Synthesis. Structure. and Properties of the $[Mo_2Q_2(\mu-Se_2(q^2-Se_2)_2]^2$ **(** $Q = O$ **, Se) Ions: Influence of Mo-Q** *r-Bonding*

Bryan W. Eichborn,'Ja Donna R. Ann Nichols-Ziebarth.^{1a} Kazi J. Ahmed.^{1b} and **Simon G. Bott^{1c}**

Departments of Chemistry, University of Maryland, College Park, Maryland **20742,** University of Vermont, Burlington, Vermont **05405,** and University of North Texas, Denton, Texas, **76203**

Received March 17, **I993**

Herein we report the preparation, structure, and properties of two polyselenide complexes: $[Mo_2Se_2(\mu-Se_2(\eta^2-Se_2)_2]^2$ (1) and its oxo analog $[Mo_2O_2(\mu-Se)_2(\eta^2-Se_2)_2]^{2-}$ (2). Both 1 and 2 have polysulfide analogs,2.3 and the *trans* Te analog of **2** was recently prepared in **a** concurrent study by Kolis et a1.4 The structural and spectroscopic features of **1** and **2** and their sulfur analogs provide an unambiguous illustration of π -bonding effects in complexes containing terminal Mo-Q functions $[Q = 0, S, Se]$.

Experimental Section

General Procedures. All reactions were conducted under dry oxygenfree N2 atmospheres by using standard Schlenk techniques or a Vacuum Atmospheres Co. drybox. The mid-IR spectra were obtained from pressed KBr pellets using a Nicolet 283 infrared spectrophotometer under N_2 . Far-IR **spectra** were obtained from high-density polyethylene pellets **using** a Perkin-Elmer FTIR 1800 spectrophotometer. Elemental analyses were performed by Schwarzkopf Microanalytical Laboratories, Woodside, NY, and Desert Analytics, Tucson, AZ. **77Se** NMR spectra were recorded on a Bruker AM-400 (76.3 MHz) spectrometer. Spectra were run locked [dimethyl- d_6 sulfoxide (DMSO- d_6)] or unlocked [N_rN-dimethylformamide (DMF)] and referenced to an external $(PPh₄)₂[MoSe₄]$ standard in DMF $(\delta = 1643$ ppm).^{5a} Cyclic voltammograms were run in a standard thrce-electrode glass cell with an SCE reference electrode, a Pt-wire counter electrode, and a Pt-wire microelectrode (20-pm diameter). The cyclic voltammograms were referenced against the $Fe(C_5H_5)_2/Fe$ - $(C_5H_5)_2^+$ couple, which is defined as 0.0 V, and were run with no supporting electrolyte. Approximately 2.5 **mL** of 1 mM solutions of compounds **1** and **2** in DMF were loaded into airtight **glass** cells in a drybox.

Chemicals. (PPh₄)₂[MoSe₄] and Mo₂(O₂CMe)₄ were prepared according to published procedures.^{5,6} K₂Se₄ was prepared in an N₂ atmosphere by reacting stoichiometric ratios of K and **Se** in liquid NH3 distilled from Na metal. Solvents were purified, dried, distilled, and stored under N_2 with molecular sieves. Crystalline 4,7,13,16,21,24**hexaoxa-** l,lOdiazabicyclo[8.8.8] hexacosane (2,2,2-crypt), N-methylmorpholine N-oxide (NMO) and PPh₄Br were purchased from Aldrich and **used** without further purification.

Synthesis. (PPh₄)₂[Mo₂Se₂(µ-Se)₂(η ²-Se₂)₂]⁻¹/₂en. Mo₂(O₂CMe)₄ (100 mg, 0.23 mmol) and K₂Se₄ (276 mg, 0.70 mmol) were dissolved in ethylenediamine(en) **(4mL),formingadarkbrownsolution.** Themixture was stirred for 3 **h** and filtered twice through **glass** wool to remove the colorless $KO₂CMe$ precipitate. After filtration, an en solution (~ 2 mL) of PPh₄Br (245 mg, 0.58 mmol) was added to the reaction mixture. The solution was concentrated to *ca. 2* mL and refiltered, and after 2 weeks at room temperature, well-formed dark block-shaped *crystals* **were** isolated

- Soc. 1984, 106, 459.

