Selenoether Macrocyclic Chemistry: Syntheses, NMR Studies, Redox Properties, and Single-Crystal Structures of $[M([16]aneSe_4)](PF_6)_2$ ·2MeCN (M = Pd, Pt; [16]aneSe_4 = 1,5,9,13-Tetraselenacyclohexadecane)

Neil R. Champness,[†] Paul F. Kelly,[†] William Levason,[†] Gillian Reid,^{*,†} Alexandra M. Z. Slawin,[‡] and David J. Williams[‡]

Departments of Chemistry, University of Southampton, Highfield, Southampton SO9 5NH, England, and Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, England

Received April 27, 1994[®]

Reaction of MCl₂ (M = Pd, Pt) with 1 molar equiv of [16]aneSe₄ in refluxing MeCN solution in the presence of TIPF₆ affords the complexes [M([16]aneSe₄)](PF₆)₂ in high yield. [Pd([16]aneSe₄)](PF₆)₂·2MeCN crystallizes in the monoclinic space group P_{21}/c with a = 10.184(4) Å, b = 10.673(4) Å, c = 13.960(7) Å, $\beta = 98.01(4)^{\circ}$, V = 1502.6 Å³, Z = 2, and F(000) = 917. The structure shows the Pd^{II} ion on a center of symmetry at (0, 0, 0), coordinated to a precisely square planar arrangement of the four selenoether donor atoms, with the macrocycle adopting an up, up, down, down configuration, Pd-Se = 2.435(2), 2.428(1) Å. [Pt([16]aneSe₄)](PF₆)₂·2MeCN is isomorphous with its Pd^{II} analogue, giving a = 10.200(7) Å, b = 10.609(6) Å, c = 14.045(8) Å, $\beta = 98.90(2)^{\circ}$, V = 1501.6 Å³, Z = 2, F(000) = 984, and Pt-Se = 2.420(3), 2.417(3) Å. Variable-temperature ⁷⁷Se and ¹⁹⁵Pt NMR studies are described which reveal the occurrence of a dynamic process in solution for [M([16]aneSe₄)]²⁺, involving interconversion of invertomers. The bis-bidentate model complexes [M(MeSeCH₂CH₂CH₂SeMe)₂]-(PF₆)₂ have also been prepared by reaction MCl₂ with 2 molar equiv of MeSeCH₂CH₂CH₂SeMe in refluxing MeCN in the presence of TIPF₆. Variable-temperature ⁷⁷Se and ¹⁹⁵Pt NMR spectroscopic studies on these complexes are compared with those of the macrocyclic tetraselenoether complexes. Cyclic voltammetry of [M([16]-aneSe₄)](PF₆)₂ in MeCN solution shows no oxidative activity. An irreversible reduction is seen for each complex at $E_{pc} = -0.90$ V for M = Pd and $E_{pc} = -1.64$ V vs Fc/Fc⁺ for M = Pt, at a scan rate of 200 mV s⁻¹.

Introduction

Since the discovery of crown ethers by Pedersen in 1967, interest in macrocyclic ligand chemistry has escalated.¹ In particular, the chemistry of thioether macrocycles has received considerable attention over the past decade. These have proved to be very good ligands for a wide range of d- and p-block ions.² An important feature of these systems is their ability to adopt unpredictable geometries and stabilize unusual oxidation states—sometimes at the expense of the normal oxidation states. For example, the Au^I center in $[Au([9]aneS_3)_2]^+$ is apparently destabilized by the trithia macrocycles which prefer the highly unusual mononuclear Au^{II} state. Hence the complex cation [Au-([9]andS₃)₂]²⁺ is readily isolated.³

Despite this rich coordination chemistry exhibited by thioether macrocycles, the effect of incorporating heavier selenoether donor atoms into a macrocyclic configuration has remained a poorly studied area.⁴⁻⁶ This is surprising since selenoethers display two major advantages over their thia counterparts: first, they are better σ -donors and, as such, should offer more powerful ligation to transition metal ions; second, ⁷⁷Se NMR spectroscopy (I = 1/2, 7.58%, $D_c = 2.98$) is an excellent probe with which to monitor structures in solution. To date, Pinto and co-workers, who reported the syntheses of a series of selenacrowns, including [14]aneSe₄, [16]aneSe₄, and [24]aneSe₆, are the only major contributors to this area.⁴ They have also alluded to the potential of these compounds as ligands through the synthesis of Cu^I, Cu^{II}, and Hg^{II} complexes incorporating [16]aneSe₄.⁵

[16]aneSe

As part of our work aimed at establishing the nature of selenoether to transition metal bonding, we recently reported the synthesis and structure of *trans*-[RhCl₂([16]aneSe₄)]⁺. This

© 1995 American Chemical Society

[†] University of Southampton.

[‡] Imperial College of Science, Technology and Medicine.

^{*} Abstract published in Advance ACS Abstracts, January 1, 1995.

Coordination Chemistry of Macrocyclic Compounds; Melson, G. A., Ed.; Plenum: New York, 1979. The Chemistry of Macrocyclic Ligand Complexes; Lindoy, L. F., Ed.; Cambridge University Press: Cambridge, U.K., 1989.

 ⁽²⁾ Schröder; M. Pure Appl. Chem. 1987, 60, 517; Blake, A. J.; Schröder, M. Adv. Inorg. Chem. 1990, 35, 1. Cooper, S. R. Acc. Chem. Res. 1988, 21, 141. Cooper, S. R.; Rawle, S. C. Struct. Bonding (Berlin) 1990, 72, 1.

⁽³⁾ Blake, A. J.; Gould, R. O.; Greig, J. A.; Holder; A. J.; Hyde, T. I.; Schröder; M. J. Chem. Soc., Chem. Commun. 1989, 876. Blake, A. J.; Greig, J. A.; Holder, A. J.; Hyde, T. I.; Schröder, M. Angew. Chem., Int. Ed. Engl. 1990, 29, 197. Blake, A. J.; Gould, R. O.; Radek, C.; Reid, G.; Taylor, A.; Schröder, M. In The Chemistry of the Copper and Zinc Triads; Welch, A. J.; Chapman, S. K., Eds.; The Royal Society of Chemistry: London, 1993, p 95.

⁽⁴⁾ Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D.; Gu, J.-H.; Johnston, B. D.; Pinto, B. M. J. Am. Chem. Soc. 1989, 111, 6582.

