1-Alkyl-1-aza-closo-dodecaborane: A Novel Access to the Icosahedral NB11 Skeleton[†]

Franc Meyer, Jens Müller, Martin U. Schmidt, and Peter Paetzold*

Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

Received March 31, 1993®

arachno-B₉H₁₃(SMe₂) was transformed into arachno-B₉H₁₃(NRH₂) (1a-d; R = nBu, tBu, tBuCH₂, PhCH₂) by reaction with primary amines. The thermal dehydrogenation of **1a-d** gave nido-RNB₀H₁₁ (**2a-d**). The addition of C=NtBu to the azaboranes 2b,d gave arachno-RNB₂H₁₁(CNtBu) (3b,d). The azaboranes 2c,d were heated with an excess of Me₂S·BH₃ at 170 °C in decalin, yielding closo-RNB₁₁H₁₁ (4c,d). Aza-closo-dodecaboranes of the same type (4e-g; R = Et, iPr, iBu) were also obtained by alkylating the azadodecaborate $[Et_3HN][NB_{11}H_{11}]$ with $[Et_3O]BF_4$ or with the triflates RO_3SCF_3 (R = iPr, iBu), respectively. All of the products were characterized by ¹H and ¹¹B NMR, using 2-D ¹¹B/¹¹B techniques in the case of 1c, 2b, and 4e. The structure of the closo cluster 4d was shown to represent a distorted icosahedron. The N atom is distinctly closer to the polyhedral center M (M-N = 1.535 Å) than the atom B12 (M-B12 = 1.651 Å). The neighboring B-H bonds are shifted from the radial direction toward the N atom. Crystal data for 4d: space group $P2_1/n$, Z = 4, a = 9.041(4) Å, b = 14.651(7) Å, c = 11.224(4) Å, $\beta = 96.14(3)^{\circ}$, R = 0.053.

Introduction

Recently, we reported¹ the synthesis of aza-closo-dodecaborane-(12) $(NB_{11}H_{12})$, the isoelectronic analogue of dicarba-closododecaborane(12) $(C_2B_{10}H_{12})$, thus proving that even the remarkably electronegative nitrogen can be incorporated into an electron-deficient cluster skeleton of 5-fold connectivity. The first step in our four-step synthesis requires handling of explosive hydrazoic acid in order to transform $B_{10}H_{12}(SMe_2)_2$ into $B_{10}H_{12}$ - $(N_3)(NH_2)$, whose subsequent thermal transformation into *nido*- $NB_{10}H_{13}^2$ suffers from the low yield of only 5%. The closure of the nido-NB₁₀ skeleton by the action of Et₃N·BH₃ proceeds more conveniently, yielding the *closo* anion $NB_{11}H_{11}^{-}$ first,¹ which finally gives closo-NB₁₁H₁₂ upon protonation. Our efforts³ to close the nido-NB₉ instead of the nido-NB₁₀ skeleton by reacting nido-NB₉H₁₂ with Et_3N ·BH₃ in a 1:2 molar ratio gave a mere substitution of the N-bonded hydrogen with the formation of $Et_3N-BH_2-NB_9H_{11}$.

Here we report the synthesis of 6-alkyl-6-aza-nido-decaboranes $(RNB_{9}H_{11})$ by a novel route. The absence of an N-bonded proton allows a one-step closure of the NB₉ skeleton to give closo- $RNB_{11}H_{11}$ upon reaction with two BH_3 units. We also report the molecular and crystal structure of 1-benzyl-1-aza-closo-dodecaborane(12) in order to supplement structural evidence for the NB₁₁ skeleton, which up to now has been restricted to an electron diffraction study of the parent azadodecaborane(12) in the gas phase.4

Results and Discussion

Synthesis. We started from dimethyl sulfide-arachno-nonaborane(13) $(Me_2S \cdot B_9H_{13})^5$ and substituted the sulfane ligand by primary amines, a procedure well-known for other bases.⁶ The products, alkylamine-nonaboranes 1a-d, undergo an elimination of H₂ at 140 °C which is accompanied by the incorporation of

- Müller, J.; Paetzold, P.; Boese, K. Intervation Chem. Lett., 1992, 125,
 Müller, J.; Paetzold, P.; Englert, U.; Runsink, J. Chem. Ber. 1992, 125,
- (4) Hnyk, D.; Bühl, M.; Schleyer, P. v. R.; Volden, H. V.; Gundersen, S.;

the NR moiety into the cluster skeleton, giving the 6-alkyl-6aza-nido-decaboranes 2a-d in 18-24% yields. We had explored³ this reaction for the parent compound H₃N·B₉H₁₃ and had suggested an exo/endo interchange of the ligands NH₃ and H at the atom B4 as the first step. The reaction then proceeds through a stereochemically clear path: the formation of bonds between N and two adjacent B atoms at the expense of two N-H bonds, one B-H_{endo}, and one B-H-B bridge bond. In Scheme I, the products of type 2 are shown in two different perspectives in order to elucidate their formation as well as their structural relation to the familiar decaborane(14). (Note that the numbering procedure changes by going from 1 to 2!) The tert-butyl and the benzyl derivatives 2b,d, abitrarily selected among the products 2a-d, readily add tert-butyl isocyanide to give arachno- RNB_9H_{11} ·CNtBu (3b,d). The addition of Lewis bases in general and of isocyanides in particular to the parent compound nido- NB_9H_{12} is well-known.⁷

