for the stereoisomer in which the hydride ligands are cis. This stands in contrast to the compounds $CpRu(PR_3)_2(H)_2^+$, ²⁶ which have the hydrides trans. One cannot explain our cis stereochemistry as due to an avoidance of two strong σ ligands being opposed (trans), since the same would then apply to the bis(phosphine) compounds. Although hydride ligands are small, and two can perhaps occupy the least volume when they are cis, it is hard to imagine that mutual repulsions among Cp*, PR₃, and X are smaller when the hydrides are cis than when they are trans. Moreover, this argument also applies equally well to bis(phosphine) compounds, yet they are not cis. It could be argued that incipient (thus weak) H/H attractive interactions could cause the *cis* isomer to be preferred, yet we find no significant (i.e., >30 Hz) $J_{\rm HH}$ coupling in these molecules.

What differentiates $Cp^*RuL(H)_2X$ from the bis(phosphine) cations, is that the electron-rich character of the purely σ -bonded groups X creates a repulsion with the electron-rich hydride ligands, and that such repulsions are fewer in number in the cis than in the trans isomer.28

Reversibility of Hydrogenolysis. We have argued that a fourelectron destabilization reduces the bond strength of these (and certain other) late transition metal/ligand bonds. Thus the facile hydrogenolysis reported here becomes understandable in its contrast to early transition metal alkoxides and amides. We were, nevertheless, surprised that products as Bronsted acidic as Ph3-SiOH and CF₃CH₂OH were eliminated, in spite of the potential that these could protonate $Cp^*RuL(H)_3$. We anticipated that this protonation product, Cp*RuLH₄⁺ (possibly containing coordinated H_2), could easily reform $Cp^*RuL(H)_2(OR)$ by the mechanism shown in eq 5. In fact, we showed that 100 equiv of

$$Cp^*RuLH_4^+ \rightleftharpoons H_2 + Cp^*RuLH_2^+ \xrightarrow{RO^-} Cp^*RuL(H)_2(OR)$$
(5)

 R_fOH (and the absence of added H_2) will reverse the hydrogenolysis reaction; the yield (in situ) of $Cp^*RuL(H)_2(OR_f)$ is 30%. Moreover, subjecting a 1:1 solution of Cp*RuL(H)₃ and RfOH to vacuum at 25 °C completely reverses the oxidative addition of H_2 and regenerates $Cp^*RuL(OR_f)$. This means that these reactions are nearly thermoneutral.²⁹

Mechanism of Ru-O Bond Hydrogenolysis. While it is interesting that $Cp^*RuL(H)_2(OR)$ does not spontaneously and unimolecularly eliminate alcohol, it is problematic to understand the mechanism by which H₂ promotes alcohol production. The problem centers on how (eq 6) H_2 can interact with the apparently

$$Ru-OR + H-H \rightarrow Ru-H + H-OR$$
 (6)

saturated species $Cp^*RuL(H)_2(OR)$. In early transition metal chemistry (i.e., d⁰ metals), a " σ -bond metathesis" mechanism is proposed. However, this reaction requires an empty metal orbital, yet such is absent here for Ru(IV).

⁽²³⁾ For the conversion of [Cp*Ru(OMe)]₂ to (Cp*RuCl)₄ using Me₃SiCl, ee: Kölle, U.; Kossakowski, J. J. Organomet. Chem. 1989, 362, 383

⁽²⁴⁾ Lehmkuhl, H.; Bellenbaum, M.; Grundke, J. J. Organomet. Chem. 1987, 330, C23. Lehmkuhl, H.; Schwickardi, R.; Mehler, G.; Krüger, C.; Goddard, R. Z. Anorg. Allg. Chem. 1991, 606, 141 and references therein. (25) Poulton, J. T.; Folting, K.; Streib, W. E.; Caulton, K. G. Inorg. Chem.

^{1992, 31, 3190.} (26) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun.

^{1987, 1675.} Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166. Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875. Jia, G.; Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161.

⁽²⁷⁾ Compare Bryndza, H. E.; Domaille, P. J.; Paciello, R. A.; Bercaw, J. M. Organometallics 1988, 8, 379.

