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Electronic Factors Controlling Bandwidths in Oxides with the Perovskite and Cadmium 
Halide Structures 
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The electronic structure of oxides with the perovskite and cadmium halide structures are derived using tight- 
binding theory and the angular overlap model. The control of the form of the energy bands by the presence of 
vertex- (perovskite) and edge-sharing (cadmium halide) of the coordination octahedra is first explored using one- 
dimensional examples. For one-, two-, and three-dimensional structures of the perovskite type, a very interesting 
result is uncovered. It is shown that on the band model a band gap may only arise if the oxygen 2s orbital is 
included in the orbital problem. Prediction of the magnitude of the band gaps in d6 perovskites is thus not a 
simple matter. This band structure, derived from tight-binding theory via the construction of Bloch orbitals, is 
compared with an energy band scheme based on local crystal field orbitals and covalent metal-oxygen interactions, 
which has traditionally been used in this area. 

Introduction 

A problem of long-standing interest in solid state inorganic 
chemistry is the correlation of structural features characteristic 
of a particular compound or class of materials with its physical 
properties, often electronic and magnetic behavior. This is an 
area which has received a recent stimulus with the discovery 
of high-temperature superconductivity in complex copper oxides. 
One effective route to understanding the intricate interplay of 
crystal and electronic structure and physical properties is 
consideration of orbital interactions in the solid state.l Although 
such one-electron models neglect the important effects of 
electron correlation, and so must be used with caution in strongly 
correlated systems, they are unrivaled at providing insights into 
the properties of complex materials .2 Especially important is 
the tracing of features of the electronic densities of states to 
fundamental interactions between the structural building blocks 
of the solid. Recently, building on earlier concepts, Kemp and 
Cox suggested3 that the difference in properties of the two 
materials Lac003 (semiconducting to metallic tran~ition)~ and 
LiC002 (insulating), both of which formally contain d6 Co(III), 
is directly a result of the different d-block bandwidths in the 
two materials, and hence different band gaps. Lac003 has the 
perovskite structure and LiCoO2 a rock salt derivative or filled- 
up CdC12 structure. Since the metal atoms are octahedrally 
coordinated in both compounds, the wider band in the perovskite 
case was argued as arising from the strong 0 interactions of the 
perovskite 1 compared to the poorer 0 + n interactions in the 
cadmium halide arrangement, as shown in 2. An identical 
structural relationship exists between d7 Ni(II1) compounds. 
LaNiO3 is metallic at all  temperature^,^ but LiNiOz is ferro- 
magnetic and insulating.6 (Recent experimental evidence sug- 
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gests that LiNiO2 also orders antiferromagnetically below 10 
K.7) Here the different electrical properties of these two systems 
are also viewed in terms of their differing bandwidths; in the 
present work, we also show how this structural-electronic 
problem is really a rather broad one and how a study of the 
band structure of oxides of this type using simple tight-binding 
ideas and the angular overlap model* shows some rather striking 
structure-property consequences of the geometrical structure. 

The Electronic Problem 

Lac003 and LaRhO3, both with the d6 configuration about 
the metal center, adopt the perovskite structure (Figure la)9 
although whereas the Co compound is essentially an ideal 
perovskite with a very slight rhombohedral distortion, the Rh 
analog has a distorted structure of the familiar GdFeO3 type.1° 
The band gap is 1.6 eV in the latter, which is an insulator, but 
0.1 eV in the former," and it is this small gap which leads to 
some interesting effects at higher temperatures as a result of 
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Figure 1. (a) Polyhedral representation of the perovskite structure. 
(b) Rhombohedral unit cell for LiNiOz: small filled circles, Ni; unfilled 
circles, 0. Li atoms which occupy the planes between 0 layers have 
been omitted for clarity. 

thermal excitation of the charge carriers across it.4 What are 
the factors which control its size? Are the usual considerations 
developed by the molecular chemist concerning octahedral e,/ 
t2g splittings applicable to this problem or are the important 
parameters different? Octahedrally coordinated metals with 
similar local but different extended structures often behave 
differently. As mentioned above, although the nickel atom is 
nominally trivalent in both cases (d7), the perovskite LaNiO3, 
exhibits metallic conductivity down to 4 K, while LiNi02 is an 
insulator. This suggests that the bandwidth in LaNiO3 is 
sufficiently wide to support metallic conduction via a partially 
filled band. The presumably localized electronic description 
found for LiNi02 suggests a narrower band. A close examina- 
tion of the electronic structures of these Ni systems allows some 
general conclusions which help address important structural 
issues governing the formation of energy bands and associated 
band gaps in transition metal oxides. 

Although LaNiO3, like LaCoO3, is a rhombohedrally distorted 
perovskite in which the deviation from ideality is the result of 
small displacements of the oxygen atoms from their ideal 
positions along the Ni-0 bond directions, the compound may, 
to a very good approximation, be considered an undistorted, 
ideal perovskite. A slice through the equatorial plane of the 
Ni atoms in a given layer of the perovskite reveals a corner- 
shared square net of stoichiometry Ni02, as shown in 3, a 
structural motif identical to that also encountered in all cuprate 
superconductors. We shall ignore the presence of the large A 
cation in our calculations (except for the electrons it contributes), 
and so the structure which we call “perovskite” is really that of 
ReO3. The structure of LiNi0212 may be regarded as a 
derivative of the rock salt arangement of NiO, with alternate 
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planes of Ni atoms along [ 11 11 replaced by Li atoms (Figure 
lb). The layer of stoichiometry Ni02 which lies between the 
planes of Li atoms has effectively the cadmium chloride 
structure, a two-dimensional network of edge-sharing octahedra, 
in which each NiO6 octahedron shares all 12 of its edges (4). 