⁽⁵⁾ Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D.; Gu, J.-H.; Pinto, B. M.; Zhou, X.-M. J. Am. Chem. Soc. 1990, 112, 3706. Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D.; Gu, J.-H.; Pinto, B. M. J. Organomet. Chem. 1991, 411, 147.

⁽⁶⁾ Kumagai, T.; Akabori, S. Chem. Lett. 1989, 1667. Muralidharan, S.; Hojjati, M.; Firestone, M.; Freiser, H. J. Org. Chem. 1989, 54, 393.

Figure 1. FAB mass spectrum (3-NOBA) of [Pt([16]aneSe₄)](PF₆)₂.

cation adopts an *up,up,down,down* configuration at the Se donors; Rh-Se = 2.348(3), Rh-Cl = 2.339(2) Å.⁷ We now report the syntheses, single-crystal X-ray structures, multinuclear NMR (¹H, ¹³C, ⁷⁷Se, ¹⁹⁵Pt) spectroscopy, and redox properties of [M([16]aneSe₄)](PF₆)₂·2MeCN (M = Pd, Pt). The syntheses and NMR spectroscopic data for the acyclic model systems [M(MeSeCH₂CH₂CH₂SeMe)₂](PF₆)₂ (M = Pd, Pt) are also reported.

Results and Discussion

The tetraselena crown [16]aneSe₄ (1,5,9,13-tetraselenacyclohexadecane) was prepared through the [2 + 2] cyclization of the disodium salt of 1,3-diselenapropane with 1,3-dibromopropane using the method reported by Pinto *et al.*⁴ Reaction of PdCl₂ with 1 molar equiv of [16]aneSe₄ and 2 molar equiv of TlPF₆ in refluxing MeCN for *ca.* 2 h affords a yellow solution together with a TlCl precipitate. After filtration, the volume of solvent was reduced *in vacuo* to *ca.* 2 mL. Slow diffusion of Et₂O into this solution yields yellow crystals of [Pd([16]aneSe₄)](PF₆)₂·2MeCN. Similar reaction with PtCl₂ yields colorless crystals of [Pt([16]aneSe₄)](PF₆)₂·2MeCN. The IR spectra of these products confirm the presence of coordinated [16]aneSe₄ and PF₆⁻ counterions. The FAB mass spectra of the complexes exhibit peaks with the correct isotopic distributions based on ¹⁹⁵Pt, ¹⁰⁶Pd, and ⁷⁹Se for [M([16]aneSe₄)PF₆]⁺ and $[M([16]aneSe_4)]^+$, respectively (m/z): M = Pd, $M^+ = 736$, 591; M = Pt, $M^+ = 825$, 679). Figure 1 shows the FAB mass spectrum obtained for $[Pt([16]aneSe_4)](PF_6)_2$. In addition to the peaks listed above, the spectrum clearly shows fragmentation peaks consistent with successive loss of $(CH_2)_3$ linkages and of selenium atoms from the macrocyclic framework. This fragmentation pattern is not observed for the analogous tetrathia macrocyclic complex, $[Pt([16]aneS_4)]^{2+,8}$ indicating that Se-C bonds are considerably weaker than S-C bonds under the conditions employed for FAB mass spectrometry. This is consistent with the observation that elimination of alkyl linkages can occur in selenoether complexes and has been noted before in the EI mass spectra of dithio- and diselenoether ligands.⁹

Crystals suitable for single-crystal X-ray analyses were obtained for both complexes by slow diffusion of Et₂O into a solutions of the complexes in MeCN. Single-crystal X-ray structure determinations of $[M([16]aneSe_4)](PF_6)_2$ ·2MeCN (M = Pd, Pt) show that these species are isomorphous, with a square planar arrangement of the four selenoether donors around the central metal ion (which lies on a center of symmetry) in an *endocyclic* arrangement (Figures 2 and 3): Pd-Se(1) = 2.435-(2), Pd-Se(5) = 2.428(1) Å; Pt-Se(1) = 2.420(3), Pt-Se(5) = 2.417(3) Å. The macrocycle adopts an *up,up,down,down* configuration in each case, similar to that seen in *trans*-[RhCl₂-

⁽⁷⁾ Kelly, P. F.; Levason, W.; Reid, G.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1993, 1716.

⁽⁸⁾ Blake, A. J.; Holder, A. J.; Reid, G.; Schröder, M. J. Chem. Soc., Dalton Trans. 1994, 627.

⁽⁹⁾ For examples see: Hope, E. G.; Levason, W. Coord. Chem. Rev. 1993, 122, 109.

Figure 2. View of the structure of $[Pd([16]aneSe_4)]^{2+}$ with numbering scheme adopted.

Figure 3. View of the structure of $[Pt([16]aneSe_4)]^{2+}$ with numbering scheme adopted.

 $([16]aneSe_4)]^{+,7}$ The metal ions lie precisely in the Se₄ coordination plane. A similar structure has also been observed for the thioether macrocyclic complex $[Pd([16]aneS_4)]^{2+}$, Pd-S = 2.303(10), 2.304(10) Å, suggesting that the cavities available for [16]aneSe₄ and [16]aneS₄ are very similar in size.¹⁰ The longer Pd-donor atom bond lengths in the title complexes are in accord with the larger radius of Se over S. The Se-M-Se angles in the title complexes are all within 1.1° of 90 or 180°, indicating the good size match between the crown and the metal ion radii. Two non-coordinating MeCN solvent molecules were found to be associated with each M^{2+} cation during refinement. The structural parameters for $[Pt([16]aneSe_4)]^{2+}$ are rather less accurate than those for the Pd(II) analogue. This is because of the truncated data set obtained for the Pt(II) complex (see Experimental Section) and the resultant limited ratio of observations to variable parameters. However, the data were sufficient to adequately establish the molecular geometry.

Study of the packing of the molecules in the crystals reveals only one pair of notable short contacts. These involve a pseudoaxial approach of pairs of centrosymmetrically related F atoms to the metal centers. The $F \cdot \cdot Pt$ and $F \cdot \cdot Pd$ distances are 3.39 and 3.24 Å, respectively. There are no close contacts to the MeCN solvent molecules.