The skeletal closure of the aza-nido-decaboranes RNB₀H₁₁ to give aza-closo-dodecaboranes $RNB_{11}H_{11}$ can be achieved by the use of an excess of Me₂S·BH₃ under rather drastic conditions: 2-h reflux in decalin at ca. 170 °C. The yield of closo species is fairly good ($R = tBuCH_2$, 42%; $R = PhCH_2$, 53%). The nido cluster 2b (R = tBu) gives a mixture of unknown products out of which no closo cluster 4b can be sublimed. We did not test the N-butyl species 2a because the yield of only 6%, starting from $Me_2S \cdot B_9H_{13}$, makes the access of 2a inconvenient. The overall yields of the three-step syntheses of $4c_{,d}$, $Me_2S \cdot B_9H_{13} \rightarrow$ $RH_2N \cdot B_9H_{13} \rightarrow RNB_9H_{11} \rightarrow RNB_{11}H_{11}$, are 7 and 6%, respectively. The known closo-azaborane MeNB₁₁H₁₁⁸ had been produced in an overall yield of only 1.1% by the four-step route $B_{10}H_{12}(SMe_2)_2 \rightarrow B_{10}H_{12}(N_3)(NH_2) \rightarrow NB_{10}H_{13} \rightarrow NB_{11}H_{11}^{-1}$ \rightarrow MeNB₁₁H₁₁, including the unpleasant use of HN₃.

In spite of the low-yield availability of the aza-closo-dodecaborate $[Et_3NH][NB_{11}H_{11}]$, we tested several procedures in order to alkylate the N atom of the anion. Alkyl triflates, RO3- SCF_3 , are successful alkylation agents, not only for $R = Me^8$ but also for R = iPr, iBu. Triethyloxonium tetrafluoroborate may be used for R = Et. Alkyl halides, on the contrary, cannot be used since halide anions X⁻ open the aza-closo-dodecaborane skeleton⁸ by nucleophilic attack with the formation of nido anions

[†] Dedicated to Professor Otto J. Scherer on the occasion of his 60th birthday. Abstract published in Advance ACS Abstracts, October 1, 1993

⁽¹⁾ Müller, J.; Runsink, J.; Paetzold, P. Angew. Chem., Int. Ed. Engl. 1991,

³⁰, 175

Müller, J.; Paetzold, P. Inorg. Chem. 1993, 32, 2442. Heřmánek, S.; Plešek, J.; Štibr, B.; Hanousek, F. Collect. Czech. Chem. (5) Commun. 1968, 33, 2177.

Graybill, B. M.; Pitochelli, A. R.; Hawthorne, M. F. Inorg. Chem. 1962, (6) 1, 626.

⁽⁷⁾ Arafat, A.; Baer, J.; Huffmann, J. C.; Todd, L. J. Inorg. Chem. 1986, 5. 3757

Meyer, F.; Müller, J.; Paetzold, P.; Boese, R. Angew. Chem., Int. Ed. (8)Engl. 1992, 31, 1227.

Scheme I

RNB₁₁H₁₁X⁻. Trimethylsilyl and di-*n*-butylboryl triflates do not react with the anion NB₁₁H₁₁⁻, presumably because of steric reasons. The N-bonded H atom of the parent borane NB₁₁H₁₂ has been shown by electron diffraction⁴ to be shielded by the five neighboring H atoms, first because the small N atom is situated closer to the icosahedral center than the larger B atoms and second because the five neighboring B-H bonds are tilted from the radial direction toward the N-H bond. Therefore, rather bulky groups like Me₃Si or nBu₂B cannot approach the N atom of NB₁₁H₁₁⁻. The failure to transform *nido*-tBuNB₉H₁₁ into *closo*-tBuNB₁₁H₁₁ may be attributed to the steric demand of the *tert*-butyl group.

NMR Characterization of the Products. The ¹¹B and ¹H NMR shifts of the boranes $RH_2N \cdot B_9H_{13}$ (1a-d), RNB_9H_{11} (2a-d), $RNB_9H_{11} \cdot CNtBu$ (3b,d), and $RNB_{11}H_{11}$ (4c-g) are summarized in Tables I and II. For the *arachno* clusters 1a-d, the assignment