4 

Thus, whereas the perovskite framework of LaNiO3 is charac- 
terized in two dimensions by a square NiO2 net, the NiO2 layer 
in LiNi02 has hexagonal symmetry. We shall consider the 
electronic properties of this layer in this paper. Differing steric 
requirements of LiO6 and NiO6 octahedra at their equilibrium 
metal-oxygen distances enforce elongation of the ideal cube 
of rock salt NiO along the body diagonal [ l l l ]  to give the 
rhombohedral structure of LiNiO2, as shown in Figure lb. This 
particular structural feature gives LiNi02 its inherently two- 
dimensional nature and separates the Ni02- layers from the 
intervening close-packed planes of‘Li atoms. In both LaNiO3 
and LiNi02, the Ni-0 bond length is 1.94 A, although the NiOh 
octahedra are slightly more distorted in LiNi02 than in LaNiO3. 
Importantly, however, the crystal structures of both LaNiO3 and 
LiNi02 may be viewed in terms of linked arrays of NiO6 
octahedra. 

One approach to the band structures of such octahedrally 
coordinated transition metal oxides (a “phenomenological” 
approach’) is shown in Figure 2. Mixing of Ni d states with 
oxygen valence orbitals (“the ligand field”) splits the d levels 
into t2g and eg sets to give the classical local scheme pictured 
in Figure 2a, the magnitude of the interaction dependent upon 
the relevant Ni d/O overlaps. The t2g set (z symmetry with 
respect to the ligand p set) is therefore less destabilized than 
the eg set (a to the ligand p orbitals). The size of the t2,-eg 
gap (A) is set by the difference in magnitude of the two types 
of  interaction^.^^^'^^^ These t2g and eg levels then broaden into 
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Figure 2. “Phenomenological” electronic band structure in transition 
metal oxides: (a) local model incorporating differential destabilization 
of Ni 3d orbitals to t2g and eg sets as a result of octahedral coordination 
by oxygen; (b) energy bands formed by interaction of the Ni06 
octahedron with neighboring octahedra in the extended solid. 

bands by interaction with their environment as in Figure 2b. 
Using this “phenomenological” model, both LaNiO3 and LiNiO;! 
are predicted to be metallic, since the band structure dictates a 
quarter-filled eg band for each. If the band is sufficiently wide, 
a localization (analogous to the Hubbard14 type for the anti- 
ferromagnetic insulating state) or generation of a high-spin 
ferromagnetic insulating state will be less stable than that of 
the metallic state described by a delocalized wavefunction. As 
noted earlier, it has been argued that the width of the band is 
determined by the magnitude of the interactions between 
adjacent a-type bond orbitals as shown in 1 and 2. A wider 
band compared to that for the cadmium halide structure has 
been predicted for the perovskite. Metallic behavior is expected 
for the system with the wider band, a result consistent with 
experiment. However, the phenomenological band structure 
may hide important electronic features which become clear when 
energy bands are constructed from Bloch functions in the 
traditional way. It will turn out that there is only a hint of the 
relevance of 1 and 2 in the real band structure. 

One-Dimensional-Chain Models 

The best way to understand the dependence of bandwidth or 
relative band location on structure is to obtain a detailed 
understanding of the origin of the dispersion in the bands 
themselves.;! A good place to start is a system of reduced 
dimensionality. A closer look at the structures of the nickel- 
oxygen frameworks in LaNiOs and LiNiO;! shows that these 
units are essentially built up from three interpenetrating one- 
dimensional chains of octahedra, each containing an octahedrally 
coordinated metal atom. In the case of perovskite, the chains 
are corner-shared (S), while in the cadmium halide arrangement, 
the chains are edge-shared (6). The local-orbital structure for 
the octahedron using the angular overlap model (AOM) is shown 
in 7. This is a simple parameteri~ation~9~~ of the orbital problem 
where the starting energies of the interacting orbitals are 
different. The AOM scheme leads to the parameters e, and e,, 
which measure the strength of a and n interactions via second- 
order perturbation theory. This local picture (7) will provide 
useful insights into the structures of extended systems, as it is 
this unit which is the basis for the two types of one-dimensional 
chains which constitute the Ni-0 frameworks of the two 
structures of interest. For the Ni06 octahedron, the t2g and eg 
orbitals are separated by 3e, - 4e,. Also shown in 7 are 
energies from an extended Huckel (EH) calculation on this unit 

(14) Hubbard, J. Proc. R. Soc. London, 1963, A276,38; 1964; A277,237; 
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with a Ni-0 distance of 1.94 A and p orbitals only on oxygen, 
which will serve as a reference for AOM energy values derived 
for band orbitals. (The parameters used are listed in the 
Appendix.) From this picture, e, = 0.2 eV and e, = 0.7 eV. 