The solution structures of the selenoether macrocyclic complexes were probed by NMR spectroscopy (^{13}C , ^{77}Se , ^{195}Pt). The $^{13}C{^{1}H}$ NMR spectra of $[M([16]aneSe_4)]^{2+}$ (M = Pd, Pt) show several resonances in the range expected for Se–C

linkages (ca. 27–33 ppm) and several others around 23 ppm corresponding to the methylene groups at the center of the C₃ linkages. In each case, the total number of carbon resonances suggests that more than one form of the cation $[M([16]-aneSe_4)]^{2+}$ is present. Four distinct invertomers are possible for square planar $[M([16]aneSe_4)]^{2+}$ depending upon the orientation of the Se lone pairs. It is likely that one of these (*up*,*up*, *up*,*down*) may be rather less stable than the other three (*up*,*up*, *up*,*up*,*up*,*down*,*down*; *up*,*down*) due to ring strain.

Free [16]aneSe₄ shows a single resonance in the ⁷⁷Se solution NMR spectrum at +157 ppm.⁴ At 298 K in MeCN or Me₂CO solution, the ⁷⁷Se NMR spectrum of [Pd([16]aneSe₄)](PF₆)₂ shows two resonances at 196 and 153 ppm consistent with the presence of at least two invertomers in solution under these conditions. Cooling to 210 K in Me₂CO solution gives a single, relatively broad resonance at 203 ppm. Similar behavior is observed for [Pt([16]aneSe₄)](PF₆)₂ (Figure 4). In MeCN solution at 300 K, the ⁷⁷Se NMR spectrum shows two resonances at 187 and 147 ppm. These signals are not shifted significantly in MeNO₂ or Me₂CO solution. Cooling to 260 K in MeCN resolves the upfield signal to give three ⁷⁷Se resonances at 189, 146, and 141 ppm. Further cooling (Me₂-CO) to 185 K gives a single resonance at 187 ppm.

¹⁹⁵Pt NMR spectra were also recorded for [Pt([16]aneSe₄)]²⁺. In MeCN solution at 300 K, the ¹⁹⁵Pt NMR spectrum shows three resonances at -4568, -4587, and -4676 ppm. At 280 K in Me₂CO, the major species occurs at -4716 ppm with two minor species at -4614 and -4594 ppm. Cooling to 210 K results in a single, relatively broad resonance at -4750 ppm (line width at half-height ca. 240 Hz). We have not been able to resolve any ${}^{195}\text{Pt}-{}^{77}\text{Se}$ coupling in these spectra even at 185 K in either the ⁷⁷Se or the ¹⁹⁵Pt NMR spectra, since the lines are still relatively broad. These results indicate that ${}^{1}J_{PtSe}$ is less than the line widths, ca. 200 Hz. (Note: Since acceptance of this paper, working in acetone/CDCl₃ at 300 K, we observed the Pt-Se couplings, giving ${}^{1}J_{PtSe}$ ca. 90 Hz. Upon cooling, these couplings were lost due to broadening of the lines.) Very few ${}^{1}J_{PtSe}$ coupling constants for *trans* Se-Pt-Se units have been reported; however, the data available indicate that they are smaller than for trans Se-Pt-Cl and tend to be sensitive to the substituents at selenium.¹¹ These results are indicative of some dynamic process occurring in solution over the temperature range which we are investigating. This behavior contrasts with that of the octahedral d⁶ Rh^{III} cation trans- $[RhCl_2([16]aneSe_4)]^+$, which shows only one signal in the ⁷⁷Se NMR spectrum, at δ +160, consistent with the solid-state structure being retained in solution. In this case, the doublet coupling to 103 Rh ($I = {}^{1}/_{2}$, 100%) is also apparent, giving ${}^{1}J_{RhSe}$ ca. 30 Hz.7

We were suspicious that the ⁷⁷Se NMR resonance at 147 ppm for $[Pt([16]aneSe_4)]^{2+}$ was due to uncoordinated Se donor atoms of the macrocycle. However, we have been unable to find species of the form $[Pt(\eta^2-[16]aneSe_4)(solvent)_2]^{2+}$ or $[Pt(\eta^2-[16]aneSe_4)Cl_2]$ in the ¹⁹⁵Pt NMR spectrum. Together with the observation that the ⁷⁷Se and ¹⁹⁵Pt NMR signals do not shift significantly with solvent, this strongly suggests that the signals are due to tetraligated macrocyclic species as originally expected.

In an attempt to elucidate the nature of the fluxional process occurring in the Pd^{II} and Pt^{II} tetraselena crown systems and to

- (12) Gulliver, D. G.; Hope, E. G.; Levason, W.; Murray, S. G.; Marshall, G. L. J. Chem. Soc., Dalton Trans. 1985, 1265.
- (13) Kemmitt, T.; Levason, W.; Webster, M. Inorg. Chem. 1989, 28, 697.

⁽¹⁰⁾ Reid, G. Ph.D. Thesis, University of Edinburgh, 1989. Blake, A. J.; Reid, G.; Schröder, M. Unpublished results.

 ⁽¹¹⁾ Hope, E. G.; Levason, W.; Murray, S. G.; Marshall, G. L. J. Chem. Soc., Dalton Trans. 1985, 2185. McFarlane, W. J. Chem. Soc., Dalton Trans. 1974, 324. Chadha, R. K.; Chehayber, J. M.; Drake, J. E. Inorg. Chem. 1986, 25, 611.

Figure 4. Variable-temperature 77 Se (a) and 195 Pt (b) NMR spectra of [Pt([16]aneSe₄)]²⁺ in (CD₃)₂CO solution.

establish whether it is due to ring effects, the acyclic bisbidentate selenoether complexes [M(MeSeCH₂CH₂CH₂SeMe)₂]- $(PF_6)_2$ (M = Pd, Pt) were prepared. These were obtained by reaction of MCl₂ with 2 molar equiv of MeSeCH₂CH₂CH₂SeMe in refluxing MeCN in the presence of 2 molar equiv of TlPF₆ to abstract halide. The formulation of the complexes was confirmed by microanalyses, IR, UV/visible, and ¹H and {¹H}¹³C NMR spectroscopy, and FAB mass spectrometry. ⁷⁷Se NMR studies on [Pd(MeSeCH₂CH₂CH₂SeMe)₂](PF₆)₂ in Me₂-CO solution reveal a single, broad resonance at 132 ppm at 300 K. Upon cooling to 255 K, four distinct resonances become apparent at 135, 132, 128, and 118 ppm. Further cooling to 200 K results in a single resonance at 124 ppm. In contrast, the ⁷⁷Se NMR spectrum of [Pt(MeSeCH₂CH₂CH₂SeMe)₂](PF₆)₂ in Me₂CO solution at 320 K shows two broadened resonances at 128 and 127 ppm. Cooling to 225 K gives three resonances at 125, 124, and 122 ppm. The ¹⁹⁵Pt NMR spectrum of this complex cation shows a major species at -4677 ppm and two minor species at -4663 and -4657 ppm at 320 K. The ¹⁹⁵Pt NMR spectrum does not change significantly upon cooling to 185 K, and the signals remain relatively broad, making determination of the Pt-Se couplings difficult. These results suggest that [Pd(MeSeCH₂CH₂CH₂SeMe)₂]²⁺ is undergoing faster inversion at selenium on the NMR time scale within the temperature range investigated compared to the Pt^{II} analogue. This observation is not unusual.¹⁴

