Study on an Assembly System Including Tetrathiovanadate. Syntheses and Structural Characterizations of V₂Cu₂S₄ Cubane-like Clusters and VS₄Cu₄ Bimetallic Aggregates

Qiutian Liu,* Yu Yang, Liangren Huang, Daxu Wu, Beisheng Kang, Changneng Chen, Yuheng Deng, and Jiaxi Lu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China, and State Key Laboratory of Coordination Chemistry, Nanjing, Jiangsu 210008, China

Received June 3, *1994@*

The reaction system $(NH_4)_3VS_4/CuCl/R_2dtcNaPhSNa$ in DMF affords two types of V/Cu/S complexes. One is the VS₄Cu₄ complex $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^{3-}$ (R₂ = Et or OC₄H_s; n =0, 1, or 2), the other one is the cubanelike cluster $[V_2Cu_2S_4(R_2dtc)_2(PhS)_2]^{2-}$ $(R_2 = Me_2, OC_4H_8)$. $(Et_4N)_2[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]$ crystallizes in the monoclinic space group C2/c with $a = 20.219(10)$ Å, $b = 14.972(13)$ Å, $c = 18.027(9)$ Å, $\beta = 109.03(4)^\circ$, $V = 5158.7$ Å³, and $Z = 4$. With use of 1797 unique data $(I > 3\sigma(I))$ the structure was refined to $R = 0.060$. The dianion contains a $V_2Cu_2S_4$ cuboidal core and a butterfly array of four metal atoms with a V-V single bond. $(Et_4N)_3[VS_4Cu_4(OC_4H_8dtc)(PhS)_3]$ crystallizes in the orthorhombic space group $P2_12_12_1$ with $a = 16.917(5)$ Å, $b = 25.996(13)$ Å, $c = 14.937(9)$ Å, $V = 6568.5$ Å³ and $Z = 4$. With use of 2793 unique data $(I > 3\sigma(I))$, the structure was refined to $R = 0.059$. $(Et_1N)_3[VS_4Cu_4(Et_2dtc)(PhS)_3]$ crystallizes in the triclinic space group P1 with $a = 10.391(2)$ \AA , $b = 12.391(4)$ \AA , $c = 12.586(5)$ \AA , $\alpha = 78.67(3)^\circ$, $\beta = 82.48(2)^\circ$, $\gamma = 81.59(2)^\circ$, $V =$ 1563.1 \AA^3 , $Z = 1$, and $R = 0.039$ using 4538 reflections $(I > 3\sigma(I))$. (Et_aN)₃[VS_aCu₄(OC_aH_sdtc)₂(PhS)₂] crystallizes in the orthorhombic space group $Pna2_1$ with $a = 24.333(7)$ \AA , $b = 17.648(4)$ \AA , $c = 14.822(6)$ \AA , $V = 6364.8$ \AA^3 , $Z = 4$, and $R = 0.058$ using 2857 reflections $(I > 1\sigma(I))$. $(Et_4N)_3[VS_4Cu_4(PhS)_4]$ crystallizes in the orthorhombic space group *Pbnm* with $a = 12.207(2)$ Å, $b = 15.493(3)$ Å, $c = 32.210(5)$ Å, $V = 6092.6$ Å³, Z $= 4$ and $R = 0.060$ using 1109 reflections $(I > 3\sigma(I))$. All of the VS₄Cu₄ complexes contain a VS₄ tetrahedral core and have a nearly planar VCu₄ array. The overall symmetry of the VS₄Cu₄ unit closely approaches D_{2d} ; however, the presence of ligands lowers the symmetry of all the anions. Structural, spectral, and magnetic data indicate that the VS₄Cu₄ complexes contain metal atoms with formal oxidation levels of V(V) + 4Cu(I). ⁵¹V NMR spectra exhibit disproportion reactions caused by ligand exchange existing in the DMSO solution. With the variation of the mole ratio of $[VS_4Cu_4(PhS)_4]^{3-}$ to OC_4H_8dtcNa from 1:2 to 1:32 in DMSO solution, the complexes containing dtc ligands were detected by 5'V *NMR* spectra. This affords an evidence of the disproportions for $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^3$ (n = 1 and 2) in solution. A reaction of $[VS_4Cu_4(PhS)_4]^3$ with a large excess of PPh₃ was performed. A ⁵¹V chemical shift appearing downfield from that of $[VS_4Cu_4(PhS)_4]^{3-}$ was observed and was supposed to be associated with a skeletal conversion from VS_4Cu_4 to VS_4Cu_3 . Electrochemical studies for both two types of complexes show no reversible redox process and give a support of dissociable property of the coordinated ligand in solution.

