Synthesis, Structure, and Spectroscopy of Encapsulated Complexes of Cobalt (111) Derived from the Ligand 5-Methyl-5-(4-amino-2-thiabutyl)-3,7-diazanonane-1,9-diamine (NsS)

James I. Bruce,^{1a} Lawrence R. Gahan,^{*,1a} Trevor W. Hambley,^{1b} and Robert Stranger^{1a}

Chemistry Department, The University of Queensland, Brisbane, QLD, Australia 4072, and School of Chemistry, The University of Sydney, Sydney, **NSW,** Australia 2006

Received November 4, 1992"

The synthesis of the NsS ligand **5-methyl-5-(4-amino-2-thiabutyl)-3,7-diazanonane-** 1,9-diamine, and its complex with cobalt(III), is reported. Reaction of this complex with nitromethane and formaldehyde results in the nitrocapped encapsulated complex [(**1-methyl-8-nitro-3-thia-6,10,13,16,19)-pentaazabicyclo[6.6.6]icosane)cobalt(111)]** perchlorate, $[Co(NON_5Ssar)](ClO_4)$. The NH₃+-capped complex $[Co(AMN_5SsarH)]Br_4.2H_2O$ has been characterized by a single-crystal X-ray study: crystals are monoclinic, space group $P2_1/a$, with $Z = 4$, $a = 10.735(3)$ \hat{A} , $b = 18.699(7)$ \hat{A} , $c = 12.692(3)$ \hat{A} , $\beta = 91.25(2)$ °, and $R = 0.031$ (1480 *F*). The low-temperature (11 K) absorption spectrum of [Co(AMN₅SsarH)]⁴⁺ has been measured in Nafion film, and from the observed positions of both spin-allowed T_{1g} , T_{2g} and spin-forbidden T_{1g} , T_{2g} states, octahedral ligand-field parameters of $B = 565$ cm⁻¹, $C = 3300$ cm⁻¹, and $10Dq = 22900$ cm⁻¹ were determined. Comparison with other sar type N₆, N₄S₂, N₃S₃, and S_6 encapsulated complexes indicates that *B* is reduced by approximately 30 cm⁻¹ on replacement of a nitrogen with a thioether donor.

Introduction

The encapsulating ligands **3,6,10,13,16,19-hexaazabicyclo-** [6.6.6]icosane (N6sar)l' and **3,6,10,13,16,19-hexathiabicyclo-** $[6.6.6]$ icosane (Me₂S₆sar)⁵ represent the two extremes of a possible set of seven $(N_{6-x}S_x; x = 0-6)$ icosane encapsulating ligands. Extensive studies concerning the electrochemical, $6,7$ redox, $8,9$ spectroscopic, and magnetic properties^{10,11} of the metal complexes of some of the ligands in this series have been reported. That a change in the number of thioether donors influences, in a progressive way, the properties of the metal complexes is exemplified by a comparison of the rate of electron transfer selfexchange for cobalt(III) and cobalt(II) complexes of $Me₂S₆$ sar,⁵ N_3S_3 sar $(k_{11} \sim 10^4 \text{ M}^{-1} \text{ s}^{-1})$,⁹ and N_6 sar $(k_{11} < 10 \text{ M}^{-1} \text{ s}^{-1})$.⁸ Of interest is the observation that the self-exchange rates for the S6 and N3S3 complexes are essentially identical and approximately 4 orders of magnitude greater than that observed for the N6 complexes, suggesting that the maximum effect of the change in the ratio of N/S donors may occur within the N6, N5S, N4S2, N3S3 part of the icosane series. The change in the rate of selfexchange electron transfer is not the only parameter which can be probed with these complexes; changes in redox potentials and ligand field parameters are also of interest.^{10,11}

Abstract Dublished in *Aduonce ACS Abstracts.* October 1. 1993.

- (a) The University of Queensland. (b) University of Sydney. Creaser, I. I.; Harrowfield, J. M.; Herlt, A. J.; Sargeson, A. M.; (2) Springborg, J.; Geue, **R.** J.; Snow, M. **R.** J. *Am. Chem. Soc.* **1977,99,** 3181.
-
- Sargeson, A. M. *Chem. Br.* **1979,** *IS,* 23. Geue, **R.** J.; Hambley, T. W.; Harrowfield, J. **M.;** Sargeson, A. M.; Snow, M. **R.** J. *Am. Chem. SOC.* **1984,** *106,* 5478.
- Osvath, **P.;** Sargeson, A. M.; Skelton, B. W.; White, A. H. J. *Chem. Soc., Chem. Commun.* **1991.** 1036.
- Bond, A. **M.;** Lawrance, G. **A.;** Lay, P. A.; Sargeson, A. M. *Inorg. Chem.* **1983, 22,** 2010.
- Gahan, L. **R.;** Lawrance, G. A.; Sargeson, A. M. *Inorg. Chem.* **1984,** (7) **23,** 4369. Creaser, I. I.; Sargeson, A. M.; Zanella, A. W. *Inorg. Chem.* **1983,22,**
- 4022. Dubs, **R.** V.; Gahan, L. **R.;** Sargeson, A. M. *Inorg. Chem.* **1983, 22,**
- **2523.** (10) Martin, L. L.; Martin, R. L.; Murray, K. S.; Sargeson, A. M. Inorg.
- Chem. 1990, 29, 1387.
Donlevy, T. M.; Gahan, L. R.; Hambley, T. W.; Stranger, R. Inorg. (11) Chem. 1992, 31, 4376.

We report in this paper the synthesis and characterization of the $N_{6-x}S_x$ (x = 1) segment of the icosane series, i.e. the N5S complex. Cobalt(II1) complexes based **on** the ligand 5-methyl-**5-(4-amino-2-thiabutyl)-3,7-diazanonane-** 1,9-diamine (NsS) and, subsequently, the encapsulating ligand based **on** 3-thia-6,10,- **13,16,19-pentaazabicyclo[6.6.6]icosane** (NsSsar) are reported. (The ligands described in this work are detailed in Chart I).