Addition of excess Cl⁻ anion to MeCN solutions of $[M(MeSeCH_2CH_2CH_2SeMe)_2](PF_6)_2$ (M = Pd, Pt) resulted in a color change to golden yellow and precipitation of a yellow solid in each case. ⁷⁷Se and ¹⁹⁵Pt NMR studies in dmso solution indicate the presence of free MeSeCH_2CH_2CH_2SeMe ligand (δ -(⁷⁷Se) = 68) together with the known species MCl₂(MeSeCH₂-CH₂CH₂SeMe) (M = Pd, δ (⁷⁷Se) = 198; M = Pt, δ (⁷⁷Se) = 168 ($J_{PtSe} = 500$ Hz) and 185 ($J_{PtSe} = 510$ Hz).¹¹ These results confirm that addition of Cl⁻ results in loss of one of the bidentate selenoether ligands and uptake of two Cl⁻ ligands to give MCl₂(MeSeCH₂CH₂CH₂SeMe), incorporating a Cl₂Se₂ donor set around the central metal ion. Both the meso and DL isomeric forms are evident for the Pt^{II} complex, whereas PdCl₂(MeSeCH₂CH₂CH₂SeMe) is known to be inverting rapidly at room temperature, showing only a single resonance.¹¹

Excess Cl⁻ anion was also added to a solution of [Pt([16]aneSe₄)](PF_6)₂ in MeCN. This resulted in almost immediate precipitation of a yellow solid. Attempts to identify this product were hampered by its poor solubility in most solvents. However, it partially redissolved in dmso solution, enabling a 77 Se NMR spectrum to be recorded. This shows a resonance at δ +176 with ${}^{1}J_{PtSe}$ ca. 196 Hz. A further very weak resonance at δ +156 was assigned to a small quantity of free [16]aneSe₄ in solution. The ¹⁹⁵Pt NMR spectrum shows a single resonance at -4503 ppm, corresponding to a small downfield shift with respect to the $[Pt([16]aneSe_4)]^{2+}$ starting material. It is however considerably upfield from that of a Cl₂Se₂ donor set at Pt^{II}, which would resonate in the range -3400 to -3700 ppm.^{11,13} Thus, the resonances corresponding to the original $[Pt([16]aneSe_4)]^{2+}$ species are no longer evident, confirming conversion to a new product, probably still involving Se₄ coordination, possibly with an apical Cl- ligand giving a five-coordinate platinum(II) species. Further experiments are necessary to confirm this.

Cyclic voltammetric measurements on $[M([16]aneSe_4)](PF_6)_2$ (M = Pd, Pt) in MeCN solution (0.1 M ⁿBu₄NBF₄ supporting electrolyte) show an irreversible reduction at $E_{pc} = -0.90$ and -1.64 V vs Fc/Fc⁺, respectively, at a scan rate of 200 mV s⁻¹. No oxidative activity is seen under these conditions up to +2.0

⁽¹⁴⁾ Abel, E. W.; Bhargava, S. K.; Orrell, K. G. Prog. Inorg. Chem. 1984, 32, 1. Orrell, K. G. Coord. Chem. Rev. 1989, 96, 1.

Table 1. X-ray Data Collection Parameters for $[M([16]aneSe_4)](PF_6)_2$ ²MeCN (M = Pd, Pt)

	M = Pd	M = Pt
formula	$C_{12}H_{24}Se_4Pd(PF_6)_2 \cdot 2MeCN$	C ₁₂ H ₂₄ Se ₄ Pt(PF ₆) ₂ ·2MeCN
mol wt	960.9	1051.3
color, morphology	yellow blocks	colorless blocks
crystal size/mm	$0.23 \times 0.33 \times 0.66$	$0.20 \times 0.20 \times 0.50$
crystal system	monoclinic	monoclinic
a/Å	10.184(4)	10.200(7)
b/Å	10.673(4)	10.609(6)
c/Å	13.960(7)	14.045(8)
β/deg	98.01(4)	98.90(2)
V/Å ³	1502.6	1501.6
space group	$P2_{1}/c$	$P2_{1}/c$
Ż	2	2
$D_{\rm calc}/{\rm g}\cdot{\rm cm}^{-3}$	2.124	2.325
λ/Å	0.710 73 (Mo)	0.710 73 (Mo)
μ/cm^{-1}	56.4	97.1
F(000)	917	984
transm factors: max, min	0.2549, 0.4902	0.1868, 0.4982
no. of unique data	2644	1108
no, of obsd data with $F \ge 3\sigma(F)$	1988	789
scan type	ω	ω
2θ range/deg	3-50	3-45
final $\Delta o/e Å^{-3}$	1.32	0.81
final $\Delta \sigma$	0.050	0.192
$R = \sum (F_{\rm o} - F_{\rm c}) / \sum F_{\rm o}$	5.35	5.59
R_{w}	5.01	5.06
temp/K	293	293

V. This is similar to the behavior of the tetrathia analogues $[M([16]aneS_4)]^{2+}$ (M = Pd, Pt), which show irreversible reductions at $E_{pc} = -0.88$ and -1.50 V vs Fc/Fc⁺, respectively. These data indicate that the thioether and selenoether ligands exhibit similar donor strengths. On the basis of coulometric measurements, for $[M([16]aneS_4)]^{2+}$ these reductions were tentatively assigned to $M^{II/I}$ redox couples, involving rapid quenching of the reactive M^{I} species.^{8,10}

These results confirm that a range of transition metal ions will readily insert into the cavity of the tetraselena crown [16]aneSe₄ to yield complexes with a square planar Se₄ donor set. From the single-crystal X-ray studies, the *up,up,down,down* form appears to be the preferred invertomer in the solid state for these complexes. However, while [RhCl₂([16]aneSe₄)]⁺ appears to retain its solid state configuration in solution, the d⁸ cations [M([16]aneSe₄)]²⁺ (M = Pd, Pt) undergo inversion in solution between 185 and 300 K. We hope to use 2-D NMR spectros-copy and molecular mechanics/dynamics calculations to identify the exact origin of the dynamic processes occurring in solution for the macrocyclic selenoether cations [M([16]aneSe₄)]²⁺.

