Synthesis, Spectroscopic, and Structural Studies of Diarsine Complexes of Nickel(III) Iodide

William Levason* and Stephen R. Preece

Department of Chemistry, University of Southampton, Southampton SO9 5NH, U.K.

Received November 10, 1994

Introduction

The formation of nickel(III) and nickel(IV) complexes [Ni- $(L-L)_2X_2]^{+/2+}$ (X = Cl or Br) with alkyl-substituted diphosphine and diarsine ligands including o-C₆H₄(AsMe₂)₂, o-C₆H₄(PMe₂)₂, $o-C_6F_4(AsMe_2)_2$, and $o-C_6F_4(PMe_2)_2$ has long been known,¹⁻³ and more recently detailed spectroscopic⁴⁻⁸ and structural⁸⁻¹¹ studies have confirmed the high oxidation states of nickel present. While the stabilities appear to vary little between the corresponding chloro and bromo complexes, no iodo analogues have been reported, and the combination of strongly oxidising metal centers with soft reducing iodide ligands seems unfavorable. Indeed we¹² demonstrated that reaction of [Ni(L-L)₂- Cl_2 ^{+/2+} with I⁻ or of [Ni(L-L)₂I₂] with I₂ afforded nickel(II) polyiodides such as [Ni(L-L)₂](I₃)₂ or [Ni{o-C₆H₄(PMe₂)₂]₂]-I10. However two nickel(III) iodo complexes with tertiary phosphines have been obtained, which contain the only known examples of nickel(III)-iodine bonds. [Ni(PMe₃)₂I₃] which was crystallographically characterized, was made by reaction of [{Ni- $(\mu$ -Bu₂As)(PMe₃)₂ with I₂,¹³ and both it and [Ni(PMe₂Ph)₂I₃] are formed from the appropriate R₃PI₂ and nickel powder.¹⁴ In view of this we have re-examined the oxidation of some iodonickel(II) diarsine and diphosphine complexes, and report the results below.

Results and Discussion

Brown [Ni(L-L)₂I₂] (L-L = o-C₆H₄(AsMe₂)₂ or o-C₆F₄-(AsMe₂)₂),^{1,11} suspended in 40% HBF₄ at 0 °C, turned bright green on dropwise treatment with concentrated HNO₃. The green solids were identified as the nickel(III) complexes [Ni-(L-L)₂I₂]BF₄ by analysis and IR spectroscopy (Experimental Section). The solids were stable at room temperature for some days but decomposed slowly in solution in chlorocarbons and MeCN. The complexes are paramagnetic with $\mu_{eff} = 1.95 \pm 0.2$

- (1) Nyholm, R. S. J. Chem. Soc. 1950, 2061. Harris, C. M.; Nyholm, R. S.; Phillips, D. J. J. Chem. Soc. 1960, 4370.
- (2) Warren, L. F.; Bennett, M. A. Inorg. Chem. 1976, 15, 3126.
- (3) Higgins, S. J.; Levason, W. Inorg. Chem. 1985, 24, 1105. Gray, L. R.; Higgins, S. J.; Levason, W.; Webster, M. J. Chem. Soc., Dalton Trans. 1984, 459.
- (4) Manoharan, P. T.; Rogers, M. T. J. Chem. Phys. 1970, 53, 1682.
- (5) Bernstein, P. K.; Gray, H. B. Inorg. Chem. 1972, 11, 3035.
- (6) Sethulakshmi, C. N.; Subramainan, S.; Bennett, M. A.; Manoharan, P. T. Inorg. Chem. 1979, 18, 2520.
- (7) Chandramouli, G. V. R.; Manoharan, P. T. Inorg. Chem. 1987, 26, 3291.
- (8) Higgins, S. J.; Levason, W.; Feiters, M. C.; Steel, A. T. J. Chem. Soc., Dalton Trans. 1986, 317.
- (9) Kreisman, P. K.; Rodley, G. A.; Marsh, R.; Gray, H. B. Inorg. Chem. 1972, 11, 3040.
- (10) Mahadevan, C.; Seshasayee, M.; Ramakrishna, B. L.; Manoharan, P. T. Acta Crystallogr., Sect. C 1985, 41, 38.
- (11) Hanton, L. R.; Evans, J.; Levason, W.; Perry, R. J.; Webster, M. J. Chem. Soc., Dalton Trans. **1991**, 2039.
- (12) Gray, L. R.; Higgins, S. J.; Levason, W.; Webster, M. J. Chem. Soc., Dalton Trans. 1984, 1433.
- (13) Chandler, D. J.; Jones, R. A.; Whittlesey, B. R. J. Coord. Chem., 1987, 16, 19.
- (14) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1993, 2875.