The band structures of the chains of 5 and 6 are derived in 
several places (see for examples refs 16 and 17). Particularly 
interesting here though will be the role of the s and p orbitals 
on the bridging oxygen atom. Initially, we use only p orbitals 
on all oxygen atoms and d orbitals on nickel. The orbital 
topologies appropriate for the interaction of metal t;!g and eg 
type orbitals (these are not the correct symmetries in these 
infinite chains, but we will use such labels as a convenience) 
with ligand p orbitals are simply generated by symmetry and 
are shown in Figure 3 for the one-dimensional chain removed 
from the three-dimensional perovskite. For the degenerate pair 
of t;!g orbitals in Figure 3a,b, no pn  orbital contribution exists 
at the point I?, the zone center, so the level is exactly M-0 
nonbonding at this point. At the zone edge, point X, the metal 
crystal orbital has the proper symmetry to interact in a 
mantibonding fashion with the p orbitals on the intervening 
oxygen atoms. This leads to a destabilization at X and gives 
the t2g band its dispersion. The nondegenerate crystal orbital 
pictured in Figure 3c remains nonbonding throughout the one- 
dimensional zone. An AOM treatment of the dispersive bands 
proceeds in the usual way15 from the solution of the secular 
determinant of eq 1, appropriate to the doubly degenerate set 

of interactions shown in 8, for a unit cell of the vertex-sharing 
chain. Using the Huckel a and p labels for notational 
convenience, as in eq 2, the roots are E x ap + 4p2 
sin2(ku/2)/l(ap - aJ and E a’d - 4p2 sin2(ka/2)/l(ap - Q)I 
or, introducing the parameter of the angular overlap model,g E 

(16) Burdett, J. K. Prog. Solid Stute Chem. 1984, 15, 173. 
(17) Whangbo, M.-H.; Foshee, M. J. Znorg. Chem. 1981, 20, 113. 
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Figure 3. Crystal orbitals formed by interaction of 3d orbitals on Ni 
with 0 2p valence orbitals for the one-dimensional vertex-sharing chain 
of octahedra appropriate for the perovskite structure. 
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x ap - 4e, sin2(ku/2) and E M a’d + 4e, sin2(ka/2), where e, 
= -/3/I(ap - %)I. Here a’d is the a value of the appropriate 
orbital taking into the account the interactions of the other 
ligands perpendicular to the chain and is the energy of the 
unperturbed d levels. We are only interested here in the higher 
energy root, the “metal d orbital”, which leads to an energy of 
a’d at r and a’d 4- 4e, at X. The bandwidth of the Figure 3a,b 
pair of bands is thus equal to 4e,. For this degenerate pair of 
n bands, a’d = + 2e,, while for the nondegenerate and 
nondispersive 6 band, a’d = old + 4e,. 

Similar considerations lead to the dispersion behavior for the 
two bands belonging to the eg set of the perovskite-like chain. 
For the dz2 basis function (Figure 3d) a’d = + e,, and solution 
of the secular determinant for this case leads to energies of e, 
at I? and 5e, at X. The dispersion of the band along the chain 
is thus 413,. There is no dispersion associated with the d2-3 
orbital (Figure 3e), since it is of 6 symmetry with respect to 
the oxygen atoms and thus finds no symmetry match with a 
bridge orbital. It remains equienergetic, E = a + 3e,, at all 
points in the one-dimensional zone. It is helpful to note that 
the solution of the secular determinant for these various band 
orbitals results in the centering of the set of energy bands about 

- ad + 6 en 
- ad + 4 en 

- ad + 2 ex 
- .................................... .ad + 1 eb 

r X 
Figure 4. Calculated energy bands for Ni d-orbital-based crystal 
orbitals in the one-dimensional vertex-sharing chain of octahedra. The 
values at the right of the panel are those predicted using the AOM and 
the numerical results from 7. 

Table 1. Crystal Orbital Energies“ (eV) for Ni d-Block Bands of 
the Vertex-Sharing One-Dimensional Chain 

Ni AOM r, r, AOM X, X, 
orbital energy, r predicted calcd energy, X predicted calcd 

2e, -13.1 -13.0 6e, -12.3 -12.4 dXZ 
2f% -13.1 -13.0 6e, -12.3 -12.4 dYZ 
4e, -12.7 -12.7 4e, -12.7 -12.7 dxy 

d2-3 3eu -11.4 -11.4 3e, -11.4 -11.4 
-10.5 -10.3 dZ* e, -12.7 -12.8 5e, 

a Calculated energies include the effects of metal-metal bonding 
along the chain. 

the levels 4e, for the t2g bands and 3e, for the eg bands. The 
band dispersion shown in Figure 4 from an extended Hiickel 
tight-binding (EHTB) calculation gives a bandwidth and crystal 
orbital energies quite close those predicted from the numerical 
values derived from 7 as shown at the right of the panel. 