of the ¹¹B NMR signals is based on a 2-D COSY ¹¹B/¹¹B NMR experiment on the neopentyl species 1c and on a comparison with the assignments given^{2,9} for the parent species $H_3N \cdot B_9H_{13}$. No cross peaks are observed between the resonances of B atoms which are connected by hydrogen bridges,¹⁰ and there are also no cross peaks between B7 and B6/8, neither in 1c nor in $H_3N \cdot B_9H_{13}$. The assignment of the ¹H¹¹B} NMR signals is in accord with the known assigment¹¹ for $Me_2S \cdot B_9H_{13}$ --- The ¹¹B and ¹H{¹¹B} NMR signals of the nido clusters 2a-d can be assigned by comparison with the parent cluster $NB_9H_{12}^{12}$ and with the N-boryl derivative $Et_3N-BH_2-NB_9H_{11}$.³ In the 2-D COSY ¹¹B/¹¹B NMR spectrum of 2b, one can detect weak cross peaks for the hydrogen-bridged bonds B8/10-B9 and for the bonds B2-B5/7 which are opposite to the N atom. Unexpectedly, no cross peak appears for the bonds B1-B5 and B3-B7.—The assignment of the ¹¹B and ¹H-{11B} NMR signals of the arachno clusters 3b,d corresponds well with the data for Et₃N-BH₂-NB₉H₁₁·CNtBu³.—The NMR data for the closo clusters 4c-g are in excellent agreement with the known data for NB₁₁H₁₂¹ and MeNB₁₁H₁₁.⁸ Triplets in the ¹H NMR spectra resulting from coupling with the cluster ¹⁴N atom are observed in the case of β -methyl groups (R = Et, iPr), the coupling constants ${}^{3}J(HN)$ amounting to 4% of ${}^{1}J(HN)$, observed with $NB_{11}H_{12}$.¹ None of the groups R in $RNB_{11}H_{11}$ displays 5-fold symmetry, but these groups do not perturb such high symmetry in the NB₁₁ skeleton of 4c-g with respect to the NMR time scale, thus allowing the observation of only three ¹¹B and ¹H NMR signals in the characteristic 5:5:1 intensity ratio.

X-ray Crystallographic Study. Data were collected on the azacloso-dodecaborane 4d. Information on data collection and data processing is presented in Table III, and atomic coordinates are given in Table IV; further details are provided as supplementary material. Figure 1 depicts the molecular structure. The 30 skeletal bond distances in the NB_{12} icosahedron can be divided into five groups of similar values (see Table V). These groups correspond to the five zones of edges that are equivalent by C_{5v} symmetry in the parent $NB_{11}H_{12}$. The small atomic radius of the N atom causes deviations of the NB_{11} skeleton from ideal icosahedral geometry. The five B-N distances represent the series of shortest bonds (average value of 1.72 Å in 4b versus 1.71 Å from an HF-SCF calculation for NB11H12 with a 6-31G* basis set¹⁴), followed by the ten edges in the antiprismatic zone (1.75)versus 1.77 Å). The sequence continues with the five edges from B12 to B7-B11 (1.77 versus 1.80 Å), the five edges in the corresponding pentagon (1.77 versus 1.81 Å), and finally the five edges in the pentagon of the NB₅ pyramid (1.80 versus 1.82 Å). The pentagonal plane close to the N atom is larger than the opposite one, caused by the position of the N atom which is distinctly closer to the center M of the polyhedron (M-N = 1.535)Å) than the opposite atom B12 (M-B12 = 1.651 Å). Consequently, the five atoms B2-B6 are farther away from M (1.701 Å) than the five atoms B7-B11 (1.673 Å). Such distortions of the pentagonal antiprism as well as the electronic attraction by the N atom may be the reason that the five B-H bonds around the N atom are shifted out of the radial direction toward the N apex by 12-18°, as documented by the angles M-B2-H2 to M-B6-H6 (Table V). The triangles around the B12 vertex are close to regularity; the five angles at B12, e.g., have an average value of 60.1°. The triangles in the pentagonal antiprismatic

(14) Zahradnik, R.; Balaji, V.; Michl. J. J. Comput. Chem. 1991, 12, 1147.

⁽⁹⁾ Bodner, G. M.; Scholer, F. R.; Todd, L. J.; Senor, L. E.; Carter, J. C. Inorg. Chem. 1971, 10, 942.

⁽¹⁰⁾ Gaines, D. F.; Edvenson, G. M.; Hill, T. C.; Adams, B. R. Inorg. Chem. 1987, 26, 1813.

⁽¹¹⁾ Jacobsen, G. B.; Morris, J. H.; Reed, D. J. Chem. Soc., Dalton Trans. 1984, 415.

⁽¹²⁾ Kester, J. G.; Huffmann, J. C.; Todd, L. J. Inorg. Chem. 1988, 27, 4528.
(13) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, M. M.; Woolfson, M. M. MULTAN 80: A System of Computer Programs for the Automatic Solution of Crystal Structrures from X-Ray Diffraction Data. Universities of York, England, and Louvain, Belgium, 1980.