A reviewer proposes that the cis isomer is preferred because trans hydrides suffer a high trans influence (mutual competition for one metal orbital). Since the trans $\angle H-M-H$ is typically less than 100° (see data in ref 17), the trans designation is not very descriptive ("diagonal" is better), and a strong trans influence is not certain. The matter of angular deformation in four-legged piano stools was analyzed recently: Lin, Z.; Hall, M. B. Organometallics 1993, 12, 19. (29) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J. E.

J. Am. Chem. Soc. 1987, 109, 1444.

We have considered a mechanism which begins with a preequilibrium phosphine elimination (eq 7), and have attempted to probe this by treatment of $Cp^*Ru(P^iPr_2Ph)(H)_2(OR_f)$ with

$$Cp^*Ru(P^iPr_2Ph)(H)_2OR_f \Rightarrow Cp^*Ru(H)_2(OR_f) + P^iPr_2Ph$$

$$M$$
(7)

2PCy₃. In fact, we observe no change after two weeks at 25 °C. This result rules out preequilibrium dissociation of phosphine, since intermediate M should be captured by PCy3 to give Cp*Ru- $(PCy_3)(H)_2(OR_f)$.³⁰ In the context of π -stabilization of unsaturation, the proposed species $Cp^*Ru(H)_2(OR_f)$ has special appeal because of potential alkoxide π -donation, yet it is apparently not a kinetically significant species.

We have also evaluated a mechanism which begins by a preequilibrium alcohol reductive elimination (eq 2). However, qualitative rate observations at low temperature show that added R_fOH (5:1, 10:1, and 20:1 mole ratios) does not slow the rate of alcohol elimination by H_2 from Cp*RuL(H)₂(OR_f). We are left to conclude that the hydrogenolysis mechanism involves H2 attack on an $(\eta^3-C_5Me_5)RuL(H)_2(OR_f)$ species, or on a weakly bonded Cp*RuL(H)(RfOH) species analogous to J.

The nature of the hydrogenolysis reaction raises the question of whether the alcohol proton in the product originates from $Cp^*RuL(H)_2(OR_f)$ or from the attacking H₂. Unfortunately, the observed rapid exchange of $Cp^*RuL(H)_2(OR_f)$ with D_2 renders the obvious experiment (eq 8) technically impossible.

$$Cp^*RuL(H)_2(OR_f) + D_2 \rightarrow R_fOX + ...$$
 (8)

X = H or D?

We have examined a coordinatively saturated ("pure- σ ") alkoxide for possible Ru-OR_f hydrogenolysis by a four-center transition state without prior H_2 coordination to Ru itself. Treatment of $Cp^*RuL(CO)(OR_f)$ with 1 atm H₂ at 25 °C for 1 week (eq 9) gives no reaction. Since Cp*RuL(CO)H is a

$$Cp*RuL(CO)(OR_f) + H_2 \xrightarrow{?} Cp*RuL(CO)H + R_fOH$$
 (9)

member of a known class of molecules (and thus not thermodynamically implausible), this would suggest that this reaction fails for kinetic reasons. We propose that it is the lack of coordinated hydride which causes eq 9 to fail, and thus that it is a coordinated hydride of $Cp^*RuL(H)_2(OR_f)$ that becomes the alcohol proton (i.e., this is the mechanistic feature lacking in eq 9).31

One early theme of late-transition metal alkoxide chemistry is that such M-OR bonds are weak. This has now been refuted,³² but based entirely on data for square-planar d⁸ compounds. For those, $O \rightarrow M \pi$ -donation is somewhat unfavorable since the d_{z^2} orbital is doubly occupied. Indeed, from the available structural data for such compounds (Ir^I and Pt^{II}), it is concluded that there is no evidence for π -donation.