The bandwidths calculated by the AOM formalism are in fact 
slightly larger than those produced by the actual calculation 
which appear in Table 1. This is due to direct interactions 
between the metal centers in the chain. The effect will depend 
upon the metal-metal distance and, anticipating our results for 
the edge-sharing chain, will become larger as the metal-metal 
distance decreases, and is therefore more pronounced for that 
case than for this one. In Figure 3a, the doubly degenerate tzg- 
type wavefunction is metal-oxygen nonbonding at the point 
r, but also metal-metal antibonding, an effect which results 
in the small destabilization of the crystal orbital at this point, 
in addition to what is predicted on the basis of the AOM 
treatment. Likewise, the same crystal orbital is metal-metal 
bonding at the zone edge X, and thus the energy of the band is 
stabilized with respect to the value calculated with the AOM. 
The opposite effects are operative in the eg band whose orbital 
interactions are described in Figure 3d. This band is metal- 
metal bonding at the point r, and thus the energy level will be 
stabilized relative to the value predicted using the metal-oxygen 
interactions only. At the point X, in contrast, the level will be 
destabilized due to metal-metal antibonding, resulting in a 
bandwidth greater than the value predicted using the AOM. 
When the calculations are repeated with the Ni-Ni overlap 
integrals set equal to zero, the crystal orbital energies predicted 
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Figure 5. Dispersion picture for a homoatomic chain of atoms, showing 
also the energies of diatomic and triatomic units. 

from the AOM are in fact nearly identical to those calculated 
using the figures from 7, as shown in Table 1. 

An important result from this discussion is that these 
dispersion pictures do not coincide with the “phenomenological” 
picture of Figure 2. Our results arises through our insistence 
on treating on an equal footing the local interactions of an 
oxygen p orbital with the metal orbitals, along with the extended 
coupling of the metal center through the bridging orbital. In 
the model of Figure 2, one is significantly larger than the other. 
Another result is immediately apparent too. Notice that the tops 
of the bands are destabilized more than a t2g dn or eg do orbital 
in the hypothetical isolated NiO6 molecule (4e, or 3e,). This 
comes rather simply from the details of eq 1. The mean value 
of the orbital energy across the zone is, however, 4e, or 3e,. It 
is interesting to compare the energies of this heteroatomic 
... AB AB... chain with those of a simple Huckel treatment of 
the homoatomic one. In some respects, the AOM model plays 
an analytic role in such heteroatomic systems analogous to the 
one that the Huckel model plays in homoatomic ones. Figure 
5 shows the energy bands of a two-atom ... BBBB ... cell 8 where 
the orbitals are linked to their neighbors by an interaction 
integral p. The interactions of this generic picture of course 
can be of 3, = o, n, or 6 type. The dispersion of the bands is 
given by E = a f 2p cos(ka/2) where a is the repeat parameter. 
The width of the band is 4p. Also shown are the energy levels 
of the “diatomic molecule”, E = a f p, and those of the 
“triatomic molecule” BBB, E = a, a f 1.414p. It is clearly 
seen that the top of the band lies above the upper molecular 
levels and the bottom of the band below the lower molecular 
levels. For the heteroatomic chain, the dispersion of the two 
bands from eq 1 is shown in a similar way in Figure 6. (The 
width of each is 4el.) The energy levels of an isolated BAB 
“molecule” (9) within the heteroatomic chain are also shown. 
Again they lie within the band width of the two bands. The 
point to be made here is that, just as one would not use the 
levels of the BBB triatomic to derive the levels of the bands of 
the infinite homoatomic chain, we should not follow this route 
for the heteroatomic one. 

Generating the energy bands of the one-dimensional chain 6 

r X 
Figure 6. Dispersion picture for a heteroatomic chain of atoms, 
showing also the energies of a triatomic unit. 

LJ 
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from the hexagonal layer structure is a little more complex 
because, unlike the case of the vertex-sharing chain, the bridge 
orbitals of the edge-sharing chain can mix in both o and n 
fashion with those of the metal. However, if the M-0-M 
angles are 90°, then the bridge p orbitals which are purely o 
for one metal are purely n for the other. The five distinct crystal 
orbital types which make up the d-block bands of the chain are 
given at r and X in Figure 7. The orbitals are labeled according 
to their parity (symmetric or antisymmetric) with respect to 
(first) the mirror plane containing the M02M unit and (second) 
the plane perpendicular to it. Both planes are good symmetry 
elements throughout the whole one-dimensional zone. The 
calculated behavior of the a, b pair of “tzg)’ bands shown in 
Figure 8a using only metal-oxygen n interactions in the band 
calculation is similar to that of the dispersive n bands of the 
perovskite chain; one is M-0 nonbonding at the r point and 
antibonding at the X point, and the other the converse. The 
predictions of the AOM are shown for comparison. (We point 
out that the coordinate system we have chosen in 6 dictates a 
mixing of the dxz and dyz orbitals in this frame to form linear 
combinations with the character we have illustrated in Figure 
7a,b.) With two n orbitals in the bridge which can interact 
with the metal d orbital, a larger destabilization at X for this 
chain than in the perovskite case might have been expected, 
but this is exactly canceled by the normalization factor ( 1/21’2) 
for the pair of bridging orbitals. The dispersion of these bands 
is thus identical (4eJ to that for the perovskite chain. The third 
n band has no dispersion; a linear combination of bridging 
oxygen p orbitals may be written which smoothly goes from 
one to the other between r and X. The behavior of the e, bands 
(Figure 3d,e) using o interactions only is dispersion-free, for 
the same reasons; they both have an energy of 3e, at both the 



4314 Inorganic Chemistry, Vol. 33, No. 19, 1994 

h 

-11.9 
2 v 

>r 
F 
C W 

Burdett and Gramsch 

-- 

r X 

n 

/ 

/ 

same symmetry and thus may mix together. This is an important 
result and one which we have used before** to explore the 
“failure” of simple Jahn-Teller arguments in predicting local 
geometric features in transition metal dioxide structures of the 
rutile type. The new calculated band structure which includes 
such mixing is shown in Figure 8b. 