Table I. ¹¹B NMR Data^a

RH2N·B9H13 ^b	B 1	B4		B7	B2	/3	B5/9	B6 /8
1a (R = nBu)	4.3/134	-20.1/110	15	5.6/104	-39.9	/147	-18.0/159	-20.1/110
1b (R = tBu)	3.8/134	-22.7/122	15	5.7/159	-39.6	/146	-16.9/147	-20.2/159
$1c(R = tBuCH_2)$	4.9/134	-19.7/110	16	5.0/122	-39.9	/147	-18.0/147	-20.2/116
$1d (R = PhCH_2)$	4.6/134	-19.8/?	15	5.7/147	-39.9	/147	-17.9/153	-20.3/?
RNB9H11 ^c	B1/3	B2		B4	Ī	35/7	B 8/10	B9
2a (R = nBu)	-0.7/147	-28.4/171	_	-28.4/171	13.	8/159	-13.0/159	14.7/147
2b(R = tBu)	-1.9/146	-28.3/171	-	-26.8/159	12.	2/159	-13.0/159	14.3/159
$2c (R = tBuCH_2)$	0.4/146	-29.6/183	-	28.4/171	15.	4/159	-13.0/146	15.4/159
$2d (R = PhCH_2)$	-0.7/147	-27.8/159	-	-27.8/159	13.	8/159	-12.9/147	14.8/159
RNB9H11-CNtBub	B1/3	B2		B4	B5	/7	B 8/10	B9
3b(R = tBu)	-40.6/147	-9.3/159	5	.8/147	-13.4	/134	-36.0/1474	-40.2/147
$3d (R = PhCH_2)$	-39.9/147	-8.6/183	4	.8/134	-9.8/	147	-35.7/147	-38.6/183
RNB ₁₁ H ₁₁ ¢	B2-B6	B7–B 11	B12	RNB ₁	1H11°	B2B6	B7–B 11	B12
$4c (R = tBuCH_2)$	-3.9/171	-10.9/159	3.1/146	4f (R =	iPr)	-5.1/171	-10.8/147	4.0/147
$4c(R = PhCH_2)$	-5.4/171	-10.9/147	2.2/147	4q (R =	= i B u)	-4.3/171	-10.4/153	2.9/147
4e(R = Et)	-6.1/171	-11.5/159	1.4/159	• •	,			.,

^a Chemical shifts δ (160.364 MHz; in ppm relative to BF₃-OEt₂, positive values downfield) and coupling constants ¹J(BH) (in Hz), written as couples δ/J . ^b CDCl₃ solution. ^c C₆D₆ solution. ^d ¹J(BH_{endo}) = 37 Hz.

Table II. ¹H NMR Data^a

RH₂N·B9H13 ^b	H 1	H2/3	H4	H5/9	H6/8	H7	μ-H ^c	endo-H	NH2 [¢]
1a (R = nBu)	2.86	0.33	0.64	1.65	1.99	3.96	-3.59	-0.22	4.15
1b(R = tBu)	2.85	0.42	0.62	1.63	2.01	4.05	-3.50	-0.19	4.05
$1c (R = tBuCH_2)$	2.88	0.42	0.61	1.68	2.01	3.95	-3.64	-0.20	3.95
$1d (R = PhCH_2)$	2.93	0.36	0.73	1.67	1.98	3.95	-3.52	-0.17	4.51
RNB9H11 ^d	H	H1/3	H2 or	H4ª	H5/7	H8/10)	H9	µ-H ^c
2a (R = nBu)		3.49	1.40/1	.69	3.90	2.53		3.90	-3.24
2b (R = tBu)		3.41	1.39/1	.81	4.13	2.55		3.85	-3.41
$2c(R = tBuCH_2)$		3.58	1.32/1	.69	3.96	2.54		3.96	-3.01
$2d (R = PhCH_2)$		3.45	1.53/1	.60	4.03	2.43		3.65	-3.41
RNB ₉ H ₁₁ ·CNtBu/	H	1/3	H2	H4	H5/7	H	8/10	H9	μ-H ^c
3b (R = tBu)	0.	46	2.52	3.09	2.40	0	.61	0.61	-2.33
$3d(R = PhCH_2)$	0.	.52	2.39	2.99	2.39	0	.61	0.27	-2.06
RNB ₁₁ H ₁₁ ^g	H2-4	6	H7- 11	H12	RNB11H11#		H26	H7-11	H12
$4c (R = tBuCH_2)$	2.55		2.60	3.31	4f(R = iPr)		2.42	2.60	3.38
4d $(R = PhCH_2)$	2.35		2.58	3.26	4g(R = iBu)		2.42	2.61	3.28
4e (R = Et)	2.28		2.59	3.24	• • • • • • • • • • • • • • • • • • • •				

