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Three different theoretical considerations are used to probe some of the factors which determine the “complexity” 
of solids. It is first shown how simple topological restrictions, set by stoichiometry and local coordination number, 
have an important bearing on the generation of locally symmetric arrangements of atoms. Through the introduction 
of an orbital picture which provides an electronic underpinning of the valence sum rules of Pauling and Brown, it 
is shown how the local structure is determined by the electronic configuration. Finally, the use of the method of 
moments enables comments to be made concerning the identity of nearest-neighbor atoms and linkages of various 
types as a function of electron count. By study of the behavior of the fourth moment as a function of an order 
parameter, it is shown how ordered arrangements of atoms and bonds are electronically favored. 

Introduction 

One of the most striking features of the panoply of structures 
found in the solid state is their wide range of complexity. The 
very simple structure of rock salt and the many other systems 
which may be generated by filling the interstices of close-packed 
anionic arrays stand in stark contrast to many of the “complex” 
structures of the mineral world. But what do we mean by 
“complex”? There is no obvious single parameter which im- 
mediately comes to mind. Certainly low symmetry as in crystal 
class or space group is a useful index, and the presence of atoms 
in distorted local environments and symmetry inequivalent atoms 
of the same chemical identity are two other indicators. The latter 
lead to a large number of atoms in the asymmetric unit and often 
large unit cells. It is clear though that ”complexity” is largely 
a qualitative, frequently intuitive, notion. 

The structure of angelellite, Fe&szOll, shown in Figure 1, is1 
a simple one compared to many structures, but one where the 
iron octahedra are distorted so that there are no angles of 90 or 
180° and of the FeO distances, no two are the same, a situation 
very different from that of rock salt. This pair of structures 
immediately prompts two questions. First, why does angelellite 
not adopt a much simpler structure and second why does rock salt 
not adopt a more complex one? A more “complex” structure is 
indeed found for ZrC1. If the close-packed sheets in NaCl are 
arranged in the order ... NaClNaClNaClNaCl ..., then the sheets 
in ZrCl are arrangedzas ... ZrZrClClZrZrClCl .... A similar pair 
of questions is applicable to the very simple structures found for 
most of the elemental metals but the frequently very complex 
arrangements found for the X-phases and alloys such as Cu4Cd3 
(see ref 3). These two questions can be viewed within a wider 
context. Since one extreme of atomic complexity is associated 
with the arrangements found in disordered systems, it is pertinent 
to ask why there are crystals a t  all. This question, of course, is 
in two parts. The first asks what are the factors determining 
long-range order in crystals. (Thus C U ~ A U ,  for example, is 
crystalline below 663 K, but above this temperature has no long 
range order, the Cu and Au atoms being disordered over the sites 
of the fcc lattice.) The second asks if ordered structures with 

Figure 1. Structure of angelellite:’ (a) showing the basic building blocks 
of iron-centered octahedra; (b) showing how chains of such octahedra are 
linked via arsenic-centered tetrahedra. 

small unit cells of high symmetry should be favored over 
amorphous materials, namely those disordered systems with 
“complex” cells of infinite size. Recognizing that entropic factors 
in general stabilize disordered structures, what are the electronic 
factors which stabilize ordered arrangements of atoms? This is 
a question which has been of interest for years. Laves argued4 
that atoms, if regarded as objects with a uniform diameter and 
an incompressible exterior, would be expected to pack together 
in space to give crystal structures with the highest symmetry, 
highest coordination numbers, and densest packing of atoms. In 
fact atoms are not characterless spheres like billiard balls, and 
there are certainly electronic  reason^^^^ for the stability of such 
close-packed arrangements. 

This article will address some of these questions and is in three 
parts. The first examines some of the topological restrictions 
implied by the local coordination and stoichiometry. The second 
uses traditional orbital ideas and the angular overlap model7 and 
the third the more global picture provided by the method of 
moments6-8 to make general statements concerning the factors 
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Complexity of Solids 

influencing the stability of structures. The focus will exclude 
molecular structures held together by van der Waals interactions. 
We begin our discussion with some considerations of Pauling’s 
rules.9 
Pauling’s Second Rule and the Structure of Angelellite 

Pauling’s rules9 were initially assembled to guide the under- 
standing of crystal structures of the “ionic” type, although it is 
clear that the general ideas are applicable to a wider class of 
materials. Pauling’s first rule introduces the idea of ionic “size” 
and, via the radius ratio, considerations of local geometry. It is 
however, the second rule which starts to determine how an 
extended array is built up. The second rule is usually stated as 
follows: “In a stable coordinated structure the total strength of 
the valency bonds which reach an anion from all the neighboring 
cations is equal to the charge of the anion.” In early use of this 
idea, Pauling envisaged the electrostatic bond strength (ebs) as 
being equal to the cation charge divided by the coordination 
number of the cation. As an example, in NaCl each cation is 
linked to six anions and the ebs of each anion-cation linkage is 

Thus the sum of the ebs of the six bonds to the cation is just 
zebs = 6 X l / 6  = 1, and the rule is obeyed. This is a simple 
example, but through its triviality surely indicates that there is 
strong topological and stoichiometric control behind the operation 
of the second rule. First, the total anion and cation charges must 
balance, and second the coordination numbers of anion and cation 
are related through the stoichiometry. In the general case where 
there are Na,c anions and cations with charges Cat, and 
coordination numbers the ebs of one leg of the cation 
coordination sphere is CC/rc and thus 
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have noted, lying in quite unsymmetrical environments. First we 
look in general a t  structures involving six-coordinated iron and 
four-coordinated arsenic and ask what the structural restrictions 
dictated by the composition of the material and the coordination 
numbers of the cations are. We can use them to probe compliance 
with Pauling’s rules for structures such as these. The Pauling 
electrostatic bond strength associated with a leg of the iron 
octahedron is 316 and that for the arsenic tetrahedron is 5/4. For 
an oxygen located at  a vertex common to x octahedra and y 
tetrahedra, the electrostatic bond strength sum is just x(l/Z) + 
~(514). If Pauling’s rule is satisfied, then this is equal to 2 so that 
and x and y are positive integral solutions of 

Electrical neutrality ensures that NaC, = NcCc and, topological- 
stoichiometry restrictions means that since each anion is connected 
to a collection of cations and vice versa, Narc = Ncra. This leads 
to the relationship 