(3) (a) Clegg, W.; Mohan, N.; Müller, A.; Neumann, A.; Rittner, W.; Sheldrick, G. *Inorg. Chem.* 1980, 19, 2066. (b) Rittner, W.; Müller, A.; Neumann, A.; Bäther, W.; Sharma, R. C. Angew. Chem., Int. Eng. 1979,18, **530.**
- Kolis, J. W. Personal communication.
- **(5)** (a) Wardle, **R.** W. **M.;** Mahlcr. C. H.; Chau, C.-N.; **Ibers,** J. **A.** Inorg. Chem. 1988,27,2790. **(b)** ONeal, **S.** C.; Kolis, J. *W. J. Am. Chem. Soc.* 1988,110, 1971.
- *(6)* Brignole, **A. E.;** Cotton, **F. A.** Inorg. *Synrh.* 1972, *13,* **81.**

Table I. Summary of Crystallographic Data^ª

	A	B
formula	$C_{40}H_{44}Mo_2NP_2Se_8$	$C_{36}H_{72}K_2Mo_2N_4O_{14}Se_6$
space group	PI	P1
a (A)	11.048(1)	11.135(3)
b(A)	12.206(1)	12.349(4)
c(A)	20.380(2)	21.785(8)
α (deg)	90.504(8)	78.37(3)
β (deg)	99.469(8)	79.40(2)
γ (deg)	105.568(7)	74.48(2)
$V(\lambda^{3})$	2607.1(5)	2799(1)
z	2	2
D_c (g/cm ³)	1.959	1.813
μ (cm ⁻¹)	60.94	53.2
2θ range	2–44	4–55
no. of refins colled	6362	13578
no. of unique refins	6362	12877
$R_{\rm merg}$	N/A	3.99
no. of obsd refins	2840 [$I > 3\sigma(I)$]	6155 [$F > 6\sigma(F)$]
Rb	0.0561	0.051
R.º	0.0669	0.068
GOF	0.96	0.90
refn:param	9.2	10.7

 $A = (PPh_4)_2[Mo_2Se_2(\mu-Se_2(\eta^2-Se_2)_2]^{-1}/2en; B = [K(2,2,2-
crypt)]_2[Mo_2O_2(\mu-Se_2(\eta^2-Se_2)_2]^{-b} R = \sum |F_d| - |F_d|/\sum |F_d|$, $R_w = [\sum w(|F_d|$ $- [F_{\rm d}]^2 / \sum w [F_{\rm d}]^2]^{1/2}$; $w = 1 / \sigma^2 ([F_{\rm d}]) + 0.004 ([F_{\rm d}]^2)$.

(202-mg total crystalline yield, 57% based on Mo). Anal. Calcd for 3.06; N, 1.22. Pertinent IRdata (cm-I): 370 (m), 301 (m). **77Sc** NMR (DMF, 296 K) (ppm): 290, 1133, 2376. M@&P2NC49&: C, 38.46; H, 2.90; N, 0.92. Found: C, 39.18; H,

 $[K(2,2,2-\text{crypt})_2[Mo_2O_2(\mu-Se)_2(\eta^2-Se_2)_2]$. The procedure is the same as that described for $(PPh_4)_2[Mo_2Se_2(\mu-Se)_2(\eta^2-Se_2)_2]$ ¹/₂en except NMO $(55 \text{ mg}, 0.47 \text{ mmol})$ was added as a solid to the en solution of $\text{Mo}_{2}(\text{O}_{2}$ -CMe)₄ and K₂Se₄. After filtration, 2,2,2-crypt (176 mg, 0.48 mmol) was added to the filtrate **as** a solid. After 6 **days,** well-formed dark **needles** were isolated (197-mg total crystalline yield, *55%* based **on** Mo). Anal. Calcd for K₂Mo₂Se₆O₁₄C₃₆H₇₂N₄: C, 28.28; H, 4.75; N, 3.66. Found: C, 28.98; H, 5.07; N, 4.18. Pertinent IR data (cm-l): 1006 **(m).** 351 (m), 312 (m). 233 (b, w), 144 (m). **77Sc** NMR (DMSO-&, 296 K) (ppm): 130, 702.

Crystallography. Summaries of the single-crystal X-ray studies for compounds **1** and **2** are given in Table I. Experimental detaih and fractional coordinates have **been** deposited in the supplementary material.