^a Chemical shifts δ (499.843 MHz; in ppm), ¹¹B decoupled. ^b CDCl₃ solution. Signals of R: $\delta = 0.96$, 1.40, 1.73, 3.11 (3:2:2:2; t, sext, quint, quint, J = 7.0 Hz, throughout; R = nBu); $\delta = 1.47$ (s, R = tBu); $\delta = 1.03$, 2.42 (9:2; s, m; $R = tBuCH_2$); $\delta = 4.27$, 7.38–7.49 (2:5; $R = PhCH_2$). ^c Broad signals. ^d C₆D₆ solution. Signals of R: $\delta = 0.55$, 0.66, 0.93, 2.91 (3:2:2:2; t, sext, quint, t, J = 7.3 Hz, throughout; R = nBu); $\delta = 0.83$ (s; R = tBu); $\delta = 0.38$, 2.84 (9:2; 2s; $R = tBuCH_2$); $\delta = 4.03$, 6.73–7.10 (2:5; $R = PhCH_2$). ^e No assignment possible for the two signals of H2 and H4, respectively. ^f CDCl₃ solution. Signals of R and tBu: $\delta = 1.15$, 1.55 (1:1; s, t, ³J(HN) = 2.0 Hz; R = tBu); $\delta = 1.53$, 3.94, 7.11–7.31 (9:2:5; t, s, m, ³J(HN) = 2.0 Hz; $R = PhCH_2$). ^e C₆D₆ solution. Signals of R: $\delta = 0.35$, 2.60 (9:2; 2s; $R = tBuCH_2$); $\delta = 3.44$, 6.50–6.93 (2:5; $R = PhCH_2$); $\delta = 0.17$, 2.21 (3:2; t/t, q, ³J(HH) = 7.4 Hz; ³J(HN) = 2.6 Hz; R = Et; $\delta = 0.38$, 2.61 (6:1; d/t, sept, ³J(HH) = 6.7 Hz, ³J(HN) = 2.4 Hz; R = iPr); $\delta = 0.24$, 1.21, 2.39 (6:1:2; d, m, d, J = 6.7 and 5.8 Hz, respectively; R = iBu).

zone deviate slightly from regularity with mean values of 61.9° at the vertices B7-B11 and 61.1° at B2-B6. The angles at the N vertex are distinctly larger, 63.0° on an average, because of the penetration of the N apex into the inner cluster sphere. An extralong N-C bond distance of 1.537(1) Å is observed, as compared to the corresponding N-C bond distance of 1.464(5)Å in the anion $[MeNB_{11}H_{11}(OMe)]^{-,8}$ which is close to the normal N-C bond length of 1.47 Å found in alkylamines. We assume that such a long N-C bond length is rather due to that penetration than to the uncommon electronic situation of a 6-fold-coordinated N atom. In C-alkyldicarba-closo-dodecaboranes, $R_2C_2B_{10}H_{10}$, the C-C bond distances between the cluster and the adjacent alkyl C atoms are found close to 1.52 Å, that is a rather small value in the normal C-C single-bond range, thus showing that the participation of a 6-fold coordinated cluster C atom in a C-C single bond does not distinctly alter the normal bond distance.

Concluding Remarks

Considering the anion $B_{12}H_{12}^{2-}$ as parent species, numerous derivatives with heteroatoms in the skeleton had been synthesized that all obey the electron-counting rules for an icosahedral *closo* cluster. Besides a variety of metallic heteroatoms, the most prominent nonmetallic ones had been carbon, phosphorus, and sulfur. The chemistry of dicarba-*closo*-dodecaborane, $C_2B_{10}H_{12}$, has emerged in a way that makes the three isomers top molecules in textbooks. The synthesis, 30 years ago, taught the chemists definitely that even carbon, the model element for classical octet bond descriptions, can behave like boron in electron-deficient cluster structures with 5-fold connectivity. The synthesis and structural characterization of aza-*closo*-dodecaborane and its derivatives expand the series of nonmetallic candidates for building electron-deficient clusters by the strongly electronegative nitrogen. This paper contributes a novel and transparent incorporation of

Table III. Experimental X-ray Diffraction Parameters and Crystal Data^a

empirical formula	B ₁₁ C ₇ H ₁₈ N
fw	235.1
cryst dimens, mm	0.5 imes 0.5 imes 0.2
λ(Cu Kα), Å	1.5418
<i>Т</i> , К	298
space group	$P2_1/n$
a, A	9.041(4)
b, Å	14.651(7)
c, Å	11.224(4)
β, deg	96.14(3)
V, Å ³	1478(2)
Ζ	4
μ , cm ⁻¹ (Cu K α)	3.22
$D(\text{calcd}), \text{g cm}^{-3}$	1.057
no. of reflens measd	3104
no. of indpd reflens, $I > 2\sigma(I)$	2468
no. of refined params	245
R	0.053
R _w	0.064
goodness of fit	3.404
final diff $\rho_{\rm max}$, $e/Å^3$	0.18
· · · ·	

^a Structure solution by direct methods using MULTAN 80 in the SDP package;¹⁰ all hydrogen atoms were found in the difference Fourier map and were refined isotropically.