Equation 2 showsdramatically theorigin of the strong topological- 
stoichiometric control of the rule. There are some more general 
arguments which allow somewhat broader statements described 
by Ellison and Navrotsky.Io It is clear that arguments such as 
these allow a ready appreciation of why Pauling’s second rule is 
obeyed in a multitude of systems. The rule though does not hold 
in many cases. Particularly interesting for us here is to show why 
it cannot work for the structure found for the mineral angelellite 
and thus leads to the asymmetrical arrangement found. Could 
there be other structures for angelellite which do satisfy Pauling’s 
rule and may be of lower energy? Of course we could ask the 
related question as to whether there are other structures for NaCl 
which do not satisfy the rule and are of higher energy. Certainly 
the structures of many systems, molecules, and solids are distorted 
from a more highly symmetrical parent for reasons which are 
often simple to understand. The Peierls distortion of the 
polyacetylene chain and its molecular cyclobutadiene Jahn-Teller 
analog follow from simple electronic considerations associated 
with the nature of the highest occupied energy levels of the 
system.11 Such mechanisms can be excluded here-these 
mechanisms are not appropriate for angelellite. It is an insulator. 
Similarly the “ferroelectric distortion” in BaTi03 is readily 
understandable12 in terms of a second order Peierls or Jahn- 
Teller effect. 

The structure of angelellite, Fe+34As+51011, is composed of 
linked Fe3+Os octahedra and As5+04 tetrahedra, each, as we 
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2x + 5y = 8 (3) 
As 2x and 8 are even, 5y must be even too. Since 5 is odd, y must 
be even, and therefore the only possible solutions with positive 
integers are x = 4, y = 0, there being no solutions with strictly 
positive integers. Thus we can immediately conclude from this 
simple argument that there is no structure containing linked iron 
octahedra and arsenic tetrahedra with the stoichiometry of 
angelellite where Pauling’s rules is satisfied at  all sites. The only 
solution contains isolated arsenic cations, uncoordinated 0, = 0) 
to oxygen. This result is a very simple one to derive, but of 
considerable importance. It tells us that purely on topological 
grounds, a “simple”, “high-symmetry” structure for this material, 
given the cation coordination geometries, is not possible. 

Arsenic however, is sometimes found in a five-coordinate 
environment, usually as a trigonal bipyramid. We can use the 
same approach to study this case, that of an angelellite stoichi- 
ometry but containing octahedral iron and five-coordinate arsenic. 
The same arguments may be used as before (see Appendix) to 
show that in this case there are structures which in principle obey 
the rule. (Although topologically possible, whether they are 
geometrically feasible is another matter of course.) Perhaps such 
a structure could be a high-pressure variant. 

Thus the main conclusion of this section is that purely on 
topological grounds, a “simple”, “high-symmetry” structure for 
this material, given the cation coordination geometries, is not 
possible. Similar considerations will be behind the structures of 
other “complex” materials too, especially those of minerals. 
However, as we will show later, although the local geometry is 
forced to be of low symmetry, a periodic repeating array is still 
electronically favored. 

Brown’s and Pauling’s Rules in an Orbital Context 

The electrostatic bond strength ideas derived during the 1920s 
and 1930s, and still in use today in the mineralogical community, 
have been extended in recent years in a more general way to 
study the factors which control bond lengths and structures of 
a broader range of solids. In modern usage the electrostatic bond 
strength is replaced by the bond valence,13J4 which is defined as 

s = exp((r - ro)/B) (4) 
or alternatively as 

s = (r/ro)-N 

The parameter ro is a reference bond length specific to a given 
pair of atoms as are the parameters B and N .  The first definition 
is the more general of the two since there appears to be a universal 
value of B = 0.37. Often the reference bond length (ro) is allowed 
to depend upon formal oxidation state. Brown has extended 
Pauling’s original ideas as two rules,13J4 very useful in under- 
standing how solids are assembled. The first Brown rule is 
effectively Pauling’s second, but with the newer definition of s. 
At each atom z s  = u, the valency of the atom. The parameters 

~ ~~ 
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ro and N ,  obtained from a large structural database, are chosen 
to fit this equation. This is how D is (arbitrarily) introduced. 
(Elsewhere we show’s theorigin of this rule in an orbital context.) 
The systems for which these considerations apply are, by and 
large, insulators and certainly exclude systems such as  metal 
alloys for which the structure is determined by Fermi surface 
effects controlled by electron count.16 However, Brown’s second 
rule leads to significant constraints on the possible structures. 
The rule states that for the same class of systems for which the 
first rule is applicable, a t  each atom the values of s for each of 
the Ti linkages around an atom are as equal as possible. The rule 
is particularly interesting since it is a statement which allows us 
to directly construct, if possible, a “high symmetry” structure 
where the bond lengths are equal. We show how such a rule 
comes from quite simple orbital arguments. 

It will be convenient to use the bond orbital model” where the 
orbital picture is derived using pre-constructed sp hybrid orbitals 
on a central atom. Consider a simple orbital picture for an AB2 
system where the central A atom is coordinated (1) to two B 
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atoms via two A-B linkages. The atom A carries two hybrids 
which point in the two directions. Figure 2 shows the construction 
of the molecular orbital diagram for such a system. Two values 
of 0 are used (l), one for the on-site interaction between the 
hybrids (we call this y) and one which links a hybrid orbital with 
a single orbital located on one of the ligands &, 8 2  (=f i  in the 
symmetrical structure). This orbital picture might represent an 
oxide where both of the deeper-lying (largely oxide) orbitals are 
filled with electrons. The resulting bonding orbitals, c are just 
the in-phase and out-of-phase combinations, b, of the hybrid 
orbitals, a (which regenerates and p orbitals on the central atom 
respectively), with the corresponding combinations, d, of the B 
orbitals. The larger stabilization is afforded the symmetric 
combination since, from perturbation theory, the energy separation 
between the symmetrical hybrid combination and the B atom 
orbitals is smaller than for the antisymmetric one. (Recall that 
the energy of interaction of a pair of orbitals varies as the inverse 
of their energy separation.) Also shown in Figure 2 are the relative 
orbital coefficients of the bonding orbitals, exaggerated for effect. 
Both of these results are readily accessible from Huckel theory 
and this picture can be generated for a wide range of y, 0, and 
the parameter Aa, which measures the energy separation between 
the orbitals in a and d. The next step is to see how the energy 
levels change on making the linkage asymmetric. First, a 
constraint is necessary to set the relative variation of j31 and 8 2  
on distortion. Changes in interatomic distances found when 
structures are distorted, or when the coordination number changes, 
are often well-described electronically by a model with the 
constraint that the second moment of the energy density of states 
is held constant.I”l9 The second moment is simply given by the 
expression &Hij2 over all of the linkages between the atom pairs 
i, j in the structure and is clearly a measure of coordination 
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Figure 2. Construction of the molecular orbital diagram for the four- 
orbital system appropriate for an AB2 molecule where the central A atom 
is coordinated to two B atoms via two A-B linkages. The difference in 
electronegativity of the two atoms is represented by different values of 
a for the hybrid orbitals on A and the single orbitals included at each 
B center. Key: (a) the two non-interacting hybrids, (b) the in- and 
out-of-phase combinations of the two, separated in energy by 27; (c) the 
result of interaction with the B orbitals (d). 