 $(PPh_4)_{2}$ [Mo₂Se₂(μ -Se)₂(η ²-Se₂)₂]⁻¹/₂en. The cell parameters for a black elongated block crystal were **based on** a least-squares refinement of 25 reflections with $2\theta > 26^\circ$. A total of 6362 reflections were collected in the range $2^{\circ} < 2\theta < 44^{\circ}$, of which 2840 ($I > 3\sigma(I)$) were used for structure solution and refinement. **The** data indicated the triclinic space group $P\overline{1}$ (No. 2). The data were corrected for polarization and absorption (DIFABS),' but no correction was made for extinction.

The structure was solved by using MULTAN? which revealed the positions of the Mo and **Sc** atoms. All remaining non-hydrogen atom were located using difference Fourier maps and least-squares refinement (MOLEN).⁹ The Mo, Se, and P atoms were refined with anisotropic thermal parameters. Hydrogen atoms were generated and allowed to ride on the appropriate carbon $[U(H) = 1.3U_{eq}(C)]$. After the final cycle of least-squares refinement, the maximum shift of a parameter waa **lcss** than 0.02 of its estimated standard deviation, and **the** fml *difference* map showed **no** feature higher than 1.19 **e/A3** close to Mo(1).

 $[K(2,2,2-\text{crypt})]_2[Mo_2O_2(\mu-Se_2(\eta^2-Se_2)_2]_4$. A black needle-shaped crystal was coated with epoxy, glued onto a glass fiber, and mounted on the goniometer. The cell comtants and orientation **matrix** for data **collection** were based on 25 carefully centered reflections in **the** range 20° < 2θ < 30°. Acceptable ω -2 θ scans over the 2 θ range 4.5-55° produced 12 877 unique reflections, of which 6155 ($I > 3\sigma(I)$) were used for structure refinement. **The** data indicated the triclinic space group P1

(7) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, 39, 159.
(8) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; DeClerq, J. P.; Woolfson, M. M. MULTAN80: A System of Computer Programs *for the AuromoricSolurionof CrystalSrructures fmmX-my Dtffraction Data;* University of **York:** York, England, 1980.

0020- 16691931 1332-5412\$04.00/0

Q **1993** American Chemical Society

^{(1) (}a) University of Maryland. **(b)** University of Vermont. **(c)** University of North **Texaa** at Denton.

⁽²⁾ Pan, W.-H.; Harmer, **M. A,;** Halbert, **T. R.;** Stiefel, E. I. *J. Am. Chem.*

⁽⁹⁾ *MOLEN An Interacrivc Structure Solution Program;* Enraf-Nonius: Delft, The Netherlands, 1990.

Figure 1. ORTEP drawing of the $[Mo_2Se_2(\mu-Se)_2(\eta^2-Se_2)_2]^{2-}$ ion (1). **A common** atomic numbering scheme is used for **1** and **2** in Table I.

(No. 2). The structure was solved by a combination of direct methods and heavy-atom Fourier techniques (Siemens SHELXTL PLUS **crys**tallographic **package). The** hydrogen atoms were placed in calculated positions. The maximum shift/esd in the last cycle of refinement was lese than **0.03,** and the maximum residual electron density in **the** final difference Fourier map was < **1.52 e/A3. No** absorption correction was applied.

Results

Synthesis and Reactivity. The $[Mo_2Se_2(\mu-Se_2(\eta^2-Se_2)_2]^2$ anion (1) was prepared from $Mo_{2}(O_{2}CMe)_{4}$ and 3.0 equiv of K₂Se₄ in ethylenediamine (en). Crystals of the PPh₄+ salt of 1 were isolated in 57% yield. The $[Mo_2O_2(\mu-Se_2)(\eta^2-Se_2)_2]^2$ ion **(2)** was prepared in a similar manner except **2** equiv of N -methylmorpholine N-oxide (NMO)/equiv of $Mo_{2}(O_{2}CMe)_{4}$ was added as an oxygen atom source. The $[K(2,2,2\text{-crypt})]^+$ salt of **2** was isolated in **55%** yield. Both compounds are stable to air over short periods of time and have been characterized by energydispersive X-ray analysis (EDX), cyclic voltammetry, microanalysis, ⁷⁷Se NMR and far-IR spectroscopy, and single-crystal X-ray diffraction.