The pictures developed in Figures 7 and 8 for the edge-sharing 
chain have completely ignored the effects of metal-metal 
bonding across the shared edge of the octahedron. In the 
perovskite chain these were of little importance, byt here the 
Ni-Ni distance is only 2.74 A, compared to 2.49 A in the fcc 
metal.19 Since the eg bands contain strong metal-oxygen CT 
interactions, the effect of metal-metal interactions is expected 
to be smaller here than in the t2g bands, where the metal 
character is larger. Indeed, a useful picture of the tzg levels in 
M02 nets with the cadmium halide structure may be generated20 
by study of these interactions alone. Such would be the case if 
metal-metal bonding is on the same order of, or even greater 
than, the interactions between metal and oxygen. We therefore 
expect a much larger influence of metal-metal interactions in 
the cadmium halide-like structure than in the perovskite. A 
calculated dispersion diagram for a hypothetical metal-only 
chain with M-M distance equal to those used in the edge- 
sharing oxygen-containing chain is shown in Figure 9a. The 
overall width is about 1.5 eV, and when compared with the 
oxygen-only n splittings from the AOM, these metal-metal 
interactions are clearly rather important. They show up in a 
striking fashion when comparisons are made between the 
complete band structure (Figure 9b) and that using the metal- 
oxygen interactions only (Figure 8b). For example, the disper- 
sion-free crystal orbital (Figure 7c) is actually metal-metal CT 

bonding at and metal-metal o antibonding at X, leading to 
a highly dispersive band in the calculation of Figure 9b. For 
the M-M n-type band, orbital a of Figure 7, the orbital energy 
is raised at r due to antibonding interactions across the bridge 
but stabilized at X. Finally, the 8-type band energy is stabilized 
at r but raised at X. Similar arguments lead to the changes in 
the dispersion of the e, bands. Recall that, in the vertex-sharing 

A S  

A A  

s s  

s s  

S A  

Figure 7. Crystal orbitals formed by interaction of 3d orbitals on Ni 
with 0 2p valence orbitals for the one-dimensional edge-sharing chain 
of octahedra appropriate for the two-dimensional hexagonal net of the 
cadmium halide-like NiO;! substructure. Labels follow the discussion 
in the text. 

- q+ 3 eo -11.5 eo 

- -13.1 - 
r X r X 

Figure 8. Energy bands for Ni d-orbital-based crystal orbitals for the 
edge-sharing chain of octahedra, based on the assumptions of the 
angular overlap modell, considering only nickel-oxygen interactions: 
(a) without 

X and r points. Notice however that one band from the o 
manifold and one from the n manifold (Figure 3c,d) are of the 

mixing; (b) with eg/tzg mixing. 

chain, the eg bandwidth was enhanced by these metal-metal 
interactions as it appears to be here too but in a more dramatic 
fashion. These arguments are standard ones which have been 
used before16 but are worth repeating because they have an 
interesting bearing on the overall picture as we will see. Table 
2 gives the observed crystal orbital energies from an actual band 
calculation on the edge-sharing chain compared with those 
predicted at various stages in the above discussion. 

The t2g bandwidth in the edge-sharing chain is predicted and 
found to be nearly double that in the vertex-sharing chain (0.6 
eV compared to 1.1 eV), but the eg band is predicted to be much 
wider in the vertex-sharing chain as compared to its edge-sharing 
relative, and this result leads to the absence of a gap between 
eg and tzg or CT and n bands. In the perovskite chain, at one 
point in the zone (r), dz2 is identically nonbonding, and at 
another, it is maximally antibonding. In the edge-sharing chain, 
however, both dZ2 and dg-3 orbitals overlap with orbitals on 
the bridging oxygen atoms at all points in the zone, and thus 
the symmetry constraints of this 90” chain dictate that these 
orbitals destabilize the eg crystal orbitals at all points, leading 
to a much narrower band than in the perovskite case. Impor- 
tantly, the width of the bands in the edge-sharing case is 
dominated by metal-metal interactions but the width of the 
vertex-sharing case by metal-oxygen interactions. In a qualita- 
tive sense, the phenomenological model of Figure 2 is appropri- 

(18) Burdett, J. K.; Miller, G. J.; Richardson, J. W.; Smith, J. V. J.  Am. 

(19) Reference 12, Vol. 1, p 10. 
(20) Burdett, J. K.; Hughbanks, T. Znorg. Chem. 1985, 24, 1741. 