strength. Using this constraint implies that in the construction 
of the modified energy level diagram the sum (/312 + @z2) should 
be kept constant. How the bonding orbitals of Figure 2c change 
in energyondistortion (2) may beviewed simplyusingperturbation 

/- 
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symmetric second first 
structure order order 
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theory. The second-order shifts will on the simplest scheme 
depress the lower, symmetric combinations and elevate the upper, 
antisymmetric combinations equally. However the first order 
changes will be different. They are proportional to the function 
clc2(A/3, + A&) where c1 and c2 are the hybrid and ligand 
coefficients of the two bonding orbitals. Using the fact that the 
sum 8? + 82 = W2,  (4% + 4%) = -[(ALV2 + (A8d21/28 > 
0. (The energy changes in 2 are exaggerated for effect; the second- 
order change is numerically smaller than the first from sample 
calculations.) Thus, the two bonding orbitals are destabilized in 
first order on making the linkages asymmetric. Since C I C ~  is 
larger for the symmetric combination (clear from Figure IC), the 
overall result is that the antisymmetric combination is destabilized 
more than the symmetric combination is stabilized. An important 
consequence of this result is that for two pairs of electrons the 
symmetric structure is stabilized relative to the asymmetric one, 
but the converse is true for just one pair. The stabilization energy 
for the most common case, where these two bonding orbitals are 
both occupied, is thus maximized for the case where the two 
bonds are of the same strength (length) and j31z = Bz2. Here 
therefore is the electronic basis behind Brown’s second rule. 

Figure 3b shows the application of the same philosophy to the 
u system of cyclic molecules of the type A2B2 where both A and 
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function minimized for Ar = 0. A similar result comes from the 
assumption of harmonic forces between nearest-neighbor atoms. 
If E 0: (Ar)2, then El2 + E13 0: ( r  + Ar)2 + ( r  - Ar)2 = 2(Ar)2, 
minimized for Ar = 0, Le., where the two bonds are of the same 
length. The same result applies to a system where a repulsive 
potential exists of the form E a exp(-rij)/p. Then AE a 2 exp- 
(-r/p) [cosh(Ar/p)], a function which is positive but minimizes 
as well for Ar = 0. In all of these models the analog of the 
constant second moment is the constant bond length sum. 

The opposite result comes too from a half-filled collection of 
orbitals of the same type. We know that the half-filled collection 
of p~ orbitals in cyclobutadiene (4) leads to a first-order Jahn- 

a - y - - -  

a + y  - - -  

C 

--- I - -  

Figure 3. (a) Energy levels of a one-dimensional chain with a unit cell 
stoichiometry of AA, isomorphous with the levels ofthe square &molecule 
(b). Shown in part c in an exaggerated way is how the lowest four levels 
change during a distortion which makes adjacent distances unequal. 

B atoms carry a pair of hybrid orbitals (3), or the parent 

3 

homoatomic A4 molecule itself. The calculations are those 
appropriate for the latter. This system is isomorphousll (Figure 
3a) with the orbital patterns a t  the zone center and edge of a 
one-dimensional chain of stoichiometry AB or the parent AA 
chain. Figure 3c shows the way the four lowest energy levels 
change during a distortion which makes adjacent linkages 
inequivalent. The interpretation of the energy changes is in fact 
similar to that found in 2. As a pair, orbitals 1 and 4 are 
destabilized on distortion, as are likewise2 and 3. Thus, important 
for the case of four bonding pairs in these lowest four orbitals, 
the square is stable with respect to the distortion, which makes 
the two AA distances inequivalent. A very similar picture is 
found for the case where the a values of the two sets of hybrids 
are different, namely the situation for the AzB2 molecule. For 
the infinite solid, assuming that the sum of the energies a t  the 
zone edge and center is a good way to average the energy across 
the Brillouin zone, the lowest energy structure is the periodic 
structure with equal nearest-neighbor distances. This result is 
good evidence for the stability of the infinite crystal with equal 
bond lengths, although we clearly have not derived the energy of 
some aperiodic structure to test the result further. 

The opposite result comes from the bare ionic model. If Eij 
a -l/rij, assuming Ar12 = -&13, E12 + El3 0: -(l/(r + Ar) + 
l / ( r  - Ar)) an expression which is minimized for Ar # 0. The 
same result is true of any r* attractive model. The “correct” 
result comes from a model which includes both attractive and 
repulsive forces. If V = -A/r + B / P ,  then the total energy at  
equilibrium is E12 + E13 0: -A/re( 1 - (l/n)). On distortion as 
before by f h r ,  E12 + El3 0: -A/re(l - (l/n)) + nA(Ar/re)2, a 

d 3  = P I ‘  1 P ,  

P2 

4 

Teller distortion of the square, such that adjacent bonds alternate 
in length. In benzene there is a similar second-order Jahn-Teller 
stabilization of the alternating structure from the A manifold, 
but here the symmetric structure is found. Hiberty, Shaik, and 
co-workers20 have shown that it is the energetic demands of the 
u manifold (described above) that frustrate such a distortion and 
stabilize the regular structure. In push-pull cyclobutadienes, 
equal bond lengths are found. This arises simply as a result of 
the decrease in the second order distortion energy associated with 
the increase in the HOMO-LUMO gap of the substituted 
molecule relative to the parent. In other small molecules the sign 
of adjacent bond-bond interaction force constants are frequently 
accessible7 using second-order Jahn-Teller arguments. Even 
when these are positive, indicating a softening of the antisymmetric 
stretching distortion, the equilibrium geometry of the molecule 
is a symmetric one. In solids, geometry changes as a result of 
Fermi surface instabilities associated with the highest occupied 
levels are similarly resisted by the stiffness of the underlying 
framework. Thus although polyacetylene undergoes a Peierls 
distortion to give alternating C-C distances, the analogous 
distortion in graphite is not found due to the rigidity of the u 
skeleton.’ 