Spectroscopic studies (IR and ⁷⁷Se NMR) on crude products from the synthesis of **1** often revealed small quantities **(<15%)** of [M0Se4]~(3).~* **Todetermineif3isformedasanintermediate** in the synthesis of **1** or as a competitive byproduct, alternative synthetic procedures were attempted. Coyle, Stiefel, and *co*workers have shown that $[MoS₄]$ ²⁻ reacts cleanly with RSSR reagents to form the polysulfide complex $[Mo_2S_2(\mu-S)_2(\eta^2-S_2)_2]^2$ -**(4)** according to *eq* **1.2Jo**

$$
2[MoS4]2- + RSSR \rightarrow [Mo2S2(\mu-S)2(\eta2-S2)2]2- + 2RS-
$$
(1)

Analogous reactions between **3** and PhSeSePh did not yield **1** even after 6 h at 135 °C. IR analysis of the reaction mixture revealed 3 as the only Mo=Se-containing species. Identical results were obtained from reactions between 3 and en solutions of excess Se42-. Previous studies5 have shown that **3** reacts with Se metal to form $[MoSe(Se_4)_2]^2$, which was also not observed in the reactions just described.

Structural Considerations. The ORTEP drawing of 1 shown in Figure **1** is given as an example of the isostructural $[Mo_2Q_2(\mu-Se)_2(\eta^2-Se_2)_2]^2$ ions where $Q = O$, Se. A listing of selected bond distances and angles for both compounds is given in Table 11. Both compounds **possess** terminal M+Q functions and symmetrically bound η^2 -Se₂²⁻ ligands on each Mo atom. The two Mo atoms are bridged by two Se²⁻ ligands. The Mo-O distances in **2 (1.69(2)** A (average)) are identical to those of

Table II. Selected Bond Distances (A) and Angles (deg) for $[Mo_2O_2(\mu - \text{Se})_2(\eta^2 - \text{Se}_2)_2]^2$ Ions Where $O = \text{Se}(1)$ and $O = O(2)^d$

		-,
	$O = Se$	$0 = 0$
$Mo(1)-Mo(2)$	2.876(3)	2.888(2)
$Mo(1)-Se(3)$	2.491(4)	2.538(2)
$Mo(1)-Se(4)$	2.548(4)	2.545(2)
$Mo(1)-Q(1)$	2.243(3)	1.672(6)
$Mo(1) - Se(5)$	2.415(3)	2.456(1)
$Mo(1) - Se(6)$	2.430(3)	2.445(2)
$Mo(2)-Se(5)$	2.442(3)	2.453(2)
$Mo(2) - Se(6)$	2.436(4)	2.446(2)
$Mo(2) - O(2)$	2.231(4)	1.702(6)
$Mo(2)-Se(7)$	2.527(3)	2.540(2)
$Mo(2) - Se(8)$	2.528(3)	2.544(2)
$Se(3)-Se(4)$	2.317(4)	2.342(2)
$Se(7) - Se(8)$	2.334(4)	2.338(2)
	$O = Se$	$Q = Q$
$Mo(2)-Mo(1)-Se(4)$	131.0(1)	138.8(1)
Mo(2) – Mo(1) – Se(3)	137.8(1)	137.0(1)
Mo(2) – Mo(1) – Q(1)	105.9(1)	104.2(3)
$Mo(2)-Mo(1)-Se(5)$	54.11(8)	53.9(1)
$Mo(2)-Mo(1)-Se(6)$	53.86(9)	53.8(1)
$Se(4) - Mo(1) - Se(3)$	54.7(1)	54.9(1)
$Se(4)-Mo(1)-Q(1)$	114.1(1)	105.6(3)
$Se(4) - Mo(1) - Se(5)$	127.9(1)	135.7(1)
$Se(4) - Mo(1) - Se(6)$	86.8(1)	90.2(1)
$Se(3) - Mo(1) - Se(5)$	88.6(1)	88.5(1)
Se(3)-Mo(1)-Se(6)	137.2(1)	135.4(1)
$Q(1)$ –Mo(1)–Se(5)	110.2(1)	109.4(2)
$Q(1)$ -Mo(I)-Se(6)	107.8(1)	107.5(2)
$Se(5)$ -Mo(1)-Se(6)	107.5(1)	104.0(1)
$Se(3)$ -Mo(1)-Q(1)	105.2(1)	108.2(3)
$Mo(1) - Se(4) - Se(3)$	63.9(1)	62.4(1)
$Mo(1)-Se(3)-Se(4)$	61.4(1)	62.7(1)
$Mo(1)-Se(5)-Mo(2)$	72.6(1)	72.1(1)
$Mo(1) - Se(6) - Mo(2)$	72.5(1)	72.4(1)