Experimental Section

¹H NMR spectra were recorded with a Varian M360 60-MHz spectrometer, sodium 3-(trimethylsilyl)propanesulfonate (NaTPS) in D₂O or tetramethylsilane (Me₄Si) in CDCl₃ being the internal reference. Fourier-transform ¹³C[¹H]NMR spectra were recorded with a Bruker AC200 FT spectrometer on internal lock (D₂O, CDCl₃), 1,4-dioxane and $NaTPS (D₂O)$ or $Me₄Si (CDCl₃)$ being the internal reference. Chemical shifts for the ¹³C NMR spectra recorded in D₂O are reported in parts per million (δ) as positive downfield and negative upfield from the internal reference (dioxane); chemical shifts for the I3C NMR spectra recorded in CDCl₃ are reported in parts per million (δ) as positive downfield from the internal reference MeaSi. In the ¹³C NMR assignments, the symbol C_a indicates a quaternary carbon atom. Visible spectra were recorded either with a Shimadzu UV-265 or a Cary 17 spectrophotometer **(c** in M-I cm-1). For low-temperature spectra, samples were cooled down to \sim 10 K using a Leybold Heraeus ROK 10-300 closed-cycle helium cryostat. Nafion films (Aldrich Nafion 117 perfluorinated membrane, 0.0007-in. thick) of the metal complexes were prepared by placing the film in dimethylformamide solutions of the complex for **48** h. The films were removed from the solution, washed with solvent and distilled water, and dried on tissue paper. In order to observe the spin-forbidden bands it was necessary to stack several films **on** top of one another.

0020-1669/93/1332-5997\$04.00/0 *0* 1993 American Chemical Society

Syntheses. The abbreviation Tosyl indicates the p-tolylsulfonyl moiety; t-Boc indicates the tert-butyloxycarbonyl protecting group. 1,3-(Dim**ethylmethylenedioxy)-2-methyl-2-hydroxymethylpropane** and 1,3-(dimethylmethylenedioxy)-2-methyl-2-(methylene-p-tolylsulfonyl)propane were prepared as described previously.¹²

1,3-(**Dimethylmethyleaedioxy)-2-methyl-2-(4-amino-2-thiabuty1)pro**pme(1). **Toasolutionofsodiummetal(4.5g,O.185** mol) indry methanol (50 mL) was added 2-aminoethanethiol hydrochloride, and the solution was heated at reflux for 20 min. A methanol solution (100 mL) of 1,3- (dimethylmethylenedioxy)-2-methyl-2-(methylene-p-tolylsulfonyl)propane (24 g, 0.076 mol) was added dropwise to the refluxing solution, and the reflux was maintained for 4 h after the completion of the addition. After cooling, the white precipitate of sodium chloride and sodium tosylate was removed by filtration, and the solvent was removed from the filtrate under reduced pressure. The residue was dissolved in CHCl₃ (100 mL) and the organic layer washed with water $(3 \times 75 \text{ mL})$. The CHCl₃ solution was separated, dried over Na₂SO₄, and filtered and the solvent removed under reduced pressure leaving a pale brown oil (14.9 g). ¹³C NMR (CDCl₃): δ 19.1 (2-CH₃), 20.4, 26.9 (1,3-CH₃), 34.0 (Cq), 38.0, 38.1 (CH₂-S), 41.1 (CH₂-N), 67.9 (CH₂-O), 97.8 (C_q). ¹H NMR 3.53, 3.62 $(-CH₂-)$. (CDCl₃): δ 0.90 (2-CH₃, s), 1.42 (1,3-CH₃, s), 2.57-3.08 (-CH₂-, m),

1,3-(Mmethylmethylenedioxy)-2-methyl-2-(4-(tert-butyoxycarbony**hamino)-2-thiabutyl)propane (2). 1 (14.9 g, 0.07 mol) was dissolved in** the mixed solvent 1,4-dioxane (200 mL) and water (60 mL). The solution was cooled to 5 °C, and 3 M KOH (30 mL) was added. Di-tert-butyl carbonate (14.8 g, 0.071 mol) was added rapidly and the solution stirred at 5 °C for 30 min, during which time a white precipitate of K_2CO_3 formed. A second aliquot of KOH (30 mL) was added, and the solution was permitted to warm to room temperature. Stirring was continued while the solution was maintained at room temperature for 2 h. The white precipitate was removed by filtration and the filtrate extracted with ether (4 **X** 50 mL). The ether extracts were combined and the solvent removed under reduced pressure leaving a pale brown oil (14.3 g). ¹H NMR (CDCl₃): δ 0.85 (5-CH₃, s), 1.40 (2-CH₃), 1.43 (CH₃*t*-Boc), 2.73 (–CH₂–, m), 3.60, 3.67 (-CH₂, s).

N-tert-Butoxycarbonyl-l,l-bis(hydroxymethy1)- l-methyl-3-thiahexanamine (3). To a refluxing 50% ethanol/water (100 **mL)** solution of 2 (19.3 g, 0.061 mol) were added 10 drops of concentrated HC1, and the solution was heated at reflux for 5 min. The pH of the solution was adjusted to 7 with Na₂CO₃, and the solvents were removed under reduced pressure. The residue was dissolved in $CHCl₃$ (60 mL), and the mixture was washed with water (2 **X** 30 mL). The organic layer was separated and dried over Na₂SO₄, and after filtration the solvent was removed resulting in an oil (23.1 g). ¹³C NMR (CDCl₃): δ 18.7 (-CH₃), 28.3 $(CH_3-t-Box)$, 33.74 (C_q), 39.2 (CH₂-S), 41.1, 41.3 (CH₂-NH₂), 68.8 (CH₂OH). ¹H NMR (CDCl₃): δ 0.83 (-CH₃, s), 1.43 (CH₃-t-Boc, s), 2.43-2.70 ($-CH_{2}$, m), 3.55 ($-CH_{2}$ -O).