Experimental Section

Infrared spectra were measured as KBr or CsI disks or as Nujol mulls using a Perkin-Elmer 983 spectrometer over the range 200-4000 cm⁻¹. Mass spectra were run by electron impact or fast-atom bombardment (FAB) using 3-NOBA (3-nitrobenzyl alcohol) as matrix on a VG Analytical 70-250-SE normal-geometry double-focusing mass spectrometer. Solution UV/visible spectra were recorded in 1 cm path length quartz cells using a Perkin-Elmer Lambda 19 spectrophotometer. ¹H NMR spectra were recorded using a Bruker AM300 spectrometer. ¹³C{¹H} NMR spectra were recorded using a Bruker AM360 spectrometer operating at 90.53 MHz. ⁷⁷Se NMR spectra were recorded using a Bruker AM360 spectrometer operating at 68.68 MHz and are referenced to neat Me₂Se ($\delta = 0$). ¹⁹⁵Pt NMR spectra were run using 10 mm diameter tubes containing 10-15% deuterated solvent or a 5 mm insert tube of D₂O as a lock, on a Bruker AM360 spectrometer operating at 77.4 MHz and are referenced against a solution of Na₂-PtCl₆ in H₂O ($\delta = 0$). Microanalyses were performed by the Imperial College microanalytical service. Cyclic voltammetric experiments were performed using an EG&G Princeton Applied Research Model 362 scanning potentiostat with 0.1 M ⁿBu₄NBF₄ supporting electrolyte, using a double platinum electrode as working and auxiliary electrode and a Ag/AgCl reference electrode. All potentials are quoted versus fer-

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients $(\mathring{A}^2 \times 10^3)$ for $[Pd([16]aneSe_4)]^{2+}$

	x	у	z	U(eq) ^a
Pd	0	0	0	32(1)
Se(1)	-818(1)	1799(1)	-979(1)	42(1)
C(2)	-1362(9)	3047(9)	-87(7)	52(3)
C(3)	-256(10)	3573(9)	618(7)	58(4)
C(4)	289(10)	2701(9)	1421(7)	51(3)
Se(5)	1458(1)	1396(1)	1029(1)	43(1)
C(6)	1665(11)	585(11)	2291(6)	60(4)
C(7)	2711(10)	-477(11)	2344(7)	61(4)
C(8)	2632(9)	-1324(10)	1479(7)	54(3)
P(1)	3080(3)	-70(3)	8060(2)	55(1)
F(1)	3279(13)	1116(12)	7530(12)	226(8)
F(2)	4417(9)	139(12)	8647(8)	171(6)
F(3)	2884(12)	-1291(16)	8521(16)	292(11)
F(4)	1772(10)	-365(11)	7410(10)	193(6)
F(5)	2322(15)	545(21)	8697(13)	307(12)
F(6)	3855(14)	-760(16)	7385(12)	246(9)
N(10)	2797(12)	742(13)	4613(7)	96(5)
C(10)	3645(12)	1331(12)	4913(9)	71(5)
C (11)	4762(13)	2117(16)	5325(12)	118(8)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

rocene/ferrocenium (Fc/Fc⁺). [16]aneSe₄⁴ and MeSeCH₂CH₂CH₂-SeMe¹⁵ were prepared according to literature methods.

(a) Synthesis of [Pd([16]aneSe₄)](PF₆)₂. PdCl₂ (16 mg, 0.09 mmol), [16]aneSe₄ (43 mg, 0.09 mmol), and TlPF₆ (62 mg, 0.18 mmol) were refluxed in MeCN (30 mL) under a dinitrogen atmosphere for 2 h to give a yellow solution and white precipitate. Consumption of all the [16]aneSe₄ after this period was confirmed by TLC. The solution was then filtered to remove the TICl and reduced to ca. 2 mL in vacuo. The product was isolated as large well-formed yellow crystals by slow diffusion of Et₂O into the MeCN solution. Anal. Calcd for C₁₂H₂₄- $F_{12}P_2PdSe_4$: C, 16.3; H, 2.45. Found: C, 16.4; H, 2.70. FAB mass spectrum (3-NOBA matrix), m/z: found M⁺ = 736 and 591; calculated for $[Pd([16]aneSe_4)PF_6]^+ M^+ = 737$, $[Pd([16]aneSe_4)]^+ M^+ = 592$. UV/visible spectrum (MeCN solution): $\lambda_{max} = 310 \text{ nm} (\epsilon_{mol} = 19500 \text{ solution})$ dm³ mol⁻¹ cm⁻¹). ¹³C{¹H} NMR spectrum (90.53 MHz, (CD₃)₂CO, 300 K): 32.7, 31.5, 31.3, 27.1, 23.8 ppm. 77 Se{¹H} NMR spectrum: (68.68 MHz, MeCN, 300 K) 196, 153 ppm; (Me₂CO, 210K) 210 ppm. IR spectrum (Nujol mull): 2725 m, 1300 m, 1261 m, 1228 w, 1154, 1076 w, 839 vs, b, 557 vs cm⁻¹.

⁽¹⁵⁾ Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. J. Chem. Soc., Perkin Trans. 2 1984, 429.