Figure 1. EPR spectrum of powdered $[Ni{o-C_6H_4(AsMe_2)_2}_2]_2]BF_4$ at room temperature. $g_1 = 2.194$, $g_2 = 2.131$, and $g_3 = 2.016$.

Figure 2. UV-visible spectrum of $[Ni{o-C_6H_4(AsMe_2)_2}_2I_2]BF_4$ in CH_2Cl_2 solution.

 $\mu_{\rm B}$ as expected for low-spin d⁷ complexes of this type,¹⁻³ and have rhombic EPR spectra, similar to those^{4,5} of [Ni{o-C₆H₄(AsMe₂)₂}₂Cl₂]⁺. Figure 1 shows a typical example. The complexes exhibit irreversible reductions in CH₂Cl₂ solution at +0.64 V (L-L = o-C₆H₄(AsMe₂)₂) and +0.52 V (o-C₆F₄-(AsMe₂)₂) vs the Fc/Fc⁺ couple at +0.57V, but in contrast to the chloride and bromide analogues^{2,8,11} there was no evidence for reversible Ni^{III}/Ni^{IV} couples at more positive potentials. The UV-visible spectra in CH₂Cl₂ (Figure 2) are similar in profile to those^{3,7,11} of other [Ni(L-L)₂X₂]⁺ complexes, which confirms the *trans* (D_{2h}) geometry.

Surprisingly, attempts to make the diphosphine analogues [Ni- $\{o-C_6H_4(PMe_2)_2\}_2I_2]BF_4$ or $[Ni(Me_2PCH_2CH_2PMe_2)_2I_2]BF_4$ were unsuccessful. When the corresponding orange nickel(II) complexes¹² were suspended in aqueous HBF₄, they rapidly turned yellow, the products being identified as [Ni(L-L)₂][BF₄]₂ by comparison of their spectra with those of genuine samples. Addition of nitric acid to this mixture resulted in the formation of diiodine and polyiodides of nickel(II).¹² Addition of a 1:1 mixture of concentrated HNO₃-H₂O to powdered [Ni{o-C₆H₄- $(PMe_2)_2\}_2I_2$] at 0 °C produced a transient green color, which changed in seconds to brown-black. It seems that the diphosphine complexes are more soluble in the aqueous acids with some liberation of iodide ions which prevents the isolation of the nickel(III) complexes, whereas the diarsine complexes are essentially insoluble in aqueous HBF4, and the iodide remains associated with the nickel center allowing oxidation to nickel-(III).¹⁵ In support of this hypothesis an MeCN solution of [Ni- $\{o-C_6H_4(AsMe_2)_2\}_2I_2]BF_4$ immediately turned brown on addi-

⁽¹⁵⁾ The X-ray structure of [Ni{o-C₆H₄(AsMe₂)₂]₂I₂] reveals a square planar NiAs₄ unit with weakly associated iodides completing a very distorted octahedron d(Ni-I) = 3.21 Å. Stephenson, N. C. Acta Crystallogr. **1964**, 17, 592.