N-tert-Butoxycarbonyl- 1,l-bis(**methylene-ptolylnyl)-l-methyl-l** thiahexanamine (4). To a stirred solution of 3 (55.5 g, 0.196 mol) in dry pyridine (100 mL) cooled to -10 °C was added a solution of tosyl chloride **(83.3g)indrypyridine(ltOmL)dropwiseover** 3 h. Thereactionmixture was permitted to warm to **room** temperature and then stirred for 24 h. The mixture was poured onto an ice-water slurry resulting in the precipitation of a brown oil, which was extracted with CHCl₃; the CHCl₃ extract was washed with water (3 **X** 75 mL) and, after separation, was dried over Na₂SO₄. Filtration and removal of the solvent under reduced pressure resulted in a brown oil, which was used without further purification (115 g). ¹³C NMR (CDCl₃): δ 18.2 (CH₃), 21.6 (CH₃tosylate), 28.3 (CH₃-t-Boc), 34.1 (C_q), 36.2 (CH₂-S), 69.7, 71.5 (CH₂-*0-),* 127.9, 129.5 (CH-tosylate), 132.1, 145.1 (Ar-Cq). IH NMR (CDC13): 6 0.90 (CHI, **s),** 1.43 (CH3-t-Boc), 2.43 (CH3-tosylate, **s),** 3.1 (-CH₂-, m); 3.7 (O-CH₂, s); 3.77 (O-CH₂-, s); 7.5 (Ar-H, m).

1,g-diamine **(5). 4** (144 g, 0.244 mol) was heated to reflux with dry 1,2-diaminoethane (500 mL) for 24 h. At the completion of the reflux most of the 1,2-diaminoethane was removed by distillation, and the cooled residue was dissolved in methanol (250 mL) and a methanol solution (100 mL) of KOH (30.11 g) added. The dense white precipitate of potassium tosylate which formed was removed by filtration and the solvent removed from the filtrate. The heavy oil which remained was dissolved in CHClj (200 **mL),** the organic layer was washed with water (3 **X** 50 **mL)** and dried over Na2S04, and the solvent was removed under reduced pressure. A brown oil remained (45.4 g), ¹³C NMR (CDCl₃): δ 22.3 5-Methyl-5-(4-tert-butoxycarbonylamino)-2-thiabutyl)-3,7-diazanonane-

 $(CH₃), 28.3$ (CH₃-t-Boc), 33.2 (CH₂-N), 38.9 (C_a), 39.61, 39.9 (CH₂-*S*-), 41.25 (CH₂-NH₂), 52.8, 56.5 (CH₂-NH). ¹H NMR (CDCl₃): δ 0.97 (CH₃, s), 1.43 (CH₃-t-Boc), 1.53 (NH, s), 3.0 (CH₂, m).

5-Methyl-5-(4-amino-2-thiabutyl)-3,7-diazanonane-1,9-diamine (N₂S). 5 (45.4 g, 0.124 mol) was stirred for 4 h in dioxane (400 mL) which had previously been saturated with HCI (3.8 M). At the completion of the reaction period the solvent was removed under reduced pressure, and the residue was dissolved in water, the solution made basic by addition of KOH, and the mixture extracted with $CHCl₃$ (3 \times 50 mL). The CHCl₃ extracts were combined and dried over $Na₂SO₄$. The CHCI₃ was removed under reduced pressure leaving the product as a yellow oil $(26.7 g)$. ¹³C NMR (CDCl₃): δ 22.2 (CH₃), 37.7, 39.9 (CH₂-S), 38.9 (C_q), 41.1, 41.3, (CH₂-NH₂), 56.6, 53.06 (CH₂-NH). ¹H NMR (CDCl₃): δ 0.97 (CH₃, **s**), 1.43 (NH, **s**), 2.5 (CH₂, m).

Caution! Perchlorate salts of metal complexes can be explosive and should be handled with care. They should *not* be heated as solids.

 $[Co(N₅S)](ClO₄)₃·2H₂O.$ A methanol solution (100 mL) of cobaltous nitrate (32.5 g) was added slowly to the crude ligand mixture (94 g) dissolved in methanol (200 **mL).** A stream of air was bubbled through the reaction during the course of the addition and subsequently for a further 4 h. The methanol was removed and the residue dissolved in water and filtered. After dilution to large volume (2 L), the red solution was loaded on to Dowex cation-exchange resin 50W-X2 (200-400 mesh), H⁺ form, and the column was washed with water and 1 M HCl to remove minor products. Elution with 2 M HCI removed a purple product, which was discarded. The major orange band which was removed after washing with 3 M HCI was collected and freed of solvent to give an orange solid, which was dissolved in a large volume of water $(2 L)$ and rechromatographed on Sephadex C-25 cation exchange resin (Na+ form). After being washed with 0.2 M NaCl solution to remove minor green and purple bands, the major orange band which eluted with 0.3 M NaCl was collected on Dowex 50W-X2 cation exchange resin, washed with 0.5 M HC1, and eluted with 3 M HC1. The orange solid obtained upon evaporation of the solvent was collected (9.1 9). This product was determined from I3C NMR to be **a** mixture of the desired compound $[C_0(N_5S)]C_1$ ₃ and $[C_0(N_4S_2)]C_1$, in the ratio 10:1. Chromatographic separation of the mixture was achieved on Sephadex C-25 cation exchange resin ($Na⁺$ form) with 0.03 M sodium citrate solution. The first band eluted from the column, after collection on Dowex cation exchange resin, was washed with dilute HCI and eluted with 3 M HCl. Removal of the solvent resulted in the isolation of a product identified as $[Co(N_5S)]Cl_3$ from the I3C NMR spectrum. The product was crystallized from aqueous solution with NaClO₄. Anal. Calcd for $[(C_{11}H_{29}N_5SC_0)]$ - $(C1O₄)₃·2H₂O: C, 20.1; H, 5.07; N, 10.7.$ Found: C, 20.3; H, 4.86; N, 10.9. Visible spectrum $[\lambda_{\text{max}}, \text{nm} (\epsilon_{\text{max}}) \text{ in H}_2\text{O}]$: 478 (115), 349 (122). ¹H NMR (D₂O): δ 1.1 (CH₃, s), 3.1 (CH₂, m). ¹³C NMR (in D₂O): NH₂), -27.09, -27.19 (CH₂-S), -24.3 (C_q), -43.6 (CH₃). The crude mixture of metal complexes could also be employed in the next step. $δ$ -9.90, -10.7, -11.4, -12.1 (CH₂-NH-), -21.6, -23.5, -24.0 (CH₂-