Table 3. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients $(\mathring{A}^2 \times 10^3)$ for $[Pt([16]aneSe_4)]^{2+}$

	x	у	z	U(eq) ^a
Pt	0	0	0	40(1)
Se(1)	-804(4)	1810(2)	-966(2)	50(2)
C(2)	-1309(32)	3045(22)	-91(15)	61(7)
C(3)	-256(30)	3560(20)	627(15)	57(8)
C(4)	300(31)	2668(20)	1437(14)	54(7)
Se(5)	1452(4)	1389(2)	1044(2)	54(2)
C(6)	1711(34)	532(22)	2281(14)	60(8)
C(7)	2711(35)	-465(24)	2361(16)	70(9)
C(8)	2576(34)	-1300(22)	1485(17)	66(8)
P (1)	3138(17)	-49(8)	8040(5)	75(7)
F (1)	3352(30)	1092(26)	7458(24)	214(20)
F(2)	4359(37)	192(27)	8701(19)	235(22)
F(3)	2817(31)	-1136(35)	8576(28)	263(24)
F(4)	1882(40)	-339(24)	7354(25)	231(24)
F(5)	2180(35)	759(33)	8479(24)	210(22)
F(6)	3970(35)	-839(30)	7497(25)	217(22)
N(10)	2750(33)	766(25)	4617(17)	105(9)
C(10)	3718(50)	1352(32)	4940(22)	90(11)
C (11)	4729(41)	2148(36)	5291(22)	139(16)

^{*a*} Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Table 4. Selected Bond Lengths (Å), Bond Angles (deg), and Torsion Angles for $[Pd([16]aneSe_4)]^{2+}$ with Esd's in Parentheses

Pd-Se(1)	2.435(2)	Pd-Se(5)	2.428(1)
Pd-Se(1A)	2.435(2)	Pd-Se(5A)	2.428(1)
Se(1) - C(2)	1.955(10)	Se(1)-C(8A)	1.950(9)
C(2) - C(3)	1.498(13)	C(3) - C(4)	1.502(13)
C(4) - Se(5)	1.958(10)	Se(5) - C(6)	1.947(10)
C(6) - C(7)	1.550(16)	C(7) - C(8)	1 501(14)
C(8) = Se(1A)	1 950(9)	P(1) - F(1)	1.493(14)
P(1) - F(2)	1 504(9)	P(1) - F(3)	1 480(19)
P(1) - F(4)	1.536(11)	P(1) - F(5)	1.400(19) 1.417(19)
P(1) - F(6)	1.503(17)	N(10) - C(10)	1.102(17)
C(10) - C(11)	1.505(17) 1.465(19)	(10) C(10)	1.102(17)
C(10) C(11)	1.405(17)		
Se(1) - Pd - Se(5)	88.9 (1)	Se(1)-Pd-Se(1A)	180.0(1)
Se(5) - Pd - Se(1A)	91 .1(1)	Se(1)-Pd-Se(5A)	91 .1(1)
Se(5)-Pd- $Se(5A)$	180.0(1)	Se(1A) - Pd - Se(5A)	88.9(1)
Pd-Se(1)-C(2)	106.6(3)	Pd-Se(1)-C(8A)	103.2(3)
$\mathbf{C}(2) - \mathbf{Se}(1) - \mathbf{C}(\mathbf{8A})$	93.8(4)	Se(1) - C(2) - C(3)	114.8(7)
C(2) - C(3) - C(4)	115.0(8)	C(3) - C(4) - Se(5)	114.1(7)
Pd-Se(5)-C(4)	104.8(3)	Pd-Se(5)-C(6)	104.0(3)
C(4) - Se(5) - C(6)	93.3(4)	Se(5) - C(6) - C(7)	110.8(7)
C(6) - C(7) - C(8)	116.3(8)	C(7) - C(8) - Se(1A)	112.7(7)
F(1) - P(1) - F(2)	88.3(7)	F(1) - P(1) - F(3)	176.0(10)
F(2) - P(1) - F(3)	93.5(7)	F(1) - P(1) - F(4)	92.7(7)
F(2) - P(1) - F(4)	175.1(7)	F(3) - P(1) - F(4)	85.3(8)
F(1) - P(1) - F(5)	92.4(11)	F(2) - P(1) - F(5)	96.9(8)
F(3) - P(1) - F(5)	90.9(12)	F(4) - P(1) - F(5)	87.8(8)
F(1) - P(1) - F(6)	89.2(9)	F(2) - P(1) - F(6)	84.3(7)
F(3) - P(1) - F(6)	87.5(10)	F(4) - P(1) - F(6)	91.0(7)
F(5) - P(1) - F(6)	178.1(11)	N(10) - C(10) - C(11)	179.0(15)
$C(0,\mathbf{A}) = \mathbf{C}_{0}(1)$	C(2) $C(2)$		170 (
C(8A) = Se(1)	-C(2)-C(3)		1/0.6
Se(1) = C(2) = C(2)	C(3) - C(4)	-	-/3.5
C(2) = C(3) = C	(4) - Se(5)		/0.0
C(0) = Se(5) = 0	C(4) = C(3)	-	1/5.8
C(4) = Se(3) = C(7)	U(0) = U(7)	-	1/3.1
C(8) - C(7) - C	C(7) = Se(5)	-	-43.9
Se(IA) = C(8)	-C(7)-C(0)	、 、	-42.0
C(2A) = C(2A)	e(IA) = C(ZA)		170.8
C(3A) = C(2A)	-Se(IA) - C	(0) -	1/0.0
C(4A) = C(3A) Se(5A) = C(4A)	-C(2A) - Se	(1A) (2A)	13.3
C(3A) = C(4A)	S = C(SA) = C	$(2\mathbf{A})$	- / 0.0
C(3A) = C(4A)	-Se(JA) - C	(0A)	1721
C(7A) = C(0A) Se(5A) = C(6A)) = C(7A) = C	(7A) (8A)	120
C(2) - Se(1) - C(0A)	C(8∆)-C(7∧	(0 n)	1708
$C(\Delta) = SC(1) = C(2 \wedge 1)$	C(0A) = C(7A)	9 (1)	170.0
	, CON)-SE	(1)	+∠.0

(b) Synthesis of $[Pt([16]aneSe_4)](PF_6)_2$. Method (a) was followed, using $PtCl_2$ (24 mg, 0.09 mmol), [16]aneSe_4 (43 mg, 0.09 mmol), and $TlPF_6$ (62 mg, 0.18 mmol). The product was isolated as colorless

Table 5. Selected Bond Lengths (Å), Angles (deg), and Torsion Angles (deg) for $[Pt([16]aneSe_4)]^{2+}$ with Esd's in Parentheses