Orbital arguments may be used to view angular geometry 
changes. It is a simple matter to show electronically why the 
tetrahedral AB4 geometry is the lowest energy angular arrange- 
ment for a four-coordinated octet compound for either the “anion” 
or the “cation”. Our theoretical considerations should in principle 
be applied to the band structure of the solid, but the essence of 
the arguments will be apparent from the consideration of the 
electronic structure of a local unit, which one can envisage as 
capturing the electronic picture a t  the Brillouin zone center. The 
orbital picture is somewhat simpler and is accessible using a 
p-orbital model. Consider an octet AH4 molecule from the 
standpoint of the Rundle-Pimentel model.’ Here one electron 
pair is assumed to be stereochemically impotent and is placed in 
the central atom ns orbital and the geometry controlled by the 
energetics of the np-ligand u manifold of orbitals. Figure 4 shows 
the energies of the three p orbitals within the framework of the 
angular overlap model7 during a C3” distortion. Notice that the 
summed second order energy is angle independent (via Unsbld’s 
theorem), but the fourth-order termis minimized at  the tetrahedral 
geometry (cos 0 = 1/3). Similar arguments15 show how the 
octahedral geometry is the one predicted for the six-coordinate 
system. These are purely orbital arguments but ones which lead 

(20) Shaik, S. S.; Hiberty, P. C. J .  Am. Chem. SOC. 1985, 207, 3089. 
Ohanessian,G.; Hiberty, P. C.; Lefour, J.-M.; Flament, J.-P.;Shaik, S. 
S. Znorg. Chem. 1988, 27, 2219. 
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C3” 
Figure 4. Energies of the three occupied molecular orbitals derived from 
the central atom p orbitals (the Rundle-Pimentel model) within the 
framework of the angular overlap model during a C3D distortion. 

to the same conclusions concerning the geometry as steric, 
Coulombic, and VSEPR arguments. Minimization of this fourth- 
order term and its analog in the AB6 fragment leads to the result 
that the most “symmetric” structure is the one which is most 
stable for the electronic configuration where half of the relevant 
orbitals of the problem are filled with electrons. Thus regular 
tetrahedra and octahedra are the local geometries expected on 
electronic grounds. The result obtained from Figure 4 may be 
viewed within the framework of the Schwartz inequality. The 
fourth-order term will be minimized when the second-order 
contributions are as equal as possible. We have used6 the term 
“metriotic” to describe this state of affairs. For the half-filled 
electronic situation where all of the bonding orbitals areoccupied, 
then the most stable geometry is not the one where some orbitals 
are overutilized compared to others but the geometry where the 
orbital interactions are as equal as possible. Although this was 
not shown algebraically for the case of the AB2 molecule, the 
A2B2 square, or the AB infinite solid, Brown’s second rule is just 
one facet of this much broader result. Away from this rather 
special electronic situation these rules do not hold. There is now 
no requirement for the most “symmetric” environment to be the 
most stable. The discussion associated with Figure 4 requires 
summation of the stabilization energy of all the bonding orbitals. 
The same result will not hold if only some of these deep-lying 
orbitals are occupied or if some of the higher energy ones are 
occupied. Indeed SF4 in contrast to CF4 is not tetrahedral; in 
contrast to NaCl where each linkage is identical, in ZrCl there 
are linkages of two different types around each Zr atom (Zr-C1 
and Zr-Zr). 

It is worthwhile to briefly summarize at this point in the paper. 
Some compositions, because of stoichiometry and connectivity 
may lead to “symmetrical” structures (e.g., NaCl). Others (such 
as angelellite) may not. Systems where all of the relevant bonding 
orbitals are filled and antibonding ones empty (the half-filled 
electronic situation as described in the next section), such as in 
most mineral structures, the octets etc., are associated with an 
electronic driving force ensuring the equivalence of bonds around 
each center where possible given the topological restrictions 
described above. This is in the absence of first- or second-order 
Peierls distortions. For the simple high-symmetry cases (e.g., 
NaCl), this leads to the generation of a crystal with its equal 
bond lengths propagated through the crystal via the picture of 
Figure 3. For lower symmetry systems, forced to be so by the 
stoichiometry and connectivity (e.g., angelellite) or by Fermi 
surface instabilities, it is not clear that such a crystal will be 
generated from the local structure. For systems with other 
electron counts, no prediction is made as to the stability of the 
regularly repeating extended array. 

The Coloring Problem 

An important aspect of the structures of solids which adopt a 
derivative structure of some type, is how the atoms are ordered 

over the sites of the parent. We have called21 this the “coloring 
problem” since we ask the traditional combinatorial question of 
how many different ways there are to color the sites of a parent 
structure, the number of colors being set by the number of different 
atoms involved. Some of the patterns may beorderedones, leading 
to a crystalline material; some may be disordered. How the atoms 
are ordered clearly leads to either highly “symmetric” or not so 
“symmetric” structures. Here we are particularly interested in 
theenergetics involved in thecoloring of first, second, etc., neighbor 
sites. In rock salt, sphalerite, cadmium halide, and indeed in 
most octet solids, the first nearest neighbors are of the opposite 
type (Le., N a  is surrounded by six C1 atoms in rock salt), the 
second are of the same type (Le., N a  is surrounded by 12 Na 
atoms in rocksalt). The traditional viewpoint has for many years 
been that derived from the ionic model. Clearly if the solid is 
composed of positively and negatively charged billiard balls, then 
the lowest energyarrangement will be the one where close contacts 
between positive and negative charges are encouraged and contacts 
between ions of like charge discouraged. The focus of the present 
paper is however on electronic mechanisms. There is a very useful 
way to study this question from an electronic point of view which 
uses two ideas from the method of moments.6 

The first powerful result is that the energy difference curves 
between twostructural alternatives as a function of electron count, 
h E ( x ) ,  very often have a well-defined shape. We define the 
parameter x as a fractional orbital occupancy or band filling in 
the following way: empty, 0 < x 1, full. The curve representing 
the energetic difference between two systems whose densities of 
states differ at the nth moment frequently haven nodes (including 
the two at  x = 0, 1) as shown in Figure 5 for n = 2-6. The 
structure with the largest moment is the one stable a t  the earliest 
band fillings, thus defining the sign of AE for a given problem. 
This provides a very useful way to look at  structural problems. 
Whereas one might be interested in the value of aE for a single 
system with a given electron count, generation and analysis of the 
entire AE(x)  curve provides a much broader picture of the 
structural problem. 