Chem. SOC., 1988, 110, 8064. 
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Table 2. Crystal Orbital Energies (eV) for Ni d-Block Bands of the Edge-Sharing One-Dimensional Chain 
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metal-metal bonding not included metal-metal bonding included 
Ni orbital AOM energy, r r, predicted r, calcd AOM energy, X X, predicted X, calcd r, calcd X, calcd 

-12.7 -12.9 
-13.1 -13.0 
-12.3 -12.3 
-11.4 -11.5 
-11.4 -11.3 

4e, 
6e, 
2e, 
3ea 
3e0 

9 

b e 
2 

W 

r X 

Figure 9. (a) Computed Ni d-orbital-based energy bands for a one- 
dimensional chain of Ni atoms with atomic separations appropriate to 
those in the cadmium halide structure. JC and 6 bands are both doubly 
degenerate. (b) Computed energy bands for Ni d-orbital-based crystal 
orbitals from the one-dimensional edge-sharing chain of NiOs octahedra, 
including both M-0 and M-M interactions. 

ate here (and was used in ref 16, for example, to derive the 
dispersion behavior of the energy bands), since the mean 
positions of the bands are set by metal-oxygen interactions 
but their width largely by metal-metal interactions. 

Band Structures of Idealized Perovskite and Cadmium 
Halide Nets 

We are now in a position to derive the band structure of the 
ideal square net derived from the cubic perovskite structure and 
the ideal hexagonal net of the cadmium halide structure. Results 
of tight-binding band structure calculations using only Ni 3d 
and 0 2p orbitals are shown in Figure 10. The general features 
of the dispersion pictures of the one-dimensional chains are 
found here too. The tZg bands of both solids are now very 
similar in width. The perovskite net has gained additional 
bandwidth on moving to the two-dimensional case simply as a 
result of doubling the number of interactions possible for any 
given tzg orbital. No change is found for the cadmium halide 
structure, since the number of interactions for each tzg type 
orbital is already 4 in the one-dimensional chain. Thus, we 
expect little change in the bandwidths for the cadmium halide 
structure on moving from one to two dimensions, and indeed, 
this is observed. The relative dispersion of the bands of the 
perovskite eg set is also in keeping with the general predictions 
of the angular overlap model and the number of coordinated 
orbitals. The hexagonal net has a significantly narrower eg band 
than that in the perovskite net, which has again gained some 
additional width on moving to two dimensions. The result is a 
small calculated gap (on the order of 0.3 eV) between the tZg 
and eg bands for the hexagonal system. This is set by the 
balance of metal-oxygen interactions (a and n), which set the 
centers of the eg and tzg bands, and the metal-metal interactions, 
which contribute to their width. Certainly, though, the most 
dramatic feature of the perovskite band structure is the (rigorous, 
on symmetry grounds) absence of an energy gap between the 

-12.7 -12.9 -13.3 -12.2 
-12.3 -12.3 -12.4 -13.0 
-13.1 -13.0 -12.6 -12.7 
-11.4 -11.5 -10.9 -11.8 
-11.4 -11.3 -11.6 -11.1 

tzg and eg bands, both in the two-dimensional slice through the 
perovskite structure and in the full three-dimensional one. This 
result is a simple one. The symmetry properties of the bands 
from Figures 4 and 10 decree that both a and n bands are exactly 
nonbonding at the bottom of the band and thus must overlap in 
this way. (The computed values from Figure 10 agree well 
with those predicted using the results in 7). The width of the 
eg band from the AOM is simply 6e, and the width of the tZg 
band is 8ez in the full three-dimensional perovskite. 

This result is at variance with experiment. Results from 
photoelectron spectroscopic studies on the perovskites Lac003 
and LaRhO3 show conclusively the presence of a gap. The 
existence and magnitude of the tzg-eg energy gap are crucial 
to understanding the electronic properties associated with these 
c o m p ~ u n d s . ~ ~ J ~  Lac003 (band gap 0.1 eV) exhibits an insulator 
to metal transition at elevated temperatures via thermal popula- 
tion of the upper band, while the analog LaRh03 (band gap 1.6 
eV) shows no such transition but instead remains an insulator. 
Table 3 shows the variation in electronic properties associated 
with the series of LaMO3 perovskites as a function of changing 
electron count at M. Although the crystal structures show a 
smooth change from a highly distorted (Pbnm) perovskite for 
LaTiO3 to nearly ideal arrangements (M = Ni, Cu), the electrical 
properties change dramatically.21 Their oscillating nature across 
the LaMO3 series suggests a filling of the tzg band followed by 
a filling of the eg band. Electron correlation and exchange 
effects have been proposed in to account for this 
variation in properties, but the existence of the separate tzg and 
eg bands is well established. The situation for Lac003 is 
certainly more complex than presented here. We point out that 
a recent band structure calculationz3 on Lac003 shows no gap 
between the bands. Only in cluster calculations where many- 
body effects are included in a dominant way is a gap found. 
These results suggest that the band gap in this compound is 
actually between the filled oxygen 2p band, which lies at an 
energy similar to, but slightly above, that of the filled tzg band, 
and the empty eg band. This makes the material a “charge- 
transfer insulator” below 937 “C. Clearly, however, the tzg-eg 
separation is much smaller in Lac003 than in LaRh03. The 
results described here are therefore much more applicable to 
the Rh case, where such effects are not as important. To 
understand the generation of a gap between tZg and eg bands, 
the 2p orbitals on oxygen are not sufficient, and the oxygen 2s 
orbitals must be added to the bonding scheme. 