Table 1. Ni K-Edge EXAFS and Relevant Crystallographic Data

compound	d(Ni-As)/Å ^a	2σ²/Ų ^b	d(Ni-I)/Å	$2\sigma^2/\text{\AA}^2$	FI ^c	R^d
$[Ni\{o-C_6H_4(AsMe_2)_2\}_2I_2]$	2.301(2)	0.007(02)			5.1	28.7
$[Ni{o-C_6H_4(AsMe_2)_2}_2I_2]BF_4$	2.369(2)	0.008(02)	2.745(7)	0.017(1)	4.5	28.0
$[Ni{o-C_{6}F_{4}(AsMe_{2})_{2}}_{2}I_{2}]$	2.290(2)	0.004(01)			2.1	20.6
$[Ni{o-C_{6}F_{4}(AsMe_{2})_{2}}_{2}I_{2}]BF_{4}$	2.336(1)	0.008(01)	2.697(10)	0.034(3)	1.9	20.0
$[Ni{o-C_{6}H_{4}(AsMe_{2})_{2}}_{2}I_{2}]^{ef}$	2.293(4)		3.215(2)			
$[Ni{o-C_{6}H_{4}(AsMe_{2})_{2}}_{2}Cl_{2}]ClO_{4}^{e,g}$	2.342(2)		2.425(5) (Ni-Cl)			
$[Ni{o-C_{6}F_{4}(AsMe_{2})_{2}}_{2}Br_{2}]BF_{4}^{e,h}$	2.337(2)		2.543(1) (Ni-Br)			
$[Ni(PMe_3)_2I_3]^{e,i}$			2.543(10)			

^a Standard deviations in parentheses. Note that systematic errors in bond distances arising from data collection and analysis procedures are *ca*. ± 0.02 Å for well-defined shells.¹⁷ ^b Debye-Waller factor. ^c Fit index defined as $\sum_{i} [(\chi^{T} - \chi^{E})k^{3}i]^{2}$. ^d R factors defined as $[f(\chi^{T} - \chi^{E})k^{3}dk]/\chi^{E}k^{3}dk]$ $\times 100\%$. The relatively high FI's and R factors are a reflection of the features >3 Å in the Fourier transforms which correspond to carbon shells in the ligand. These cannot be adequately modeled. ^e X-ray crystallographic data from reference given. ^f Reference 15. ^g Reference 9. ^h Reference 11. ⁱ Reference 13.

tion of a solution of Bu₄NI, and the UV-visible spectrum of this solution resembled that¹² of $[Ni{o-C_6H_4(AsMe_2)_2}][I_3]_2$.

Attempts to grow crystals of the nickel(III) complexes were unsuccessful,¹⁶ but the first coordination sphere bond-lengths were readily obtained via nickel K-edge EXAFS (extended X-ray absorption fine structure) data, as we have shown for other nickel(III) and nickel(IV) complexes.^{8,11} Nickel K-edge data were collected for both nickel(III) complexes and for the nickel-(II) precursors, the latter serving as model systems. The best fits are given in Table 1 along with relevant X-ray crystallographic data for comparison, and an example of the spectra is shown in Figure 3. For the nickel(II) complexes attempts to add a second shell corresponding to the long Ni[•]I contacts¹⁵ failed. Statistically this second shell was not a significant component of the back-scattering,¹⁷ and these two complexes were adequately modeled by a single shell of four arsenics. For the [Ni(L-L)₂I₂]BF₄ complexes a two-shell model of 4As and 2I gave a good fit to the data. The d(Ni-As) distances in the nickel(III) iodocomplexes (ca. 2.35 Å) are in excellent agreement with the corresponding bond lengths determined crystallographically in chloride or bromide analogues (Table 1). The only literature Ni^{III}-I bond lengths are in the distorted trigonal bipyramidal [Ni(PMe₃)₂I₃] (2.54 Å average), whereas in the present *trans* octahedral complexes d(Ni-I) is *ca*. 2.73 Å. In D_{2h} symmetry the d-orbital occupancy is $(d_{xy}, d_{xz}, d_{yz})^6 (d_z^2)^1 (d_x^2 - y^2)^0$, and the resulting Jahn-Teller distortion produced long axial Ni-X halide bonds in the corresponding chlorides (*ca*. 2.42 Å) and bromides (*ca*. 2.54 Å). On this basis the d(Ni-I) bonds of *ca*. 2.73 Å appear eminently reasonable and provide strong confirmatory evidence for the presence of a tetragonally distorted nickel(III) environment.¹⁸

Experimental Section

Physical measurements were made as described previously.¹⁹ EX-AFS data at the Ni K-edge were collected in transmission mode on Station 7.1 at the Daresbury Synchrotron Source from samples diluted with BN. Details of the data collection and treatment are described elsewhere.^{20,21} The Ni(III) samples were freshly prepared and stored below 0 °C before data collection. After data collection the samples

⁽¹⁶⁾ This is to be expected in view of the relative solution instability of the complexes. On one occassion brown crystals of [Ni{o-C₆H₄-(AsMe₂)₂]₂I₂] deposited from the green solution of [Ni{o-C₆H₄-(AsMe₂)₂]₂I₂]BF₄ in MeCN/diethyl ether.