 $[Co(NON₉Ssar)](CO₄)₃·H₂O.$ The nitro-capped encapsulated complex was prepared from the reaction of the mixture of $[Co(N_5S)]^{3+}$ and $[Co (N_4S_2)$ ³⁺ (5.0 g) in aqueous solution (300 mL) with nitromethane (8.0 g), 37% aqueous formaldehyde solution (61 g, 37% solution), and Naz- $CO₃$ (2.80 g) as described.^{4,11} At the completion of the reaction the solution was diluted to large volume and loaded on to a Dowex 50W-X2 cation exchange column $(H⁺$ form), the column washed with water (1) L), 1 M HCl (1 L), and the orange band eluted with 3 M HCl. Removal of the solvent under reduced pressure resulted in an orange **red** solid. The solid was dissolved in a large volume of water (1 L) and loaded on a column of Sephadex C25 cation exchange resin (Na+) form; the column was washed with water and then eluted with 0.05 M Na₂SO₄, resulting in the separation of a leading major red-orange and a minor red band. The major band was collected, freed of eluent using Dowex cation exchange resin, and eluted with 3 M HC1. Removal of the solvent resulted in an orange solid which was crystallized from aqueous sodium perchlorate solution, 1.8 g. Anal. Calcd for $[(C_{15}H_{32}N_6O_2S)Co](ClO_4)_3·H_2O$: C, 24.5;H,4.66;N, 11.4. Found: C,24.7;H,4.81;N, 11.5. Visiblespectrum [λ_{max} , nm (ϵ_{max}) in H₂O]: 484 (317), 354 (318). ¹H NMR (D₂O): δ 1.1 (CH3, 3H, **s),** 3.3 (CHz, 18H, **m).** 13C NMR (D20): *b* +20.6 (Cq-NO₂),-10.4,-11.1,-11.4,-11.8,-12.5,-13.5,-14.2,-15.0,-15.1 **(CH₂**-NH), -23.6 (C_q), -28.8 , -28.9 (CH₂ $-$ S), -43.8 (CH₃).

 $[Co(AMN₅SsarH)]Br₄·2H₂O$. The nitro cap was reduced to a protonated amine cap as previously described.^{4,11} The product, after chromatographic purification, was crystallized from aqueous sodium bromide solution. Anal. Calcd for $[(C_{15}H_{35}N_6S)Co]Br_4.2H_2O$: C, 24.1; H,5.27;N,11.3;S,4.3. Found: **C,23.7;H,5.14;N,10.9;S,4.0.Visible**

⁽¹²⁾ **Gash, V.** W. *J. Org.* Chem. **1972,** 37,2197.

Table I. Crystal Data for [Co(AMN₅SsarH)]Br₄.2H₂O

cryst system	monoclinic
space group	P2 ₁ /a
a, A	10.735(3)
b, A	18.699(7)
c. A	12.692(3)
β , deg	91.25(2)
V, A^3	2547(1)
D_{calc} , g cm ⁻³	1.951
empirical formula	C_1 ₃ $H_{30}Br_4CoN_6O_2S$
fw	746.54
z	4
μ , cm ⁻¹	69.89
$F(000)$, electrons	1480
habit	prisms
dimens, mm	$0.20 \times 0.20 \times 0.325$
λ. Α	0.71065
$T, {}^{\circ}C$	21
R٠	0.031
¢۰,R	0.033

$R = (\sum |F_0| - |F_0|)/(\sum |F_0|)^b R_w = (\sum w^{1/2} ||F_0| - |F_0||)/(\sum w^{1/2} ||F_0||)$

spectrum $[\lambda_{\text{max}},$ nm (ϵ_{max}) in H₂O]: 484 (322), 353 (319). ¹H NMR (D20): 6 1.1 (CH3, 3H, **s),** 3.02 (CH2,24H, m). 13C NMR (D20): 6 -11.0 (C_q), -11.4, -11.6, -12.0, -12.8, -13.2, -13.9, -15.1 (CH₂-NH), -23.8 (C_q); -28.6 , -28.9 (CH₂ $-$ S), -43.9 (CH₃).

AMN_sSsar. The metal ion, as cobalt(II), was removed from the encapsulating ligand using NaCN under an inert atmosphere of nitrogen.¹¹ In a typical experiment the [Co(AMN₅SsarH)]Br₄·2H₂O complex (5 g) was dissolved in water and reduced with Zn powder (0.3 **g)** under a stream of nitrogen. Solid NaCN (3 g) was added and the reaction permitted to proceed for 24 h. The mixture was made strongly basic (KOH) and extracted with CHCl3. Removal of the solvent under reduced pressure resulted in a white solid (3 g). Anal. Calcd for $C_{15}H_{34}N_6S$: C, 54.5; H, 10.4; N, 25.4; **S,** 9.7. Found: C, 54.0; H, 11.0; N, 25.6; **S,** 9.4. Mass spectrum, *m/e:* calcd, 330.543; found, 330.257. IH NMR (CDCl3): 6 0.81 (CH3, 3H, **s),** 2.8 (CH2, 34H, m). I3C NMR (CDC13): **623.4(CH3),34.0,39.8(CH2-S),40.3(Cq),48.9,51.0,51.75,60.4,61.6,** 62.4 (CH₂–N), 53.5 (C_q).