Wavefunctions appropriate for the symmetry points r and 
X for the one-dimensional chains corresponding to the two Ni02 
nets whose orbital interactions are presented in Figures 3 and 7 
show quite clearly that the oxygen 2s orbitals by symmetry may 
mix maximally rather specifically at high-symmetry points in 
their respective Brillouin zones. Since the parities of the s and 
p orbitals are different, the symmetry points where the inter- 

(21) Goodenough, J. B.; Longo, J. M. In Landolt-Biirnstein: Numerical 
Data and Fundamental Relationshivs in Science and TechnoloQv: 
Hellwege, K.-H., Ed.; Springer-Verlag: New York, 1972; New Seri& 
Vol. IW4a, p 126. 

(22) Goodenough, J. B. Magnetism and the Chemical Bond; Wiley- 

(23) Abbate, M.; Potze, R.; Sawatzky, G. A,; Fujimori, A. Phys. Rev. B: 
Interscience: New York, 1963. 

Condens. Matter 1994, 49, 7210. 
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Figure 10. Computed band structures of the two-dimensional nets in nickel oxides employing Ni 3d and 0 2p orbitals only: (a) idealized hexagonal 
net from LiNiOzf (b) square net from LaNiOs. 

Table 3. Electronic Properties of LaMO3 Perovskites 

M electronic behavior 

Ti metal 
V metal-insulator transition (275 K) 
Cr, Mn, Fe insulator 
c o  metal-insulator transition (664 K) 
Ni, Cu metal 

action between the metal and these ligand orbitals is zero will 
also be different. These interactions are illustrated pictorially 
in 10 and 11 for the perovskite and cadmium halide chains. 

n A 

1 1  

Perhaps the most important result is that, contrary to the result 
for the 2p orbitals, the 2s orbitals on oxygen in the net have 
the appropriate symmetry to mix into the perovskite dZ2 band 
in an antibonding fashion at the symmetry point I?, which has 
the immediate effect of raising the energy of this crystal orbital 
and thus shrinking the bandwidth for the perovskite. With 
reference to 10, if the s orbital interaction is larger than that of 
the p interaction 4e,, then a band gap will open. At the X point, 
the zone edge, the energy of the dz2 band is not affected by the 
inclusion of the 0 2s orbitals, since they cannot mix in by 
symmetry at this point. Thus the only effect of inclusion of 0 
2s orbitals into the perovskite basis is the reduction of the eg 
bandwidth and the possible opening of a gap in the metal d-block 
bands if the interaction is sufficiently large. For the cadmium 
halide case, the situation is again a little more complicated. At 
the r point, the dz2 crystal orbital should be raised in energy, 
while dg-3 should remain unaffected. However, at point X, 
d2-3 will be raised in energy, while dZ2 will be unaffected. 
Qualitatively speaking, the dX2+ orbital will be raised more in 
energy at X than d3 at r, so the possibility exists for a switching 
in position of the two energy bands in the full two-dimensional 
band structure as a result of the inclusion of 0 2s orbitals. 

Figure 11 shows results of calculations carried out on the This result is quite dramatic. None of the energy bands have 
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M r K M  M r X M 
Figure 11. Computed band structures of the two-dimensional nets as in Figure 10, but using both 0 2s and 0 2p orbitals in the basis along with 
Ni 3d orbitals; g(2s) = 3.000, ((2p) = 2.275: (a) cadmium halide hexagonal net; (b) perovskite square net. 

r X 

Figure 12. Schematic band structure sketch of the one-dimensional 
chain of Ni d t  orbitals linked by oxygen atoms where both 2s and 2p 
orbitals participate in bonding interactions. 

any dispersion at all; Le., there is no k dependence. If now we 
put a, = ap but set Bsd f Bpd. the roots become 

E = %  (=a,) 

E = + ad) - ad>2 + 
2 112 

16@pd2 - c0s2(ku/2)@pd - psd) 1) )I2 (4) 

Arbitrarily assuming that lppdl > Ipsdl, the band structure may 
be drawn as in Figure 12. After the usual expansion of eq 4 as 
a power series, these roots become 

Now we are in a position to see algebraically the result easy 
to see above by symmetry; interaction of dZ2 with the 2s orbital 
on 0 leads to a dispersion with a c0s2(ka/2) dependence and 
maximum bonding at k = 0, but interaction of dZ2 with the 2p 

orbital on 0 leads to a sin2(ka/2) dependence with maximum 
bonding at k = n/a. The result, if the two interactions are equal, 
is a dispersion-free band, and thus one of zero width. Therefore, 
the width of this band is determined in a vital way by the balance 
of the two types of interactions. Our perovskite 3d-block band 
structure generated by the EHTB method is in fact nearly 
identical to those of M a t t h e i ~ ~ ~  and Harrison25 employing more 
elaborate approaches. 

It is interesting to compare the factors which control the eg- 
t2g gap in the extended perovskite structure with those for an 
isolated molecule. In the latter, t2g and eg orbitals are separated 
by 3e, - 4e, from the AOM. Here e,  now represents the 
interaction parameter for the relevant s/p oxygen hybrid orbital 
which overlaps with the metal d orbitals. In the extended array, 
the energy difference the middles of the tzg and eg bands will 
be given by the same function. However, the energy difference 
between the top of the tZg and bottom of the eg bands is given 
as described above by a balance between dn-pn, do-pa, and 
da-sa interactions. 