Highes (deg) for		with Louis in rate	luieses
Pt-Se(1)	2.420(3)	Pt-Se(5)	2.417(3)
Pt-Se(1A)	2.420(3)	Pt-Se(5A)	2.417(3)
Se(1)-C(2)	1.921(25)	Se(1) - C(8A)	1.919(32)
C(2) - C(3)	1 460(35)	C(3) - C(4)	1 521(30)
C(4) - Se(5)	1.100(33) 1.931(27)	Se(5) - C(6)	1.921(30) 1.943(21)
C(4) = C(7)	1.051(27) 1.462(43)	C(7) - C(8)	1.545(21) 1.504(33)
C(0) = C(1)	1.402(43) 1.010(32)	P(1) = F(1)	1.30+(33) 1.406(32)
P(1) = F(2)	1.919(32) 1.456(35)	P(1) = F(2)	1.490(32)
F(1) = F(2) P(1) = F(4)	1.430(33) 1.511(39)	P(1) - F(3) P(1) - F(5)	1.442(40)
P(1) = F(4)	1.311(38)	P(1) = F(5)	1.502(39)
P(1) - F(0)	1.485(38)	N(10) = C(10)	1.195(52)
C(10) - C(11)	1.365(57)		
Se(1) - Pt - Se(5)	88.8(1)	Se(1)-Pt-Se(1A)	180.0(1)
Se(5) - Pt - Se(1A)	A) $91.2(1)$	Se(1) - Pt - Se(5A)	91.2(1)
Se(5) - Pt - Se(5A)	A) 180.0(1)	Se(1A) - Pt - Se(5A)	88.8(1)
Pt - Se(1) - C(2)	106.5(7)	Pt-Se(1)-C(8A)	101.9(7)
C(2) - Se(1) - C(8)	BA) 96.1(12)	Se(1) - C(2) - C(3)	117.1(22)
C(2) - C(3) - C(4)	1157(19)	C(3) - C(4) - Se(5)	113 3(17)
Pt - Se(5) - C(4)	105 0(8)	Pt = Se(5) = C(6)	104 1(8)
C(4) = Se(5) = C(f)	94.4(11)	Se(5) - C(6) - C(7)	113 8(19)
C(6) - C(7) - C(8)	1129(22)	C(7) - C(8) - Se(1A)	116.0(24)
E(0) = E(1) - E(2)	01.3(18)	E(1) - P(1) - E(3)	175 3(21)
F(1) = F(1) = F(2) F(2) = P(1) = F(3)	028(18)	F(1) = F(1) = F(3) F(1) = F(4)	80 8(17)
F(2) = F(1) = F(3) F(2) = D(1) = F(3)	170 2(10)	F(1) = F(1) = F(4) F(2) = P(1) = F(4)	96 1 (10)
$\Gamma(2) = \Gamma(1) = \Gamma(4)$ $\Gamma(1) = \Gamma(1) = \Gamma(5)$	1/0.J(10) 95 5(10)	$\Gamma(3) = \Gamma(1) = \Gamma(4)$ $\Gamma(2) = D(1) = \Gamma(5)$	100 7(10)
F(1) = F(1) = F(3) F(3) = D(1) = F(5)	03.3(19) 01.5(22)	$\Gamma(2) = \Gamma(1) = \Gamma(3)$ $\Gamma(4) = \Gamma(1) = \Gamma(5)$	100.7(19)
F(3) = F(1) = F(3) F(1) = F(1) = F(3)	91.5(22)	F(4) = P(1) = F(5) F(2) = P(1) = F(5)	80.0(20)
F(1) = P(1) = F(0) F(2) = P(1) = F(0)	91.9(19)	F(2) = P(1) = F(0)	85.8(20)
F(3) = P(1) = F(6)	90.6(21)	F(4) - P(1) - F(0)	93.0(19)
F(5) - P(1) - F(6)	173.1(19)	N(10) - C(10) - C(11)	.) 173.1(40)
C(8A) - Se	e(1) - C(2) - C(3)		168.8
Se(1) - C(2)	2) - C(3) - C(4)		-72.0
C(2) - C(3))-C(4)-Se(5)		74.8
C(6) - Se(2)	5) - C(4) - C(3)	-	-176.1
C(4) - Se(2)	5) - C(6) - C(7)		-172.2
C(8) - C(7)	D = C(6) = Se(5)		-45.1
Se(1A) = C	C(8) - C(7) - C(6)		-43.5
C(2A) - Se	$(1\Delta) - C(8) - C(7)$) .	-169.5
C(3A) - C(3A)	$(2\Delta) - Se(1\Delta) - C(2\Delta)$	/ (8) -	-168.8
C(3A) = C	(2A) = C(2A) = Se(1A)	(1 4)	72.0
$Se(5\Delta) = C$	C(2A) - C(3A) - C(3A	(7)	-74.8
$C(3\Delta) = C$	$(4\Delta) - Se(5\Delta) - C($	(<u>2</u> n)	1761
C(3A) = C	$(\pi \Lambda) = Se(J\Lambda) = C(J\Lambda) = C(J$		172.2
	$(0A)^{-3} = 3 = (3A)^{-1} = C(3A) = $	(TA)	1/2.2
C(7A) C	(0A) = C(7A) = C(7A)	(on)	43.1
C(A) = C	(0A) = Se(1) = C(2)) (1)	109.5
C(0A)-C	$(/A) - C(\delta A) - Se(\delta A)$	(1)	43.5

crystals. Anal. Calcd for $C_{12}H_{24}F_{12}P_2PtSe_4$: C, 14.9; H, 2.50. Found: C, 14.7; H, 2.26. FAB mass spectrum (3-NOBA matrix) *m/z*: found M⁺ = 825, 679; calculated for [¹⁹⁵Pt([16]aneSe_4)PF_6]⁺ M⁺ = 826, [¹⁹⁵Pt([16]aneSe_4)]⁺ M⁺ = 681. UV/visible spectrum (MeCN solution): $\lambda_{max} = 253$ nm ($\epsilon_{max} = 23570$ dm³ mol⁻¹ cm⁻¹), 341 (817). ¹³C{¹H} NMR spectrum (90.53 MHz, (CD₃)₂CO, 300 K): 33.1, 33.0, 32.9, 31.7, 31.0, 27.5, 27.3, 23.9, 23.5 ppm. ⁷⁷Se{¹H} NMR spectrum: (68.68 MHz, CD₃CN, 300 K) 187, 147 ppm; (Me₂CO, 185 K): 188 ppm. ¹⁹⁵Pt NMR spectrum: (77.4 MHz, MeCN, 300 K) –4568, -4587, -4676 ppm; (Me₂CO, 280 K) –4594, -4614, -4594 ppm; (Me₂CO, 210 K) –4750 ppm ($w_{1/2}$ ca. 240 Hz). IR spectrum (Nujol mull): 2724 m, 1299 m, 1266 w, 1226 w, 1154 w, 1076 w, 995 w, 839 vs, b, 557 vs cm⁻¹.