As we generalize, from the present work, to include d⁶ species, it is clear that the M/OR bond can be strong or weak, multiple or single, depending on the ligand set and geometry. Thus, the absence of unimolecular alcohol dissociation (eq 10) results from

$$Cp^*Ru(L)(H)_2(OR) \twoheadrightarrow Cp^*Ru(L)H + ROH$$
 (10)

the high energy of the authentically-unsaturated $Cp^*Ru(L)H$ species, even though $Cp^*Ru(L)(H)_2(OR)$ has a nearly pure Ru–O single bond (i.e., is "weak"). However, this Ru(IV) compound is now "prepared" to eliminate alcohol in a bimolecular encounter with H₂, which simultaneously furnishes the ligands needed to form the trihydride product (eq 11). The first mole of H_2 thus

$$Cp*Ru(L)(H)_2(OR) + H_2 \rightarrow Cp*Ru(L)(H)_3 + ROH$$
(11)

"activates" the (stronger) Ru/O multiple bond in Cp*Ru(L)-(OR) by converting it to a single bond and by increasing the Bronsted basic character of the oxygen (localization of two lone pairs on oxygen). The overall hydrogenolysis reaction (i.e., Ru $+ 2H_2$) is thus substrate-promoted. The weakness of the Ru/O single bond in $Cp^*Ru(L)(H)_2(OR)$ is accentuated by the fact that there is a repulsive (destabilizing) interaction between the several filled d_{τ} orbitals and the two oxygen lone pairs. Such "four-electron destabilization" is, with increasing frequency, being recognized as a decisive factor in organometallic chemistry.

The ready hydrogenolysis of Ru-OSiR₃ bonds reported here, and the reversibility of these transformations, suggests that Ru-(II) (as well as other transition metals with >4 d electrons) should readily undergo conversion to Ru-H and -OH groups on silica and alumina supports. The generation of metal hydrides of these metals bound to surfaces is thus readily understood.

There are limits to Ru/O bonds which can be split with a mild reagent like H_2 . Given that $[Cp^*Ru(H)_2]_2$ is a known compound,³³ we have attempted the hydrogenolysis shown in eq 12.

$$[Cp^*Ru(OR_f)]_2 + 3 H_2 \rightarrow [Cp^*Ru(H)_2]_2 + 2 R_fOH$$
 (12)

After 72 h at 25 °C under 1 atm H_2 (H_2 :Ru = 15:1), all [Cp*Ru- $(OR_f)]_2$ is recovered unchanged. This reaction cannot be kinetically limited by steric factors. Moreover, the μ_2 -OR foxygens are pyramidal, suggesting the presence of lone pairs and thus Bronsted basicity. Consequently, the failure of this reaction probably resides in it being thermodynamically unfavorable.

Acknowledgment. This work was supported by the National Science Foundation and by the award of a Lubrizol Fellowship to T.J.J. We thank Johnson Matthey/Aesar for material support.

- (33) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshida, Y.; Moro-oka, Y. Organometallics 1988, 7, 2243.
 (34) Bleeke, J. R.; Kotyk, J. J.; Moore, D. A.; Rauscher, D. J. J. Am. Chem. Soc. 1987, 109, 413
- Soc. 1987, 109, 417.
- (35) Flood, T. C.; Rosenberg, E.; Sarhange, A. J. Am. Chem. Soc. 1977, 99, 4334.
- (36) Heinekey, D. M.; Millar, J. M.; Koetzle, T. F.; Payne, N. G.; Zilm, K. W. J. Am. Chem. Soc. 1990, 112, 909.
- Arliguie, T.; Chaudret, B.; Devillers, J.; Poilblanc, R. C. R. Acad. Sci. (37)Paris 1987, 305, 1523.
- Faller, J. W.; Anderson, A. S. J. Am. Chem. Soc. 1970, 92, 5852.
- Heinekey, D. M.; Payne, N. G.; Sofield, C. D. Organometallics 1990, 9, 2643.

⁽³⁰⁾ Note also that the observation of P-Ru-H coupling at low temperature indicates that eq 7, if it occurs at all, is slower than the observed hydrogenolysis reaction.

⁽³¹⁾ Brothers, P. J. Prog. Inorg. Chem. 1981, 28, 1

⁽³²⁾ Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.