The second result is the connection between the moments 
themselves and the geometrical structure. The nth moment of 
the energy density of states may simply be expressed in terms of 
H, the Hamiltonian matrix and its individual elements, Hjk 

p, = Tr(H)” 

The second sum in eq 6 runs over all products of order n. This 
means that the nth moment is simply the weighted sum of all the 
walks of length n which start off on orbital j and return to that 
orbital in n steps (Figure 6a). The weights are simply the 
interaction or hopping integrals integrals (HI,)  between the two 
orbitals 1 and m involved in the step, and is usually set proportional 
to the relevant overlap integral, namely SI,. Note that walks in 
place are included with weights H,,. The powerful theoretical 
tool which comes from such an approach is that evaluation of the 
walks that are different between the structures to be compared 
immediately defines the expected shape of the energy difference 
curve. Notice that theamplitudeof thecurves in Figure 5 decrease 
with increasing n. This result is simple to understand in terms 
of this topological connection. Energetic differences controlled 
by first nearest-neighbor interactions (and therefore involving a 
walk of length 2, Figure 6b) will be larger than those controlled 
by second nearest neighbors (and therefore involving a walk of 
length 4) which in turn will be larger than those controlled by 
third nearest neighbors (and therefore involving a walk of length 
6). 

(21) Burdett, J .  K.; McLarnan, T. J.; Lee, S.  J .  Am. Chem. SOC. 1985, 107, 
3083. 
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on n = 2  

n = 3  

0- n=4 

o-, n = 6  

Figure 5. M ( x )  curves which representing the energetic difference 
between two systems whose densities of states differ at the nth moment. 
The parameter x is the fractional orbital occupancy or band filling and 
is defined as follows: empty, 0 < x < 1, full. 

n 

Figure 6. (a) nth moment in terms of the self-returning walks through 
the structure. (b) Second moment, via a walk of length 2, as a measure 
of first nearest-neighbor interactions. (c) Choice of first nearest-neighbor 
as a result of a walk of length 4. (d) Choice of second nearest-neighbor 
as a result of a walk of length 6.  

Figure7. Calculated M ( x )  plot for thecisand transisomersof substituted 
cyclobutadienes using simple Hiickel theory. 

Although we have described the energetics determining the 
first nearest-neighbor interactions as a second moment one, as 
Figure 6c shows, the choice of first nearest neighbor is a fourth 
moment problem. This is clear to see since it takes a walk of 
length 4 for an atom to interrogate its first nearest neighbor and 
decide whether it is chemically different (i.e., has a different ct 
value). A calculated AE(x)  plot6 for the cis and trans isomers 
of substituted cyclobutadienes using simple Hiickel theory is shown 
in Figure 7. Square cyclobutadienes are best stabilized by 
attaching electron-donating and -withdrawing groups alternately 
around the ring, found in the so-called push-pull cyclobutadienes. 
The plot is thus in agreement with experiment. (Stabilization of 
this pattern is also found in the solid-state structure of CaB2C2.) 
Notice that the number of nodes indicates that this is indeed a 
fourth moment problem. In reading such energy difference curves 

CSCl CuTi 
Figure 8. Two of the simplest two-color patterns of the bcc structure: 
(a) the CsCl and (b) the CuTi arrangements. 

Table 1. Moments of Two Model Structures, the Infinite Chains 
(...ABAB... and ... AABB ...) 

.. .ABAB... 
(a) All Equal 

PI = 2 ( a A  + aB) 
PZ = 2(cUA2 + (YB’ f 4D2) 
P3 = 2@A3 + (YB3 + 68’(a~ + CQ))  
p4 = 2 ( a ~ ~  + (YB4 + 1 2 8 ’  + 88’(aA2 + (YB’ + 8a~a~8’)) 

(a) Unequal 8 
PI = 2 ( a A  + a B )  

P3 = 2 b A 3  a B 3  + 68AB2(aA aB)) 
/.b2 = 2((uAz + (YB’ + 48AB2) 

... AABB ... 
(c) All 8 Equal 

PI = 2 ( a A  + a B )  

P3 = 2 ( a A 3  + (YB3 + 68’(a~ + (le)) 
P2 = 2((YA2 + CfB2 + 4b2) 

114 = 2(cUA4 + a B 4  + 1 2 8 ’  + 1 0 8 ’ ( a A 2  + (YB2) + 4CY*CY&’) 

(d) Unequal 8 
Pl = 2 ( a A  + a B )  
PZ = 2 ( a A 2  + a B 2  + 28AB2 + 8AA2 + 8BB2) 
P3 = 2 ( a A 3  + a B 3  + 38ABZ(aA + ad + 3(a&AA2 + aB8BB’)) 

it is always the arrangement with the larger nth moment which 
is the one which is most stable a t  the earliest electron counts. This 
means that for the fourth moment problem it is the arrangement 
with the smaller fourth moment (the ... ABAB ... pattern) which 
is most stable a t  the half-filled point. A little counting allows 
confirmation of the fourth moment nature of the structural 
problem controlled by the structure of the nearest neighbor 
contacts. Table 1 shows the moments of two model structures, 
the infinite chains (...ABAB... and ... AABB ...). If values of the 
hopping integrals are kept equal for all contacts, irrespective of 
their nature, assuming two different a: values, but setting BAA = 
@BB = @AB 0, then the only differences between the two 
arrangements arise as a result of the walks in place. From Table 
1 it is clear that the first disparate moment is the fourth, and thus 
four nodes are expected in M ( x )  as observed. It is the structure 
with the smaller fourth moment which should be observed at  
half-filling, namely the “symmetrical” structure ... ABAB .... 

Similar pictures apply to solid-state problems in general. For 
example a h E ( x )  curve (from a band structure calculation) 
between the two simplest two-color patterns of the bcc structure 
for the case of transition metal alloys is very similar2* to that of 
Figure 7 .  The structures under consideration are the CsCl and 
CuTi arrangements of Figure 8. Here too the structure which 
is calculated (and found) to be most stable a t  the half-filled point 
(CsC1) is the one containing A-B contacts, whereas the structure 
stable in the other two regions is the one where there are both 
A-A and B-B contacts. Of note too is that the CsCl structure 
is the high-symmetry (cubic, 2 = 1) structure, but the CuTi 
structure is of lower symmetry (tetragonal) and is more “complex” 
(2 = 2). 