X-ny Crystallography. Cell constants were determined by a leastsquares fit to the setting parameters of 25 independent reflections measured and refined on an Enraf-Nonius CAD4-F diffractometer with a graphite monochromator. The crystallographic data are summarized in Table I. Data were reduced and Lorentz, polarization and absorption corrections were applied using the Enraf-Nonius structure determination package (SDP).¹³ The structure was solved by direct methods using SHELXS-8614and was refined by block matrix least squares analysis with SHELX-76.15 Hydrogen atoms were included at calculated sites (C-H 0.97 A) with individual isotropic thermal parameters. All other atoms were refined anisotropically. Scattering factors for Co (neutral Co) were taken from ref 16; for all others the values supplied in SHELX-76 were used. Nonhydrogen atom coordinates are listed in Table **11,** bond lengths and bond angles are listed in Tables 111 and IV, respectively. The atomic nomenclature is defined in Figure 1 **.I7**

Results and Discussion

Nomenclature. The hexadentate ligand 5-methyl-5-(4-amino-**2-thiabutyl)-3,7-diazanonane-** 1,g-diamine is given the abbreviation N_5S , consistent with the previously adopted abbreviation for the analogous ligand **5-methyl-5-(4-amino-2-azabutyl)-3,7** dithianonane-1,9-diamine, N₄S₂.¹¹ Similarly, the abbreviation for the nitro-capped complex becomes NON_SSsar, and that for

Table II. Positional Parameters for [Co(AMN₅SsarH)]Br₄.2H₂O^o

	x	у	z	B_{eq} , \mathring{A}^2
Co(1)	0.2313(1)	0.1332(1)	0.2818(1)	1.30
S(1)	0.3898(1)	0.0892(1)	0.1930(1)	2.09
N(1)	0.1027(4)	0.0830(2)	0.1943(3)	1.79
N(2)	0.2226(4)	0.2143(2)	0.1833(3)	1.87
N(3)	0.2539(4)	0.0508(2)	0.3794(3)	1.76
N(4)	0.0901(3)	0.1684(2)	0.3671(3)	1.68
N(5)	0.3483(4)	0.1918(2)	0.3684(3)	1.93
N(6)	0.2321(4)	0.1471(2)	0.6388(3)	2.33
C(1)	0.1955(6)	0.1216(4)	$-0.0916(5)$	3.98
C(2)	0.2165(5)	0.1234(3)	0.0321(4)	2.24
C(3)	0.3514(6)	0.0927(3)	0.0548(4)	2.65
C(4)	0.1186(5)	0.0747(3)	0.0792(4)	2.61
C(5)	0.2041(5)	0.2001(3)	0.0676(5)	2.94
C(6)	0.3700(5)	$-0.0016(3)$	0.2336(4)	2.55
C(7)	$-0.0206(5)$	0.1179(3)	0.2185(4)	2.48
C(8)	0.3347(5)	0.2593(3)	0.2055(5)	2.88
C(9)	0.3615(5)	0.0034(3)	0.3511(4)	2.31
C(10)	$-0.0245(5)$	0.1280(3)	0.3350(5)	2.43
C(11)	0.3480(6)	0.2654(3)	0.3219(5)	2.90
C(12)	0.2551(6)	0.0659(3)	0.4930(4)	2.83
C(13)	0.1055(5)	0.1713(3)	0.4819(4)	2.95
C(14)	0.3342(5)	0.1932(3)	0.4842(4)	2.82
C(15)	0.2324(5)	0.1440(3)	0.5212(4)	1.85
Br(1)	0.1398(1)	0.3642(1)	$-0.0760(1)$	2.99
Br(2)	$-0.0009(1)$	0.3207(1)	0.2582(1)	3.45
Br(3)	0.4637(1)	0.4331(1)	0.1878(1)	3.49
Br(4)	$-0.2883(1)$	0.0976(1)	0.0306(1)	4.34
O(1)	0.1522(5)	0.2792(3)	0.6979(4)	4.41
O(2)	0.1894(5)	0.5006(3)	0.7655(4)	4.59

 $a B_{eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_j^*a_ia_j.$

Table III. Bond Lengths (Å) for $[Co(AMN₅SsarH)]Br₄·2H₂O$

$S(1) - Co(1)$	2.219(1)	$N(1)$ –Co (1)	1.990(4)
$N(2)$ –Co(1)	1.967(4)	$N(3)$ -Co(1)	1.989(4)
$N(4) - C0(1)$	1.994(4)	$N(5)-C0(1)$	1.982(4)
$C(3) - S(1)$	1.794(6)	$C(6)-S(1)$	1.791(5)
$C(4)-N(1)$	1.483(7)	$C(7)-N(1)$	1.513(6)
$C(5)-N(2)$	1.501(7)	$C(8)-N(2)$	1.490(6)
$C(9)-N(3)$	1.504(6)	$C(12) - N(3)$	1.469(7)
$C(10) - N(4)$	1.493(6)	$C(13) - N(4)$	1.464(7)
$C(11) - N(5)$	1.497(6)	$C(14) - N(5)$	1.481(7)
$C(15) - N(6)$	1.494(6)	$C(2) - C(1)$	1.583(8)
$C(3)-C(2)$	1.579(8)	$C(4) - C(2)$	1.522(7)
$C(5)-C(2)$	1.509(7)	$C(9) - C(6)$	1.500(7)
$C(10)-C(7)$	1.492(8)	$C(11) - C(8)$	1.486(8)
$C(15) - C(12)$	1.526(7)	$C(15)-C(13)$	1.528(7)
$C(15)-C(14)$	1.511(7)		

the amine capped ligand is $AMN₅Ssar_i¹¹$ protonation of the $NH₂$ cap is described by the suffix H, e.g., $[Co(AMN_5S\sqrt{H})]^{4+}.6$ That the second trigonal cap contains a methyl group is dictated by the synthetic procedures and is not included in the nomenclature.