⁽¹⁷⁾ The statistical tests, errors, and resolution limits are discussed in Hasnain, S. S., Ed. XAFS; Ellis Horwood: New York, 1991; Chapter 195.

⁽¹⁸⁾ Steel, A. T.; Feiters, M. C.; Garner, C. D.; Hasnain, S. S.; Higgins, S. J.; Levason, W. J. Chem. Soc., Chem. Commun. 1985, 484.

⁽¹⁹⁾ Cipriano, R. A.; Levason, W.; Mould, R. A. S.; Pletcher, D.; Webster, M. J. Chem. Soc., Dalton Trans. 1990, 2609.

⁽²⁰⁾ Corker, J. M.; Evans, J.; Levason, W.; Spicer, M. D.; Andrews, P. Inorg. Chem. 1991, 30, 331.

were extracted from the BN with dry CH_2Cl_2 and their integrity checked by recording their UV-visible spectra.

Preparation of trans-[Ni{o-C₆H₄(AsMe₂)₂}₂I₂]BF₄. The powdered [Ni{o-C₆H₄(AsMe₂)₂}₂I₂]¹ (0.18 g, 0.19 mmol) was suspended in 40% HBF₄ (15 cm³) at 0 °C and concentrated HNO₃ (1 cm³ in total) added dropwise with vigorous stirring. The color of the suspension changed from brown to green, and the product was filtered off, washed with diethyl ether (2 × 5 cm³), and dried *in vacuo*. Yield: 80%. Anal. Calcd for [Ni{o-C₆H₄(AsMe₂)₂]₂I₂]BF₄ (C₂₀H₃₂As₄BF₄I₂Ni): C, 24.7; H, 3.3. Found: C, 24.9; H, 3.5. IR (Nujol mull): 1080, 620 cm⁻¹ (BF₄). $\mu = 1.94 \mu_B$. $\Lambda_M (10^{-3} \text{ mol } dm^{-3} \text{ MeNO}_2, 293 \text{ K}) = 94 \Omega^{-1}$

cm² mol⁻¹. $E_{max}/10^3$ cm⁻¹ (ϵ_{mol}/dm^3 mol⁻¹ cm⁻¹) in CH₂Cl₂: 30.8 (5100), 25.1 (2700), 16.7 (sh). EPR: $g_1 2.194$, $g_2 2.131$, $g_3 2.016$. trans-[Ni{o-CsF4(AsMe₂)₂]₂I₂]BF4 was made similarly. Anal. Calcd for C₂₀H₂₄As₄BF₁₂I₂Ni: C, 21.5; H, 2.2. Found: C, 21.8; H, 2.3. IR (Nujol mull): 1060, 616 cm⁻¹ (BF4). $\mu = 1.97 \mu_B$. Λ_M (10⁻³ mol dm⁻³ MeNO₂, 293 K) = 73 Ω^{-1} cm² mol⁻¹. $E_{max}/10^3$ cm⁻¹ (ϵ_{mol}/dm^3 mol⁻¹ cm⁻¹) in CH₂Cl₂: 30.1 (1710), 25.2 (2210), 22.9(sh), 19.4 (290). EPR: $g_1 2.132$, $g_2 2.086$, $g_3 2.064$.

Acknowledgment. We thank the SERC for support and the Director of the Daresbury Laboratory for the provision of facilities for the EXAFS studies.

IC941304N

⁽²¹⁾ Champness, N. R.; Levason, W.; Pletcher, D.; Spicer, M. D.; Webster, M. J. Chem. Soc., Dalton Trans. 1992, 2201.