Exactly analogous ideas apply to systems with AB, stoichi- 
ometry. Electron counting however, is important here. For an 
AB2 structure for example (e.g. ZnC12) the B atom orbitals are 
filled for 16 electrons. Of these, only eight lie in the four bonding, 
B-located orbitals (which complement the four antibonding 
orbitals located on the A atom). The other eight lie in four 
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nonbonding, B-located orbitals. Thus as far as the value of x, 
the fractional orbital occupancy, is concerned, these systems 
correspond to half-filled band arrangements; Le., half of the 
orbitals involved in bonding or antibonding interactions are filled. 
Partial occupancy of the metal d orbitals usually leads to relatively 
small changes in the general structural picture. Thus first-order 
Jahn-Teller distortions of the basic cadmium halide or rutile 
structure are found for salts of Cu(II), with second-order Jahn- 
Teller distortions of this structure found for salts of Hg(II), and 
trigonal prismatic geometries are frequently found for early 
transition metal dichalcogenides. On structure maps these 
distorted variants lie22 within the field of their parent, suggesting 
that the major features of the structure are determined by cation 
s, p orbital interactions with the anions. This is a viewpoint 
supported by the form of the structure map23 which distinguishes 
between normal and inverse spinels. The traditional CFSE 
arguments only appear to be important in distinguishing one from 
the other a t  the boundary between the two structures set by the 
“s + p” forces. Sometimes, even when the local distortion is 
large, the general features of the structure are preserved. Thus 
PdS2, which contains a square planar Pd atom, is still based on 
the pyrite structure. There will be some exceptions to this point 
of view below. 

The walks (Figure 6d) which distinguish second nearest 
neighbors in the structure clearly show that it is the sixth moment 
which controls the energetics here. Figure 4 shows a sixth moment 
plot. Notice now that because of the number of nodes, at the 
half-filled point the structure is stabilized by the presence of like 
second-nearest neighbors. Analogous arguments clearly show 
how this is extended to neighbors further way. The identity of 
the stable nth neighbor alternates between like and unlike 
neighbors simply because of the identity of the stable structure 
at the half-filled point in the 2(n + 1)th moment plot. 

From the discussion above a general, very powerful, result 
emerges concerning the structures of binary and more complex 
compounds. At the point where the collection of energy levels 
is half-filled (and we include systems with partially filled d levels 
here too; vide supra) the most stable structural alternative of all 
of the coloring patterns, is predicted to be the structure where 
odd nearest-neighbor heteroatomic contacts and even nearest- 
neighbor homoatomic contacts are maximized. This leads to a 
certain symmetry for the most stable structure. For this reason, 
octet compounds tend to adopt those structures where the 
electronegativities of the atoms alternate. Sphalerite (zincblende) 
(ZnS) contains alternating zinc and sulfur atoms, just as in the 
more complex diamond derivative structures such as chalcopyrite, 
stannite and nowackiite. All of the classic octet structures are 
of this type (CsCl, NaCl, ZnS, ZnO, CdHal2, CaF2, TiO2, etc.). 
In all of these solids with four electrons per atom, the bonding 
orbitals are completely occupied and all of the antibonding ones 
unoccupied. The fractional orbital occupation is thus 0.5. Away 
from the half-filled point, the identity of the stable coloring 
patterns now change. Depending on the system, the structural 
preferences for the nth nearest neighbor will change. Thus many 
structural possibilities will now exist. As noted already, the 
simplest ... AABB ... structure is in general of lower symmetry 
than ... ABAB .... Thus, as is apparent from Figure 8, the CsCl 
arrangement is cubic but the CuTi structure is tetragonal. 

There are several examples of such ... AABB ... structures. For 
example, the structure of GaSe is derived from that of wurtzite 
and has a stacking structure ... GaGaSe .... Thestructuresof ZrCl 
and ZrBr are interesting ones in that they contain a ... ZrZrXX ... 
pattern. This case is readily understood in terms of the metal- 
metal bonding between adjacent zirconium sheets made possible 
by the d3 electron configuration for Zr(1). Both examples are 

Burdett et al. 

(22) Burdett, J. K. J .  Met.  Alloys 1993, 197, 281. 
(23) Burdett, J. K.; Price, S. L.; Price, G. D. J .  Am. Chem. SOC. 1982, 104, 

92. 

ones where there are extra electrons relative to the half-filled 
situation. (The ZrCl example is one where the s + p model for 
transition metal systems described earlier fails. The metal d 
orbitals are crucial here.) 

Coloring Of Bonds 

Analogous results apply to the coloring of bonds, and as we 
will see, the approach leads to the development of a broad 
electronic picture. It is a simple matter to count the walks and 
evaluate the moments of the initially square system for the u (3) 
and a (4) manifolds. The two are radically different. The odd 
moments are zero for both systems, and as we have described 
elsewhere6 the contribution to the fourth moment from walks 
originating from each orbital in the ?r case (4) is given by j3l4 + 
p 2 4 +  6/?12p22 = (p12 + &2)2 + 481~822. Using the constant second 
moment constraint, this is largest for the case where 81 = 82, and 
thus at  half-filling thedistorted structureshould be found. These 
are just the first- and second-order Jahn-Teller predictions for 
the homo- (Ad) and heteroatomic (AzBz) systems respectively. 
Such results are applicable to the one-dimensional chain too since 
the levels of the square are just those at  the zone center and edge 
of the infinite structure and here leads to the Peierls distortion. 
For the u manifold the moments are readily evaluated from 3. 
For simplicity we treat the homoatomic case with YA = = y. 
The contribution to the fourth moment from walks originating 
a pair of adjacent orbitals is PI4 + y4 + 2 8 1 ~ ~ ~  + 812y2 + / 3 2 2 ~ 2  
and p 2 4  + y4 + 2pz2y2 + & 2 y 2  + p12yz, which when summed give 
(p12 + p 2 2 ) 2 -  2 p I z p 2 2  + 274 + 4y2(p12 + ,922). In contrast to the 
a case the largest fourth moment is now found for the distorted 
case where # 02,  which means that a t  the half-filled point the 
symmetric structure should be found. This is a somewhat more 
satisfying proof than that from Figures 2 and 3 of local bond 
length equality. The spirit ofthemomentsmethodviews structural 
preferences as a function of electron count, and from the form 
of the fourth moment curve of Figure 5 ,  the distorted structure 
should be stable for earlier electron counts. This result was in 
fact described earlier using the result from Figure 2. The relevance 
of the result for the half-filled band to the topic of this paper is 
obvious. There is an electronic stabilization of the state of affairs 
where adjacent bonds are equal in length. Thus, where topologi- 
cally possible, all nearest neighbor distances are equal. 