Ligand Synthesis. The potentially hexadentate ligand 5-methyl-**5-(4-amino-2-thiabufyl)-3,7-diazanonane-** 1,g-diamine has been synthesized in a reaction scheme in which one 4-amino-2-thiabutyl and two 4-amino-2-azabutyl moieties are selectively placed on the trigonal cap **l,l,l-tris(hydroxymethyl)ethane,** (Scheme I). The synthetic scheme utilizes two protecting groups to permit selective reaction at different stages of the procedure. The formation of the cyclic acetal permitted the "one-site" addition of 2-aminoethanethiol. The second protecting group **(t-Boc)** permitted selective protection of the primary amine against both tosylation, in subsequent stages of the scheme, and intramolecular ring closing reactions previously observed in the syntheses of these types of ligands.¹⁸ The desire to avoid preparing the toluenesulfonate derivative of the pendant amine stems from the observation of extensive ligand degradation during removal (HBr/ acetic acid; **H2SO4)** of this protecting group. The final product of the synthesis was shown to contain byproducts, one of which

Enraf-Nonius Structure Determination Package, Enraf-Nonius, Delft, Holland, 1985.

Sheldrick, **G. M.** SHELXS-86, *Crystallographic Compuring3;* Sheldrick, G. **M.,** Kruger. C., Goddard, R., Eds.; Oxford Univeristy Prcss: Oxford, U.K., 1985; pp 175-189. Sheldrick, G. **M.** SHELXS-76, A Program for X-Ray Crystal Structure

Determination. University of Cambridge, England, 1976.
Cromer, D. T.; Waber, J. T. *International Tables for X-Ray Crystal-*

lography; Kynoch Press: Birmingham, England, 1974; Vol. **1V.** Figures were drawn with ORTEP (Johnson, C. K. *ORTEP,* A *Thermal*

Ellipsoid Plorring Program; Oak Ridge National Labs.: Oak Ridge, TN, 1965.

⁽¹⁸⁾ Gahsn, L. R.; Hambley, T. W. *Inorg. Chem.* **1987,** *26,* 2532.

Figure 1. ORTEP plot of the complex cation of [Co(AMN₅SsarH)]-Br₄.2H₂O, giving the crystallographic atom numbering. Probability ellipsoids of 30% are shown.

has been identified (< 10%) as **5-methyl-5-(4-amino-2-azabutyl)-** 3,7-dithianonane-1,9-diamine, the N_4S_2 analogue.¹¹

Oxidation of a mixture of a cobalt(I1) salt and the crude ligand mixture, in methanol, with O₂ resulted in a mixture of $[Co(N_5S)]^{3+}$ and $[Co(N_4S_2)]^{3+}$. Separation using cation exchange chromatography afforded a pure sample of the desired complex. Alternatively, encapsulation procedures employing formaldehyde

and nitromethane, in the presence of base,⁴ followed by cationexchange chromatography, resulted in the nitro-capped complex. Reduction of the nitro group, using previously described procedures,^{4,11} resulted in the complex $[Co(AMN_5SsarH)]Br_4.2H_2O.$

Discussion of **the Structure.** The structure of [Co(AMN5- $S\$ (H)] Br_4 $2H_2O$ consists of the complex cation, four Br anions, and two water molecules. The conformation of the complex cation is described as lel_3 since the C-C vectors of the N-C-C-E (E $= N$ or S) chelate rings are parallel to the pseudo-C₃ axis of the complex. Each of the cap atoms approximately eclipses the atoms to which they are bonded. The caps are staggered with respect to each other, and the conformation is similar to that previously observed for the N_4S_2 ,¹¹ N₃S₃,¹⁹ and N₆⁴ analogues of this complex.

The **Co-S** bond length in this structure (2.219(1) **A)** is similar to that reported for analogous complexes $(N_4S_2$ sar, average 2.214 \mathbf{A} ¹¹ N₃S₃sar, 2.226(1) \mathbf{A}^{19} . In each case the bond length is at the short end of the range observed for Co-S bonds.^{20,21} The Co-N bond lengths (average 1.984 **A)** are shorter than those observed in $[Co(NON_4S_2sar)]^{3+}$ (average 2.008 Å)¹¹ and are similar to those reported for $[Co(sep)]^{3+}$ (1.990 Å).² The bond angles at the bridgehead methylene carbon atoms, e.g. C(4)- $C(2)$ -C(3) and $C(12)$ -C(15)-C(13), are expanded somewhat from the tetrahedral values, as are the bond angles at the methylene carbon atoms, e.g. $C(2) - C(3) - S(1)$ and $C(15) - C(12) - N(3)$, possibly as a consequence of the incorporation of a thioether in the macrobicyclic ring. An additional effect of the incorporation of the thioether donor is to increase the torsion angle at the central carbon-carbon bond (N(2)-C(8)-C(11)-N(5) and N(1)-C(7)-C(10)-N(4)) from 53.3(5) and 54.2(4)^o, respectively, to 58.8-(4)^o for $S(1) - C(6) - C(9) - N(3)$, similar to that observed in other mixed nitrogen/sulfur complexes.19

1% NMR. The l3C NMR spectra displayed reflect the general lack of symmetry in the complexes. For the $[Co(N_5S)]^{3+}$ complex the ¹³C NMR spectrum displays 11 lines. Resonances at -9.90, -10.7 , -11.4 , and -12.1 ppm are assigned as methylene carbon atoms adjacent to coordinated secondary amines; resonances at $-21.6, -23.5,$ and -24.0 ppm arise from methylene carbon atoms adjacent to coordinated primary amines. Resonances at -27.09 and -27.19 pm are assigned as arising from methylene carbon

(21) Hamblcy, **T.** W. *Acta Crystallogr.* **1988,** *B44,* 601.