*^a***See** Figure **1** for numbering scheme. For compound **2, the same** numbering scheme **is** used except **Se(1)** and **Se(2)** are replaced by **0(1)** and **O(2).**

 $[Mo_2O_2(\mu-S)_2(\eta^2-S_2)_2]^{2-}$ (5)³ and related cis-dioxo Mo₂ complexes¹¹ whereas the terminal Mo-Se bonds in 1 (2.237(9) \overline{A} (average)) are quite short in comparison with those of [Mo-Se(Se4)2]> **(2.270(4)** A) and [MoSe4I2- **(2.293(1)** A).5 The Mo-Mo distances of **2.876(3)** A for **1** and **2.888(2)** A for **2** are typical of d¹-d¹ dimers with Mo-Mo single bonds. The ions have virtual C_{2v} point symmetry and are essentially isostructural with their polysulfide analogs. $2,3$

Spectroscopic Studies. The ⁷⁷Se NMR spectrum of 1 in DMF shows a downfield resonance at 1133 ppm due to the μ -Se² ligands and an upfield resonance at 290 ppm due to the η^2 -Se₂²⁻ ligands. The peak for the terminal Se ligand of **1** appears at **2376** ppm. The 77 Se NMR spectrum in DMSO- d_6 gave essentially the same chemical **shifts** at **300, 1134,** and **2387** ppm. In a few of the samples, **small** amounts of [MoSe,12- **(3)** were detected in the **'17Se** NMR spectra of **1,** as evidenced by its characteristic **1643** ppm resonance.^{5a} Its identity was confirmed by adding authentic **3** to the sample, which gave rise to a single peak. The μ -Se²⁻ and q2-Sez2- resonances of **2** (DMSO-d6) appear at **702** and **130** ppm, respectively, and are shielded relative to those of **1.** These chemical shifts are in the range reported for other M- μ -Se-M and M- η^2 -Se₂ ligands.¹²

The IR spectrum of the PPh₄⁺ salt of 1 shows two low-frequency bands at **370** and **301** *cm-'* associated with the anion. The former is assigned to the terminal Mo-Se stretch. For comparison, the v(Mo-Se) bands for $[MoSe(Se₄)₂]²⁻$ and 3 appear at 360 and 340 cm⁻¹, respectively.^{5a}

⁽¹⁰⁾ Coyle, C. L.; Harmer, **M.** A.; George, G. **N.; Daage, M.;** Stiefel, **E.** I. *Inorg. Chrm.* **1990,** *29,* **14.**

^(1 1) (a) Spivack, **B.;** Gangham, A. **P.; Don, Z.** *J. Am. Chem. Soc.* **1971,93, 5265. (b) Brown, D.** H.; **Jeffrey, J.** A. **D.** *J. Chem. Soc., Dalton Trana.* **1973, 132.**

⁽¹²⁾ Ansari, M. A.; Ibcrs, J. A. *Cod. Chem. Rev.* **1990,100,223.**

Figure 2. Reduction waves of 1 mM solutions (DMF, no electrolyte) of the $[Mo_2Q_2(\mu-Se)_2(\eta^2-Se_2)_2]^2$ ions 1 (Q = Se) and 2 (Q = O) recorded using a Pt microelectrode $(20 \ \mu m^2)$. The potentials are referenced to the FeCp₂/FeCp₂⁺ couple (0.0 V) as described in the Experimental Section.

The IR spectrum of the $[K(2,2,2-crypt)]^+$ salt of 2 shows a $\nu(Mo-O)$ band at 1006 cm⁻¹ and medium-intensity bands at 351, 312, and 144 cm-l.