Moments, Disorder, and Crystals 

One of the concerns of an earlier section went beyond arguments 
concerning the local geometry to the idea of the crystal. It is 
interesting to explore how the long-range order/disorder problem 
can be viewed within the moments language. Recall that the 
disordered system, since it lacks translational periodicity, is not 
susceptible to a simple electronic description based on the 
traditional Bloch picture. However, the moments approach will 
be a perfectly satisfactory one since there is no such restriction 
of this type. Consider the chain of stoichiometry AB in which 
each site is statistically occupied by half A and half B atoms. The 
two simplest ordering patterns are those described earlier, namely 
... ABAB ... and ... AABB .... The moments may be computed in 
a completely general way by the introduction of an order parameter 
in the mean-field sense. The simplest form possible for this is to 
write Pi(A) = 1 + $0) as the probability of finding an A atom 
on any given site i. When J.0 is zero the system is completely 
disordered with an equal probability of finding A or B at  either 
site. When $0 is equal to 1 then the system is completely ordered 
and either the .. .ABAB... or ... AABB ... structureis found. Tables 
2 and 3 show the site occupancy probabilities. Recalling that the 
first disparate moment between twostructures dictates theenergy 
preference as a function of band filling, the function Api(J.0) = 
pi(&) - ~ ’ (0 )  measures the difference between a partially ordered 
(0 < $0 < 1) or ordered ($0 = 1) systems and the fully disordered 
($o = 0) chain. Since the stoichiometry of the chain is AB, 
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moments a t  the half-filled point and thus stability of the infinite 
crystalline material. Away from the half-filled point, other 
possibilities arise. A particularly interesting electronic situation 
is that where the electron count is such that it falls on a node of 
the energy difference curve. Either the result may be a more 
complex structure with features of both possibilities (actually 
found for the structure of AuSn224) or it is possible that a disordered 
system exists a t  finite temperatures, the energy differences between 
a variety of structural possibilities being rather small. 

A Broader Perspective 

Many traditional arguments concerning the stability of 
particular arrangements in solids center around electrostatic 
considerations. Clearly the alternating arrangements of elec- 
tropositive and electronegative atoms (ions) found in many octet 
solids are consistent with this view. However, electrostatic 
arguments should apply irrespective of whether the system is an 
octet or not. The different type of structure frequently found for 
the nonoctets is surely indicative of the importance of other types 
of interactions. The orbital model used here treats systems equally 
irrespective of electron count, and the different structural features 
found away from half-filling are understandable in principle using 
this broader approach. The powerful moments approach is a 
smooth way to link the electronic structures of crystalline and 
noncrystalline materials. 

We have been able to demonstrate the following for one- 
dimensional orbital problems: (a) For the half-filled electronic 
situation in sp-bonded networks, (i) the lowest energy structure 
is one where “anion” and “cation” alternate, (ii) if a symmetric 
local structure is possible on topological-stoichiometric grounds, 
then it will be (Brown’s second rule), and (iii) the local structure, 
symmetric or not, will translate to a periodic array. (b) For the 
half-filled band of orbitals of one type susceptible to Fermi surface 
instabilities, (i) although the local structure may not besymmetric 
as a result, a translationally periodic structure is of lowest energy, 
and (ii) electronegative and electropositive atoms alternate in the 
structure. (c) For electronic situations away from the half-filled 
point, a translationally repeating structure is predicted, but the 
identity of first, second, etc., nearest neighbors depends on the 
electronic details. 
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Appendix 

For the case of the angelellite stoichiometry but containing 
octahedral iron and five-coordinate arsenic the same method may 
be used as for the four-coordinate case. The electrostatic bond 
strength of an octahedral leg is as before 3/6 = l / 2 ,  but that for 
the trigonal bipyramidal arsenic is 5 / 5  = 1. For the case where 
x octahedra and y trigonal bipyramids meet a t  an oxygen the 
electrostatic bond strength is x ( l / * )  + y(1) = 2 or 

atomic species 
site ... ABAB ... A B 

i I / 2 U  + rlo) 1 / 2 u  - *o) 
i 1 / 2 u  - *o) 1 / 2 u  + *o) 

Table 3. Site Probabilities for ... AABB ... Chains 
atomic species 

site ... AABB ... A B 

i 1/2(1 + *o) 1 / 2 u  - *o) 
i 1 / 2 u  + *o) 1 / 2 u  - *o) 
k 1/2(1 - *o) 1 / 2 u  + *o) 
1 I / 2 U  - *o) 1 / 2 0  + $0) 

Table 4. Moments of ... AABB ... Chain as a Function of Order 
Parameter 

1 f f A + a B  

2 aA2 + an2 + (1 - $ o ~ ) ( B A A ~  + B B B ~ )  + 2(1 + $o~)BAB~ 
3 aA’ + an3 + 3(1 - $o’)(ad3~~’ + a&BeB2) + 38~~’(1 + $o’)(~A + as) 
4 aA‘ + aB4 + 3(1 - $‘OZ)(fiM‘ + h4) + 6(1 - $O’)(~AZBAAz + aB’8BB’) + 

~BAB‘(~ + $0’) +  BAS'(^ + +O’)(~A’ + ,B’ + a . 4 ~ )  

independent of order, we know that Apl 0. Table 4 shows the 
values of the first four moments (normalized to two sites) for the 
... ABAB ... chain and Table 5 those for the ... AABB ... chain. As 
in the nth nearest-neighbor problem above, the situation may be 
simplified to just an electronegativity perturbation, assuming two 
different a! values, but setting flu = BBB = j 3 ~ ~  = 8. Simple 
substitution shows that Api = 0 for i = 1-3, but = ff14)02Aa2 

( A a =  a!l-a!z)fori= 4. (Thepositivesignisfoundfor ... ABAB ... 
and a negative sign for ... AABB ....) Thus, not unexpectedly, the 
first disparate moment is the fourth, just as in the cyclobutadiene 
coloring problem, where the system with the smaller fourth 
moment is favored at  the half-filled band. Figure 9 shows the 
plot of Api($o), i = 4. The fourth moment becomes smaller (more 
negative) with increasing order until the minimum is reached at  
the fully ordered $0 = 1 ... ABAB ... structure. The analogous 
result for the ... AABB ... structure is that the fourth moment 
increases with $0.. So the disordered structure always has a fourth 
moment located between the two ordered patterns. Thus on this 
nearest-neighbor model, for an electron count where the most 
stable structure is the one with the smaller fourth moment, then 
the ordered ... ABAB ... structure is predicted to be most stable, 
and for an electron count where the most stable structure is the 
one with the larger fourth moment, then the ordered ... AABB ... 
structure is predicted to be most stable. For no electron count 
is the disordered structure stable. 