⁽¹⁹⁾ Gahan, L. **R.;** Hambley, T. W., Ssrgeson, **A.** M.; **Snow,** M. **R.** *Inorg. Chem.* **1982,** *21,* 2699.

⁽²⁰⁾ Hambley, T. **W.;** Gahan, L. **R.;** Scarlc, G. H. *Acta Crystallogr., Sect. C,* **1989,** *C45,* 864.

Figure 2. Absorption spectrum of the spin-allowed ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$, ${}^{1}T_{2g}$ transitions in [Co(AMN₅SsarH)]⁴⁺ (Nafion film; room temperature and 11 **K).**

atoms adjacent to the coordinated thioether.^{19,22} The resonance at -24.3 ppm is assigned to the quaternary carbon atom in the trigonal cap. The encapsulation reaction to produce the nitrocapped complex results in the disappearance of the resonances around-23 ppm, except for that assigned to thequaternary carbon. The appearance of a more complex pattern of resonances in the region of the spectrum associated with carbon atoms adjacent to coordinated secondary amines, and the appearance of a resonance at +20.6 ppm, assigned to the quaternary carbon adjacent to the nitro group, $4,11,19$ confirms the formation of the encapsulated complex. Reduction of the nitro group to a protonated amine results in loss of the +20.6 ppm resonance and the appearance of a new resonance at -11.0 ppm, as expected.^{4,11,19} In most of the l3C NMR spectra, small splittings (<0.5 **Hz)** were observed for resonances due to carbon atoms α and β to coordinated primary and secondary amines. This splitting has been ascribed to an isotopomeric effect resulting from a proton-deuterium exchange occurring at the amine centres.23

Visible Spectra. The visible spectra of these complexes are characteristic of low-spin octahedral cobalt(II1) with two spin-**VISIDIE Spectra.** I he visible spectra of these complexes are characteristic of low-spin octahedral cobalt(III) with two spin-
allowed absorption bands corresponding to the ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ and characteristic of low-spin octahedral cobalt(111) with two spin-
allowed absorption bands corresponding to the ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ d-d transitions. As noted previously,²⁴ the nature of the apical donor has little influence **on** the position of the d-d bands.

The absorption spectrum of $[Co(AMN₅SsarH)]^{4+}$ in Nafion The absorption spectrum of [CO(AMN₃S8arH)]³¹ in Nation
film at room temperature and 11 K is shown in Figure 2. At
room temperature, the ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ transition is almost obscured by the intense low-energy **Co-S** charge transfer transition, but at low temperatures this transition is clearly resolved. It is apparent from the two spectra that a vibronic mechanism is contributing to the transition intensity; however, due to the thermal contraction and expansion of the Nafion film with change in temperature, it is not possible to quantify this effect.

In order to locate the much weaker spin-forbidden transitions in [Co(AMN₅SsarH)]⁴⁺, a more concentrated spectrum in Nafion film was measured at room temperature and 11 K. The spectra are shown in Figure 3 where, at low temperature, both the ¹A_{1g} \rightarrow ³T_{1g} and ¹A_{1g} \rightarrow ³T_{2g} spin-forbidden transitions are observed. From a band analysis, the ¹ $A_{1g} \rightarrow {}^{3}T_{1g}$ and ¹ $A_{1g} \rightarrow {}^{3}T_{2g}$ transitions arecentredat approximately 13 750and 17 500cm-l, respectively.

Assuming approximate octahedral *oh* symmetry, the octahedral ligand field parameters lODq, *B,* and **C** can be determined using

Figure 3. Absorption spectrum of the weak spin forbidden ${}^{1}A_{12} \rightarrow {}^{3}T_{12}$, ³T₂, transitions in [Co(AMN₅SsarH)]⁴⁺ (Nafion film; room temperature and 11 K).

the following perturbation expressions corrected for configuration interaction:¹¹

interaction:¹¹
\n
$$
E({}^{1}A_{1g} \rightarrow {}^{1}T_{1g}) = 10Dq - C + (5BC + 7B^{2} + C^{2})/5Dq
$$
\n
$$
E({}^{1}A_{1g} \rightarrow {}^{1}T_{2g}) = 10Dq - C + 16B + (3BC - 27B^{2} + C^{2})/5Dq
$$
\n
$$
E({}^{1}A_{1g} \rightarrow {}^{3}T_{1g}) = 10Dq - 3C + (5BC - 11B^{2} + C^{2})/5Dq
$$
\n
$$
E({}^{1}A_{1g} \rightarrow {}^{3}T_{2g}) = 10Dq - 3C + 8B + (3BC - 21B^{2} + C^{2})/5Dq
$$
 (1)

From the observed band positions in the low-temperature spectrum, the above energy expressions give the best-fit values of $B = 557$, $C = 3240$, and $10Dq = 21950$ cm⁻¹. These may be compared with the values $B = 565$, $C = 3300$ and $10Dq = 22880$ cm^{-1} determined from a complete d⁶ ligand field calculation.²⁵ Again, as was found for other $Co(N_6)^{3+}$ complexes,²⁴ the C/B ratio is approximately 6 compared with 4.8 for the free ion.^{26,27}

The systematic replacement of amine donors with thioether donors in the cage system, keeping all else constant, affords the opportunity to examine the ligand dependence of **lODq** and the Racah B electron repulsion parameter. Table V lists the position of the ${}^{1}A_{1g} \rightarrow {}^{1}T_{1g}$, ${}^{1}T_{2g}$ spin-allowed transitions and $10Dq$ and B for the N_6 , N_5S , N_4S_2 , N_3S_3 , and S_6 cage complexes. To be consistent, the room-temperature band positions are used in B for the N₆, N₅S, N₄S₂, N₃S₃, and S₆ cage complexes. To be
consistent, the room-temperature band positions are used in
calculating the ligand field parameters. Since the ¹A_{1g} \rightarrow ³T_{1g},
3T₁ calcul ${}^{3}T_{2g}$ spin-forbidden transitions have not been reported for the N₆, N_4S_2 , N_3S_3 , and S_6 cage complexes, the first two equations in expression 1 are used with the assumption of $C = 6B$ in order to determine 10Dq and B.