Density of states (DOS) plots from the EHTB model are 
shown in Figure 13 for the ideal three-dimensional cubic 
perovskite and two-dimensional hexagonal type NiO2 nets using 
a model including both 2s and 2p orbitals for oxygen. The 
Fermi level for the d7 band filling occurs within the broad energy 
band for the perovskite type net, and so within a one-electron 
picture, metallic behavior is predicted for the material LaNiO3. 
For LiNi02, the eg band is also one-fourth filled, but in contrast 
to the situation in perovskite, the Fermi energy lies at a high 
density of states, signaling the possibility of localized electrons 
and insulating behavior. Insight as to the origin of this high 
density of states may be obtained by comparing the Ni 3d/O 
2p and the Ni 3d/O 2p + 0 2s densities of states of Figures 
10a and l l a ,  respectively. Notice that this rather flat part of 
the band responsible for this feature in the DOS is generated 
by the addition of the oxygen 2s orbitals. Thus the latter are 
of crucial importance in both systems. 

Conclusions 

The thrust of this work has been an exploration of the rather 
dramatic symmetry-based control of the form of the band 
structures of two important classes of materials with the same 

(24) Mattheis, L. F. Phys. Rev. B: Solid State 1972, 6, 4718. 
(25) Harrison, W. A. Electronic Structure and the Properties of Solids; 

Dover: London, 1989; p 438 ff. 
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Figure 13. Computed density of states plots for (a) the three- 
dimensional cubic perovskite framework Ni033- and (b) the hexagonal 
two-dimensional cadmium halide net NiOZ-. In both pictures, the 
dotted line represents the contribution from the d+y2 orbitals on Ni, 
and the dashed line represents the dz2 contribution. The Fermi level is 
indicated by a horizontal arrow. 

local geometry but with different extended structures. For the 
perovskite structure, the widths of the tZg and eg bands are in 
fact a necessary, symmetry-constrained result of the full band 
structure and are crucially dependent upon extended Ni-Ni 
interactions as well as local Ni-0 interactions. The band 
structure of the cadmium halide net, however, can be derived 
in a qualitative way (as in ref 20) by adding the effects of 
metal-metal interaction to the levels predicted from metal- 
oxygen interactions only. Although the approach neglects 
important two-electron exchange and correlation terms in the 
energy, association of a narrow band having a high density of 
states with a localized system allows an understanding of 
electronic and magnetic behavior of the LaNiO3- and LiNi02- 
type phases. A hitherto unappreciated fact is the crucial control 
of this electronic problem in the perovskite case by the relative 
importance of the interactions of oxygen 2s and 2p orbitals with 

Table 4. Parameters Used in Extended Huckel Calculations 
C l b  Ob atom orbital Hi, (eV) elu t z a  

Ni 4s 
4P 
3d 

co  4s 
4P 
3d 

Rh 5s 
5P 
4d 

0 2s 
2P 

-9.17 
-5.15 

-13.49 
-9.21 
-5.29 

-13.18 
-10.4 
-6.87 

-14.90 
-32.3 
-14.8 

1.825 
1.125 
5.75 1.64 0.6401 0.5516 
2.000 
2.000 
5.55 2.10 0.5680 0.6060 
2.135 
2.040 
5.38 2.30 0.5340 0.6365 
3.000 
2.275 

Slater-type orbital exponents. Coefficients used in the double-g 
expansion. 

the metal d orbitals. It makes it very difficult indeed to predict 
for the d6 perovskites whether there will be a band gap or not. 
As we will show elsewhere,26 this balance is also of vital 
importance in determining some of the properties of the high- 
temperature superconducting cuprates, all of which have es- 
sentially two-dimensional structures featuring the flat or nearly 
flat Cu02 square net.*' In this particular case, the d + 2  band 
of this sheet must also be sufficiently wide (in two dimensions 
only) to support delocalized, metallic behavior. Its width is 
again controlled by this balance. 
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Appendix 
Calculations described in this paper were carried out using the 

extended Huckel method, employing the tight-binding approximationZ* 
for the calculation of band structures of crystalline solids. Parameters 
used in the calculations are collected in Table 4. Off-diagonal matrix 
elements have been calculated using the modified Wolfsberg-Helmholz 
relation~hip.~~ Calculations invariably involve inclusion of overlap 
integrals over three unit cells, except in those calculations where metal- 
metal interactions were excluded. In this case, the overlap integrals 
were evaluated out to 2.0 8, or less. (This includes the M-0 
interactions but excludes the M-M ones.) In density of states (DOS) 
calculations, a grid of 64 special K points were used in the irreducible 
wedge of the two-dimensional Brillouin zone appropriate for the 
particular square or hexagonal net. For the calculation of band 
structures, 51K points were chosen along each high-symmetry line 
enclosing the irreducible wedge of the appropriate Brillouin zone. 
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(28) Hoffmann, R. J .  Chem. Phys. 1963, 39, 1397. Whangbo, M.-H.; 
Hoffmann, R. J .  Am. Chem. Soc. 1978,I00,6093. Whangbo, M.-H.; 
Hoffmann, R.; Woodward, R. B. Proc. R.  SOC. London 1979, A366, 
23. 

(29) Ammeter, J. H.; Biirgi, H.-B.; Thibeault, J. C.; Hoffmann, R. J .  Am. 
Chem. SOC. 1978, 100, 3686. 