Exactly analogous arguments may be used for the related 
problem where the bonds are colored rather than the atoms. Now 
there are the possibilities ... abab ... and ... aabb ..., in place of 
... ABAB ... and ... AABB .... For the simplest case, that of 3, Ap4 
= 4(@,2 - f122)2 for the two ordered extremes, where the a! values 
are the same for all atoms but there are two different fl  values, 
fla and o b .  The ... abab ... structure has the smaller fourth moment. 
Thus at  the half-filled point the theory leads to the result that 
the ordered, crystalline structure ... abababababababab ... is more 
stable than any other variant. So the system may be susceptible 
to a Peierls distortion or other Fermi surface instability, but the 
distortion pattern is a regular one extended indefinitely. An 
analogous picture holds for the case in 4, except that here it is 
asixthmoment problem. At the half-filledpoint, it is the ... abab ... 
array, which is more stable. This may be a simple one-dimensional 
model for angelellite where the labels a and b represent bonds 
of different length, forced to be so by local geometry consider- 
ations. Results analogous to those obtained for the stability of 
the next-nearest atomic neighbors above apply to this case too 
in terms of the stable structures for the bonds. The complete set 
of results thus indicate stability for this arrangement for all 

Since 2y and 4 are even, x must be so too. The possible nonnegative 
integral solutions are then (i) x = 0, y = 2, (ii) x = 2, y = 1, and 
(iii) x = 4,y = 0. These correspond to the three cases: (i) a bond 
between two trigonal bipyramids; (ii) an oxygen linking two 
octahedra and one trigonal bipyramid; (iii) an oxygen linking 
four octahedra. In case iii, y = 0, and in case i, x = 0, so to ensure 
that both arsenic and iron are coordinated by oxygen, all structures 
must contain some oxygen atoms of type ii. In principle it is 
possible to build structures with such characteristics, a result in 
contrast to the one found above for arsenic tetrahedra. 

(24) Burdett, J. K. J .  Solid Stare Chem. 1982, 45, 399. 
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Table 5. Moments of ... AABB... Chain as a Function of Order Parameter 

Burdett et al. 

wo 

Figure 9. Afi'($'o), i = 4, as a function of $'o. The structures are fully 
ordered at $0 = 1. 

It is worthwhile to see what topological arguments have to say 
further about this problem. The arguments are simple ones but 
a little tedious to describe. We first note that the stoichiometry 
requires that there be twice as many octahedra as trigonal 
bipyramids and, for every four octahedra and two trigonal 
bipyramids, 11 oxygen atoms and so we must consider too the 
constraints imposed on the octahedral network by this octahedral 
trigonal bipyramid ratio. First consider the case where there is 
no bonding between the trigonal bipyramids. From the solutions 
of eq 4 a vertex of a trigonal bipyramid can then only be linked 
to a pair of octahedra (case ii, x = 2, y = 1). Assuming that no 
trigonal bipyramid shares an edge with any octahedron each 
trigonal bipyramid is thus bonded to five pairs, or 10 distinct, 
octahedra (one pair of octahedra at  each of its five vertices). An 
octahedron has six vertices each of which is shared either with 
four octahedra or with two octahedra and one trigonal bipyramid. 
If n is the number of octahedral vertices connected to a trigonal 
bipyramid, and the ratio of octahedra to trigonal bipyramids is 
r ( = 2  here), then from the connectivity of the network nr = 10. 
I.e., in order to maintain the balance of two octahedra to one 
trigonal bipyramid, it is required that five of the vertices belong 
to one trigonal bipyramid and to two octahedra. Thus each 
octahedron in the network has one 4-connected (to other 
octahedra) vertex and five 2-connected (to other octahedra) 
vertices. It is interesting to observe that this connectivity gives 
the correct number of oxygen atoms for the structure as a whole. 
Each formula unit contains four octahedra and two trigonal 
bipyramids. Sinceeach oxygen belongs to an octahedron, counting 
the oxygen atoms which belong to the octahedral network will 
count all of the oxygen atoms. An octahedron has one 4-connected 

(to other octahedra) vertex which contributes I / 4  oxygehn and 
five 2-connected (to other octahedra) vertices each contributing 
l / 2  oxygen. This gives l / 4  + $ / 2  oxygen/octahedron or 4(I/4 + 
s/2) = 11 oxygens for four octahedra. This works generally for 
this problem. Once the appropriate proportion of vertices of each 
coordination to achieve the proper ratio of octahedra and trigonal 
bipyramids is arrived at, the network is found to also have the 
correct number of oxygen, a result which stems from the 
assignment of iron and arsenic valences at  the beginning. 

The case where trigonal bipyramids sharevertices can be studied 
in the same way. The simplest situation is that where each trigonal 
bipyramid shares a single vertex with another trigonal bipyramid 
and four vertices with a pair of octahedra. If n is the number of 
octahedral vertices common to trigonal bipyramids, then using 
the connectivity argument from above, nr = 8 or n = 4. This 
restriction requires that an octahedron have four vertices which 
are 2-connected (to other octahedra) and two which are ken- 
nected (toother octahedra). Now each pair of trigonal bipyramids 
contributes a single shared oxygen giving (for a formula unit of 
four octahedra and two trigonal bipyramids) 4(2/4  + 4/2) + 2(l/ 
2 )  = 11 oxygen atoms. For thecasewhere each trigonal bipyramid 
shares two vertices with other trigonal bipyramids and three 
vertices with octahedra, analogous arguments show that each 
octahedron needs to have three 2-connected (to other octahedra) 
and three4-connected (toother octahedra) vertices. Asthelinked 
trigonal bipyramids now contribute two oxygen atoms the number 
of oxygens for a formula unit consisting of four octahedra and 
two trigonal bipyramids is as follows: 4(3/4 + 3/2) + 2(2/2) = 
1 1. It should be clear that there is a whole series of possibilities 
here controlled by the relationship nr = 2(5 - m) where m is the 
number of trigonal bipyramidal vertices shared with other trigonal 
bipyramids. Sincer = 2, the number of vertices of each octahedron 
shared with trigonal bipyramids is just the same as the number 
of vertices shared by one trigonal bipyramid with another. 

We have built structures for the case of m = 0 which 
geometrically are quite feasible. Increasing the coordination 
around the arsenic atom compared to the observed angelellite 
structure leads to both an increase in the oxygen coordination 
number and in second-nearest neighbor coordination around the 
iron atom. We find a second-nearest neighbor coordination 
number of 9 compared to 7 in the observed structure. 