(c) Single-Crystal X-ray Analyses. Single crystals of both complexes were obtained by slow diffusion of Et₂O into MeCN solutions of the complexes. The selected crystals were mounted onto quartz glass fibers with epoxy resin and coated with epoxy to inhibit desolvation and crystal decomposition during data collection. The accurate unit cell parameters were obtained by a least-squares analysis of 18–25 centered reflections. Data for both were collected on a Siemens P4/ PC diffractometer using graphite-monochromated Mo-K_{α} radiation. A summary of the crystallographic data and data collection and refinement parameters is given in Table 1. Two standard reflections were monitored every 50 reflections. For the Pd(II) complex, these reflections showed no significant variation over the data collection whereas,

(16) SHELXTL version 4.2, Siemens X-ray Analytical Instruments, 1991.

Selenoether Macrocyclic Chemistry

for the Pt(II) complex, there was a progressive reduction in the intensity of the reflections and the collection was terminated when the count rate had fallen to *ca.* 30% of the original. The data sets were corrected for absorption, and both structures were solved by direct methods. For the Pd(II) structure, all non-H atoms were refined anisotropically; for the Pt(II) complex, because of the reduced data set, only the Pt, Se, P, and F atoms were refined anisotropically. The H atoms, with the exception of those of the MeCN solvent (which were located from a ΔF map), were placed in calculated positions and allowed to ride on their parent carbon atoms with isotropic thermal parameters U(H) = $1.2U_{eq}(C)$. In both structures the PF₆⁻ anions are disordered and consequently display high thermal anisotropy; alternative partial occupancy locations for the F atoms could not be identified.

As the truncated data set for the Pt(II) complex (before the crystal decomposed) confirmed the structure to be isomorphous with that of the Pd(II) complex, including, as well, the position and orientation of the MeCN solvent molecules, a further data collection with a new crystal was not deemed necessary.

Fractional atomic coordinates and equivalent isotropic displacement coefficients for the Pd(II) and Pt(II) complexes are given in Tables 2 and 3. Selected bond lengths, angles, and torsion angles are given in Tables 4 and 5.

(d) Synthesis of [Pd(MeSeCH₂CH₂CH₂SeMe)₂](PF₆)₂. Method (a) was followed, using PdCl₂ (39 mg, 0.22 mmol), MeSeCH₂CH₂CH₂-SeMe (101 mg, 0.439 mmol), and TlPF₆ (153 mg, 0.438 mmol). The product was isolated as a yellow solid. Anal. Calcd for C₁₀H₂₄F₁₂P₂-PdSe₄: C, 14.0; H, 2.8. Found: C, 13.8; H, 1.81. FAB mass spectrum (3-NOBA matrix), *m/z*: found M⁺ = 713, 568; calculated for [¹⁰⁶Pd-(MeSeCH₂CH₂CH₂SeMe)₂PF₆]⁺ M⁺ = 711, [¹⁰⁶Pd(MeSeCH₂CH₂CH₂CH₂SeMe)₂]⁺ M⁺ = 566. UV/visible spectrum (MeCN solution): $\lambda_{max} = 321$ nm ($\epsilon_{mol} = 18$ 800 dm³ mol⁻¹ cm⁻¹), 361 sh (*ca.* 12 650). ¹H

NMR spectrum (300 MHz, CD₃CN, 300 K): 3.0 (SeCH₂, 8H), 2.5 (Me, 12H), 2.2 ppm (CH₂CH₂CH₂, 4H). $^{13}C{^1H}$ NMR spectrum (90.53 MHz, CD₃CN, 300 K): 29.6 (SeCH₂, 4C), 24.6 (Me, 4C), 12.4 ppm (CH₂CH₂CH₂, 2C). 77 Se NMR spectrum (68.68 MHz, CD₃CN): (300 K) 132 ppm; (255 K) 135, 132, 128, 118 ppm; (200 K) 124 ppm. IR spectrum (Nujol mull): 2723 m, 1413 m, 1295 m, 1278 m, 1257 m, 1172 m, 1009 w, 926 m, 834 vs, b, 556 vs cm⁻¹.

(e) Synthesis of [Pt(MeSeCH₂CH₂CH₂CH₂SeMe)₂](PF₆)₂. Method (a) was followed, using PtCl₂ (184 mg, 0.69 mmol), MeSeCH₂CH₂CH₂-SeMe (320 mg, 1.4 mmol), and TlPF₆ (485 mg, 1.4 mmol). The product was isolated as a pale yellow solid (37%). Anal. Calcd for C₁₀H₂₄-F₁₂P₂PtSe₄: C, 12.7; H, 2.5. Found: C, 12.8; H, 1.80. UV/visible spectrum (MeCN solution): $\lambda_{max} = 245$ nm ($\epsilon_{mol} = 17400$ dm³ mol⁻¹ cm⁻¹), 261 sh (*ca.* 12 900), 284 sh (*ca.* 7600). ¹H NMR spectrum (300 MHz, CD₃CN, 300 K): 3.3 (SeCH₂, 8H), 2.6 (Me, 12H), 2.2 ppm (CH₂CH₂CH₂, 4H). ¹³C{¹H} NMR spectrum (90.53 MHz, CD₃CN, 300 K): 128.3, 127.3 ppm. ¹⁹⁵Pt NMR spectrum (68.68 MHz, CD₃CN): (300 K) - 4677 (major), -4663, -4657 ppm; (185 K) -4676 (major), -4663, -4653 ppm. IR spectrum (Nujol mull): 2724 m, 1413 m, 1294 m, 1278 m, 1259 m, 1177 w, 1010 m, 927 m, 835 vs, b, 557 vs, 442 w cm⁻¹.

Acknowledgment. We thank Johnson Matthey plc for loans of platinum metal salts.

Supplementary Material Available: Tables of anisotropic thermal parameters and hydrogen positions for $[M([16]aneSe_4)](PF_6)_2^2MeCN$, M = Pd, Pt (2 pages). Ordering information is given on any current masthead page.

IC940455N