Table IV. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Coefficients ($Å^2 \times 10^3$) for Non-Hydrogen Atoms in (PhCH₂)NB₁₁H₁₁ (4d)

	x	У	Z	U_{eq}
Ν	0.3662(1)	0.12450(7)	0.2343(1)	46.9(3)
B2	0.4026(3)	0.0736(1)	0.3730(2)	67.4(6)
B 3	0.4922(2)	0.1772(1)	0.3387(2)	63.5(5)
B4	0.3654(2)	0.2413(1)	0.2358(2)	57.0(5)
B5	0.1948(2)	0.1772(1)	0.2072(2)	57.5(5)
B6	0.2208(2)	0.0729(1)	0.2916(2)	62.0(5)
B 7	0.4125(3)	0.1653(1)	0.4727(2)	72.5(6)
B8	0.3900(2)	0.2679(1)	0.3889(2)	61.8(5)
B9	0.2098(2)	0.2677(1)	0.3094(2)	58.6(5)
B 10	0.1206(2)	0.1638(1)	0.3433(2)	67.1(6)
B1 1	0.2474(3)	0.1012(2)	0.4437(2)	78.1(7)
B12	0.2384(3)	0.2216(1)	0.4557(2)	66.7(6)
C 1	0.4379(2)	0.0771(1)	0.1327(1)	58.5(4)
C2	0.3427(2)	0.06993(9)	0.0160(1)	48.7(4)
C3	0.3539(2)	0.1340(1)	-0.0728(1)	62.9(5)
C4	0.2736(2)	0.1233(1)	-0.1843(2)	80.5(6)
C5	0.1808(2)	0.0490(2)	-0.2059(2)	83.9(6)
C6	0.1700(2)	-0.0144(1)	-0.1180(2)	74.5(5)
C7	0.2503(2)	-0.0045(1)	-0.0083(1)	59.2(4)

nitrogen into an icosahedral skeleton and the first X-ray crystallographic determination of its structure. A striking feature of carbaborane chemistry is the greater tendency of carbon than of boron to decrease a given high connectivity. This tendency is expected to be still greater for nitrogen. It will be a challenge to verify such expectation experimentally.

Experimental Section

Instrumentation. ¹¹B (160.364 MHz) and ¹H (499.843 MHz) NMR spectra were acquired on a Varian Unity 500 spectrometer. The measurements for the X-ray structure determination were carried out on an Enraf-Nonius CAD 4 diffractometer. Elemental analyses (C, H, N) were obtained with a Carlo-Erba elemental analyzer, Model 1106. Column chromatography was conducted on silica gel 60 (Fluka).

Materials and Procedures. The solvents benzene, xylene, and decalin were distilled from sodium, pentane and hexane were distilled from potassium, and dichloromethane was distilled from calcium hydride prior to use; trichlorodeuteriomethane and hexadeuteriobenzene were anhydrous grade and were stored over 4-Å molecular sieves. *n*-Butyl-, *tert*-butyl-, neopentyl-, and benzylamine, dimethyl sulfide, *tert*-butyl isocyanide, and dimethyl sulfide-borane were commercially available and were distilled before use. Isopropyl¹⁵ and isobutyl trifluoromethanesulfonates¹⁶ and

Figure 1. Molecular structure of $(PhCH_2)NB_{11}H_{11}$ (4d) with 30% probability ellipsoids.

Table V. Skeletal Distances and Angles for $(PhCH_2)NB_{11}H_{11}$ (4d)^a

	av ^b	max	min
D	istances (Å) ^c		
N-B2 to N-B6	1.719/5	1.729(1)	1.701(7)
B2-B3 to B6-B2	1.796/5	1.805(2)	1.782(2)
B2-B7 to B2-B11	1.745/10	1.753(2)	1.732(2)
B7-B8 to B11-B7	1.773/5	1.783(2)	1.763(2)
B7-B12 to B11-B12	1.770/5	1.776(2)	1.767(2)
M-N	1.535	.,	. ,
M-B2 to M-B6	1.701/5	1.715	1.695
M-B7 to M-B11	1.673/5	1.680	1.666
M-B12	1.651		
A	ngles (deg) ^c		
B2-N-B3 to B6-N-B2	63.00/5	63.29(6)	62.13(6)
B2-B7-B3 to B6-B11-B2	61.95/5	62.15(6)	61.44(7)
B7-B3-B8 to B11-B2-B7	61.07/5	61.40(7)	60.83(6)
B7-B12-B8 to B11-B12-B7	60.11/5	60.39(7)	59.76(7)
M-N-C1	176.0	.,	
M-B2-H2 to M-B6-H6	165.3/5	167.8	161.9
M-B7-H7 to M-B11-H11	178.6/5	17 9 .7	176.8
M-B12-H12	1 78.9 ′		

^a Average of distances and angles in zones of equivalency, according to hypothetical C_{5v} symmetry. The point M marks the icosahedral center, its coordinates are calculated as the arithmetic mean of the atomic coordinates of N and B2–B12. ^b The number of averaging values is mentioned behind the bar. ^c Supplementary bond distances and angles: N-C1 = 1.537(1), C1-C2 = 1.492(1), C-C(phenyl) = 1.366(2)-1.387(2) Å; N-C1-C2 = 115.68(7)^{\circ}.

arachno-dimethyl sulfide-nonaborane(13)⁵ were prepared as described in the literature. All synthetic procedures were conducted in an atmosphere of dry nitrogen.