Examination of the results in Table V reveals that although there is a significant reduction of approximately 400 cm^{-1} in 10Dq from the N₆ to the N₅S complex, thereafter the value of 10Dq remains relatively constant with only a reduction of around 300 cm⁻¹ from the N₅S to the S₆ complex. Clearly, the thioether ligand exerts a ligand field strength quite similar to that of a saturated amine donor ligand. The origin of the 400-cm⁻¹ reduction in $10Dq$ in going from the N₆ to N₅S cage complex is

⁽²²⁾ Gahan, L. R.; Donlevy, T. M.; Hambley, **T.** W. *Inorg. Chem.* **1990,29, 1451.**

⁽²³⁾ Jackson, W. **G.** *Inorg. Chem.* **1991,** *30,* **1570.**

⁽²⁴⁾ Lawrance, **G. A.;** Lay, P. **A.;** Sargeson, A. M. *Inorg. Chem.* **1990,29, 4808.**

⁽²⁵⁾ Cruse, D. **A.;** Davies, **J. E.;** Gerloch, **M.;** Harding, J. H.; Mackey, D. J.; McMeeking, **R. F.** CAMMAG-a **FORTRAN** Computer, Package.

University Chemical Laboratory, Cambridge, U.K., 1979.

(26) Lever, A. B. P. *Inorganic Electronic Spectroscopy*, 2nd ed.; Elsevier Publ.: Amsterdam, 1984.

⁽²⁷⁾ Wentworth, R. A. D.; Piper, T. S. *Inorg. Chem.* **1965**, 4, 709. (28) Creaser, I. I.; Gahan, L. R.; Geue, R. J.; Launikonis, A.; Lay, P. A.; Lydon, J. D.; McCarthy, M. G.; Mau, A. W.-H.; Sargeson, A. M.; Sasse, W. H.

Table V. Ligand Field Spectra of Co(III) Encapsulated Complexes^a

	Е	Е			
ligand (donors)	$({}^{1}A_{1a}{}^{-1}T_{1a})^b$	$({}^{1}A_{1a}{}^{-1}T_{2a})^b$	10Dq ^b	Bb	ref
$diAMN_6$ sar $(6N)$	21050	29100	22300	594	28
AZAMEN ₆ sar(6N)	21300	29250	22600	583	28
AMMEN ₆ sqrt(H (6N))	21200	29000	22510	571	28
AMN ₅ Ssar (5NS)	20660	28330	21930	562	c
NON ₅ Ssar (5NS)	20660	28250	21940	555	c
$AZAN4S2sar (4N2S)$	20450	27500	21770	509	11
$AMNaS3sqrt(4N2S)$	20450	27700	21750	526	11
$NON4S2$ sar (4N2S)	20450	27700	21750	526	11
$CLN4S2sar (4N2S)$	20450	27700	21750	526	11
$HN4S2star (4N2S)$	20490	27550	21810	510	11
$AZAN_3S_3$ sar (3N3S)	20450	26800	21790	451	28
$AMN3S3sqrtH$ (3N3S)	20500	27150	21840	475	28
$NON3S3$ sar (3N3S)	20450	27050	21790	471	28
$Me2S6$ sar (6S)	20240	26315	21580	426	5

 α Values of 10Dq and B were calculated from solution data (reported in the references) using expressions (1) with $C = 6B$ given in the text of this work. *b* All units are in cm-I; band positions are measured at room temperature. ^c This work.

unclear, although it is noted that the average Co-N bond length in the **NsS** complex is approximately 0.01 **A** longer than that for the deprotonated NON₆sar cage complex.

The relative insensitivity of *lODq* to the number of thioether donors is not mirrored by the Racah B parameter. Figure **4** reports a plot of the Racah *B* parameter against the number of thioether donors for the complexes listed in Table V. Clearly, there is a systematic reduction in B from \sim 590 cm⁻¹ for the N₆ donor set through to \sim 425 cm⁻¹ for the S₆ donor set. However, although B is reduced by approximately 120 cm⁻¹ from N₆ through to N_3S_3 , corresponding to half of the amine donors replaced by thioether donors, a further reduction of only \sim 50 cm⁻¹ occurs from N_3S_3 through to S_6 coordination. On the basis of the line of best fit drawn in Figure **4,** the value of B is reduced by at least 30 cm-I for each thioether donor present, and this trend is consistent with the reduction in B reported for a number of nickel-**(11)** cyclononane complexes involving mixed nitrogen and sulfur coordination.29

Figure **4.** Plot of the Racah B parameter against the number of thioether donors (complexes listed in Table **V).**

It must be pointed out that as the number of thioether **donors** increases, the overlap of the ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ d-d transition with the lower energy wing of the $Co(III)$ -S charge transfer transition generally increases, making any accurate estimate of the former d-d transition difficult. Since the value of *B* is basically determined by the energy separation of the ${}^{1}T_{1g}$ and ${}^{1}T_{2g}$ states (see expression 1), a reliable estimate of the ${}^{1}A_{1g} \rightarrow {}^{1}T_{2g}$ transition energy is necessary. Obviously, the measurement of lowtemperature spectra will help resolve this problem and provide a better estimate of the Racah B parameters, particularly for the N_3S_3 and S_6 complexes where the overlap problem is more severe.

Supplementary Material Available: Listings of **full** crystal data (Table Sl), thermal parameters (Table **S2),** hydrogen positional and thermal parameters (Table S3), and torsion angles (Table S4) (6 pages). Ordering information is given on any current masthead page.

(29) McAuley, A.; Subramanian, **S.** *Znorg. Chem.* **1990,** *29,* 2830.