Electrochemistry. The cyclic voltammetric studies of anions **1** and **2** were conducted to compare the effect of the terminal Mo-Q group on the redox behavior of these compounds. The compounds showed reductions at -2351 and -2596 mV, respectively, in DMF versus $Fe(C_5H_5)_2/Fe(C_5H_5)_2^+$ (microelectrode, no electrolyte). The reduction waves are shown in Figure 2 for comparison. The observed currents were consistent with oneelectron processes, and no oxidation waves were detected out to the solvent cutoff $(\sim+0.5 \text{ V}$ versus $Fe(C_5H_5)_2/Fe(C_5H_5)_2^+$. It is interesting to note that it is significantly easier to reduce compound **1** than it is **2,** which is opposite to expectations based on electronegativity arguments.

Discussion

The Mo-Mo, Mo-Se, and Se-Se contacts in the Mo₂Se₆ centers of both 1 and 2 are in the expected ranges¹² for compounds of this type. However, the bonds in Mo₂Se₆ center of 1 are without exception $0.008-0.040$ Å shorter than the corresponding contacts in 2 (average difference $= 0.021$ Å). In fact, the same situation exits in sulfide2 and oxide3 analogues **4** and **5** where the Mo-Mo, Mo-S, and S-S contacts in the Mo₂S₆ center of the homoleptic sulfide complex 4 are on average 0.017 Å shorter¹³ than the corresponding contacts in the oxo complex **5.** These trends are

The $\nu(Mo=Se)$ stretching frequencies and the ⁷⁷Se NMR chemical shifts of the terminal Se ligands of **1,** 3, and $[MoSe(Se₄)₂]²⁻$ correlate with the Mo-Se bond distances. The longer Mo-Se interactions give rise **to** upfield 77Se chemical shifts and lower frequency $\nu(Mo=Se)$ stretches.^{5a} It has been well established that NMR chemical shift data are *not* reliable indications of absolute bond order or the electron density at a nucleus,¹⁴⁻¹⁶ and the correlations observed thus far may be purely coincidental. Ibers and co-workers have noted similar trends in the related $[W_2Se_x]^2$ - complexes $(x = 9, 10)$ and other tungsten and molybdenum selenides.^{5a,12,17} The ⁷⁷Se chemical shifts in the MozSea center of **1** are deshielded relative to those of **2,** which parallels the trend in 77Se chemical shifts in the isostructural series of $[MoQ(Se_4)_2]^2$ ⁻ ions (Q = O, S, Se) and the $[W_3QSe_8]^2$ compounds $(Q = Q, Se)^{12}$ The inductive effects due to the π -bonding arguments just described are consistent with the trends in ⁷⁷Se chemical shifts in the $[MoQ(Se_4)_2]^2$ and $[W_3QSe_8]^2$ series as well as the $[Mo_2Q_2(\mu-Se)_2(\eta^2-Se_2)_2]^2$ series; however, varying contributions from paramagnetic terms can clearly complicate chemical shift analyses such as these.^{14,15}

Acknowledgment. B.W.E. acknowledges the Department of Chemistry and Biochemistry and the GRB, University of Maryland, for support. K.J.A. thanks the NSF (VT-EPSCoR program, Grant No. RII8610679) for funding one of the X-ray diffractometers used in this study. S.G.B. thanks the Robert A. Welch Foundation for support. We are indebted to Prof. R. Khanna and Neil Dellorusso for the far-IR measurements and Prof. Cary Miller for help with the electrochemistry studies.

Supplementary Material Available: A textual presentation of the **crystallographic experimental details, complete listings of crystallographic data, bond distances and angles, fractional coordinates, and anisotropic thermal parameters, and ORTEP diagrams of 1 and 2 (28 pages). Ordering information is given on any current masthead page.**

- **Combariza, J. E.; Barfield, M.; Enemark, J. H.** *J. Phys. Chem.* **1991,** *95,* **5463.**
- **Minelli, M.; Hubbard, J. L.; Enemark, J. H.** *Inorg. Chem.* **1984, 23, 970.**
- **Wardle, R. W. M.; Bhaduri,S.;Chau, C.-N.; Ibers, J. A.** *Inorg. Chem.* **1988.27, 1747.**

Twosepraterefmementsof 5wereperformed (seeref 3) yieldingsimilar interatomic distances and angles. We used the data from the first **refinement for our analysis due to the lower agreement factors.**

Drago, R. S. *Physical Methods for Chemists,* **2nd ed.; Saunders College Publishing: Philadelphia, PA, 1992; pp 232-237.** (14)