Synthesis of 4-(nBuNH₂)B₉H₁₃ (1a). Me₂S·B₉H₁₃ (6.1 g, 35.4 mmol) was dissolved in 60 mL of benzene, and after the addition of nBuNH₂ (3.9 mL, 39.3 mmol), the mixture was heated to reflux for 5 h. All volatile components were removed under vacuum at room temperature. The resulting yellow oil was taken up in 2:1 dichloromethane-hexane and column-chromatographed in the same solvent. Addition of hexane resulted in the separation from the mixture of a colorless oil, which was washed twice with hexane and dried under vacuum to give 1a (1.12 g, 6.4 mmol, 18% based on Me₂S·B₉H₁₃). Anal. Calcd for C4H₂₄B₉N: C, 26.18; H, 13.18; N, 7.63. Found: C, 26.14; H, 13.61; N, 7.41.

Synthesis of 4-(tBuNH₂)B₉H₁₃ (1b). Mc₂S·B₉H₁₃ (6.5 g, 37.7 mmol) was dissolved in 50 mL of benzene, and after the addition of tBuNH₂ (4.4 mL, 41.7 mmol), the mixture was heated to reflux for 5 h. All volatile

⁽¹⁵⁾ Beard, C. D.; Baum, K.; Grakauskas, V. J. Org. Chem. 1973, 38, 3673.

⁽¹⁶⁾ Salomon, M. F.; Salomon, R. G.; Gleine, R. D. J. Org. Chem. 1976, 41, 3983.

components were removed under vacuum at room temperature. The residue was taken up in dichloromethane, and hexane was added to the solution, whereupon a white precipitate formed. This was isolated by filtration, washed twice with hexane, and dried to give 1b (4.91 g, 26.8 mmol, 71% based on Me₂S-B₉H₁₃) as a colorless crystalline product. Anal. Calcd for C₄H₂₄B₉N: C, 26.18; H, 13.18; N, 7.63. Found: C, 26.22; H, 13.17; N, 7.54.

Synthesis of 4-(tBuCH₂NH₂)B₉H₁₃ (1c). The same procecure was followed by employing 4.9 g (28.4 mmol) of Me₂S·B₉H₁₃ and 3.6 mL (30.8 mmol) of tBuCH₂NH₂, yielding 1c (4.1 g, 20.7 mmol, 73% based on Me₂S·B₉H₁₃) as a colorless crystalline product. Anal. Calcd for C₅H₂₆B₉N: C, 30.40; H, 13.26; N, 7.09. Found: C, 30.47; H, 13.52; N 7.11.

Synthesis of 4-(PhCH₂NH₂)B₉H₁₃ (1d). The same procedure was followed by employing 10.8 g (62.3 mmol) of Me₂S·B₉H₁₃ and 7.5 mL (68.6 mmol) of PhCH₂NH₂, yielding 1d (7.7 g, 35.4 mmol, 57% based on Me₂S·B₉H₁₃) as a colorless crystalline product. Anal. Calcd for C₇H₂₂B₉N: C, 38.65; H, 10.19; N, 6.44. Found: C, 38.68; H, 10.92; N, 5.93.

Synthesis of 6-nBuNB₅H₁₁ (2a). A solution of 1a (4.31 g, 23.5 mmol) in 70 mL of xylene was heated to 140 °C for 4 h. After cooling of the reaction mixture to 0 °C, the solvent was evaporated under vacuum. The resulting orange residue was extracted in portions with 80 mL of hexane, and the solvent was removed from the combined extracts. Distillation at 25-40 °C (0.001 Torr) gave 0.76 (4.23 mmol, 18%) of crude 2a. For further purification, the product was dissolved in hexane, and the solution was treated with an excess of SMe₂. At -40 °C a white adduct precipitated, which was isolated by filtration at that temperature. The adduct melted away under dissociation when held under vacuum at 0 °C for 1 h. Repeated distillation at 25-40 °C (0.001 Torr) afforded 0.52 g (2.90 mmol, 12 %) of pure 2a as a colorless oil.

Synthesis of 6-tBuNB₃H₁₁ (2b). A solution of 1b (3.80 g, 20.71 mmol) in 50 mL of xylene was heated to 140 °C for 4 h. After cooling of the reaction mixture to 0 °C, the solvent was evaporated under reduced pressure. The resulting orange residue was extracted in portions with 80 mL of hexane, and the solvent was removed from the combined extracts. Sublimation at 20–30 °C (0.001 Torr) gave 0.71 g (3.93 mmol, 19%) of colorless 2b. Anal. Calcd for C₄H₂₀B₉N: C, 26.77; H, 11.23; N, 7.80. Found: C, 26.48; H, 11.62; N, 7.09.

Synthesis of 6-tBuCH₂NB₉H₁₁ (2c). The same procedure was followed by employing 3.84 g (19.43 mmol) of 1c. Sublimation at 30–50 °C (0.001 Torr) gave 0.90 g (4.66 mmol, 24%) of colorless 2c. Anal. Calcd for C₅H₂₂B₉N: C, 31.03; H, 11.46; N, 7.24. Found: C, 30.00; H, 11.84; N, 6.83.

Synthesis of 6-PhCH₂NB₃H₁₁ (2d). Following the same procedure, we started with 7.20 g (33.10 mmol) of 1d. Distillation at 35-50 °C (0.001 Torr) gave 1.41 g (6.62 mmol, 20 %) of 2d as a colorless oil.

Synthesis of 6-tBuNB₉H₁₁-CNtBu (3b). 2b (0.072 g, 0.40 mmol) was dissolved in 6 mL of hexane, and *tert*-butyl isocyanide (0.045 mL, 0.40 mmol) was added dropwise at -30 °C, a white precipitate being immediately formed. The solution was warmed to room temperature, and stirring was continued for 10 min. After evaporation to dryness, the residue was taken up in dichloromethane and column-chromatographed in the same solvent. The product was crystallized from dichloromethanehexane at -40 °C to give 0.077 g (0.29 mmol, 73%) of colorless **3b**. Anal. Calcd for C₉H₂₉B₉N₂: C, 41.16; H, 11.13; N, 10.67. Found: C, 42.06; H, 11.42; N, 10.54.

Synthesis of 6-PhCH₂NB₅H₁₁·CNtBu (3d). The same procedure used to prepare 3b was followed by employing 0.120 g (0.56 mmol) of 2d and 0.063 mL (0.56 mmol) of *tert*-butyl isocyanide. Crystallization from dichloromethane-hexane at -40 °C gave 0.125 g (0.42 mmol, 75%) of colorless 3d.

Synthesis of tBuCH₂NB₁₁H₁₁ (4c). A solution of 3c (0.26 g, 1.34 mmol) and Me₂S·BH₃ (0.3 mL, 3.2 mmol) in 8 mL of decalin was heated to 170 °C for 2 h. After the mixture was cooled to room temperature, all volatile components were removed under vacuum. The remaining residue was extracted in portions with 80 mL of hexane, and the combined extracts were evaporated to dryness. Sublimation at 60 °C (0.001 Torr) yielded 0.12 g (0.56 mmol, 42% based on 3c) of colorless 4c. Further purification was achieved by crystallization from hexane at -40 °C. Anal. Calcd for C₃H₂₂B₁₁N: C, 27.91; H, 10.31; N, 6.51. Found: C, 27.89; H, 10.49; N, 6.38.

Synthesis of PhCH₂NB₁₁H₁₁ (4d). The same procedure was followed by employing 0.35 g (1.64 mmol) of 3d and 0.4 mL (4.3 mmol) of Me₂S·BH₃. Sublimation at 70 °C (0.001 Torr) afforded colorless crystals of 4d (0.205 g, 0.87 mmol, 53% based on 3d). Anal. Calcd for $C_7H_{18}B_{11}N$: C, 35.76; H, 7.72; N, 5.96. Found: C, 35.82; H. 7.57; N, 5.85.

Synthesis of $EtNB_{11}H_{11}$ (4e). A solution of 0.410 g (1.67 mmol) of $[Et_3HN][NB_{11}H_{11}]$ in 5 mL of dichloromethane was added to a solution of 1.28 g (6.4 mmol) of $[Et_3O]BF_4$ in 5 mL of dichloromethane. After 3 h of stirring at room temperature, all volatile components were removed under vacuum. The remaining solid was extracted in portions with 80 mL of pentane, and the combined extracts were evaporated to dryness. Sublimation at 40 °C (0.001 Torr) gave 0.131 g (0.76 mmol, 45% based on $[Et_3HN][NB_{11}H_{11}]$ of colorless 4e. Anal. Calcd for $C_2H_{16}B_{11}N$: C, 13.88; H, 9.32; N, 8.09. Found: C, 13.72; H, 9.65; N, 7.95.

Synthesis of $iPrNB_{11}H_{11}$ (4f). A solution of 0.128 g (0.52 mmol) of $[Et_3HN][NB_{11}H_{11}]$ in 6 mL of dichloromethane was treated dropwise with 0.110 g (0.57 mmol) of $iPrO_3SCF_3$ at 0 °C. After 4 h of stirring at room temperature, all volatile components were removed under vacuum. The residue was extracted in portions with 80 mL of pentane, and the combined extracts were evaporated to dryness. Sublimation at 40 °C (0.001 Torr) yielded 0.027 g (0.14 mmol, 28% based on $[Et_3HN]$ - $[NB_{11}H_{11}]$) of colorless 4f.

Synthesis of $iBuNB_{11}H_{11}$ (4g). The same procedure used to prepare 4f was followed by employing 0.244 g (0.99 mmol) of $[Et_3HN][NB_{11}H_{11}]$ and 0.225 g (1.09 mmol) of $iBuO_3SCF_3$. Sublimation at 40 °C (0.001 Torr) gave 0.049 g (0.24 mmol, 25% based on $[Et_3HN][NB_{11}H_{11}]$) of colorless 4g.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Supplementary Material Available: Tables of data collection and refinement parameters, hydrogen positional parameters, general displacement parameters, bond distances, bond angles, and least-squares planes and packing diagrams (11 pages). Ordering information is given on any current masthead page.