Introduction

Studies on thiometalate and related multimetal complexes have been known for a long time. Many reports of such interesting complexes obtained from a reaction system containing thiometalate have shown their considerable versatility in molecular structure. Holm et al.¹ have reported $MS_4^{n-}/FeCl_{2-3}/$ RS^{-} (M = Mo, W, n = 2; M = V, Nb, n = 3; M = Re, n = 1) reaction systems from which $MFe₃S₄$ double cubane clusters were synthesized. Christou and Garner² have also obtained by similar means several MFe₃S₄ ($M = Mo$, W) double cubanes. Müller has studied M/Cu/S complexes³ ($M = Mo$, W, V, and Re) and reported a number set of compounds having linear, planar, cuboidal, and cage skeletons in which the thiometalate anions have been shown to act as a bidentate ligand to one to five copper (I) atoms and to remain in an unvarying tetrahedral

——————————————————————————————————

geometry. Similar research in other laboratories has also led to the characterizations of many heterometallic sulfur complexes containing the $MS₄$ (M = Mo, W, V) moiety, one of which is $VS₄Cu₆(PPh₃)₅Cl₃^{4e} having the most copper atoms. In Fujian$ Institute, Fuzhou, China, some worthwhile synthetic and structural information in the chemistry of the heterometallic sulfur complexes has been obtained. Wu and co-workers have recently synthesized several Mo/Cu/S/SR cubane clusters.⁵ Our studies on the reaction system consisting of $MS₄²⁻ (M = Mo,$ W), metal halide (metal = Fe, Cu), and R_2 dtc⁻ salt (R_2 dtc⁻ =

^{*} To whom correspondence should be addressed at the Chinese Academy of Sciences.

[@] Abstract published in *Advance ACS Abstracts,* February 1, 1995.

^{(1) (}a) Wolff, T. E.; Berg, J. M.; Hodgson, K. 0.: Frankel, R. B.; Holm, R. H. *J. Am. Chem.* Soc. **1979,** *101,* 4140. (b) Holm, R. H. *Chem.* Soc. *Rev.* **1981,** *IO,* 455 and references therein. (c) Cen, W.: Lee, S. C.; Li, J.: MacDonnell, F. M.; Holm, R. H. *J. Am. Chem.* Soc. **1993,** *115,* 9515 and references therein.

⁽²⁾ Christou, G.; Gamer, C. D. *J. Chem.* Soc., *Dalton Trans.* **1980,** 2354.

⁽³⁾ (a) Muller, **A.;** Diemann, E.: Jostes, R.; Bogge, H. *Angew. Chem., Int. Ed. Engl.* **1981,20,** 934. (b) Muller, A,; Hwang, T. K.: Bogge, H, *Angew. Chem., Int. Ed. Engl.* **1979,** *18,* 628. (c) Muller, **A,;** Bogge. H.; Schimanski, U. *Inorg. Chim. Acta* **1983,** *69,* 5. (d) Muller, **A,:** Schimanski, **U.;** Schimanski, J. *Inorg. Chirn. Acta* **1983,** *76,* L245. (e) Muller, **A.;** Krickemeyer, E.; Hildebrand, **A,;** Bogge. H.; Schneider, K.; Lemke, M. *J. Chem. Soc., Chem. Commun.* 1991, 1685. (f) Müller, **A.;** Schimanski, **J.;** Bogge, H. *Z. Anorg. Allg. Chem.* 1987, *544,* 107.

^{(4) (}a) Manoli, J. M.: Potvin, C.; Secheresse, F.; Marzak, S. *Inorg. Chim. Acta* **1988,150,257.** (b) Secheresse, F.; Bemes, S.: Robert. F.: Jeannin, Y. *J. Chem.* Soc., *Dalton Trans.* **1991,** 2875. (c) Acott, S. R.: Gamer. C. D.: Nicholson, J. R.; Clegg, W. *J. Chem.* Soc., *Dalton Trans.* **1983.** 713. (d) Nicholson, **J.** R.: Flood, **A.** C.: Garner, C. D.; Clegg, W. *J. Chem.* Soc., *Chem. Commun.* **1983,** 1179. *(e)* Scattergood, C. D.; Bonney, P. G.; Slater, J. M.; Garner, C. D.; Clegg, W. *J. Chem. Soc.*, *Chem. Commun.* **1987.** 1749.

dialkyldithiocarbamate) have reached a fairly advanced level in the last decade. Series of heterometallic sulfur complexes, such as $[MFe₃S₄(R₂dtc)₅₋₆]^{1-,0}$ (cubane-like clusters⁶), $[MCu₃S₄]$ $(R_2dtc)_3$ ²⁻ (MCu₃ planar complexes⁷), and $[S_2M_2Cu_5S_6$ - $(R_2 \text{d}t c)_{3}]^{2-}$ (defective M_2 Cu₅S₆ double cubane clusters⁸), have been obtained from the system.

As a similar and extensive study to the above $M_0S_4^{2-}$ (or $WS₄^{2–}$) system, we have recently turned our attention to an exploration of the assembly system including $VS_4^{3-}/CuCl/R_2$ dtc-. Vanadium-containing heterometallic sulfur complexes are of interest as models of the active sites in metalloenzymes⁹ to biomimetic chemists. They are also of interest to inorganic chemists, since the vanadium has until recently been little investigated in such heterometallic sulfur systems. Up to the present, only a few examples have been reported, including $V/Fe/S^{1c,10}$ and $V/Cu/S^{3f,4e,10b}$ clusters. In recent communications, we have briefly described a variety of V/S/dtc¹¹ and V/M'/ S/dtc ($M' = Cu$, Ag)¹² complexes of nuclearity 2-5. The subject of this paper is the preparation of a $V_2Cu_2S_4$ cubanelike cluster and a $VS₄Cu₄$ bimetallic aggregate from the assembly system and subsequent structural characterizations on these complexes.

Experimental Section

All manipulations were carried out under dinitrogen atmosphere using standard Schlenk techniques. The solvents were purified by conventional methods and were degassed prior to use. Compounds $(NH₄)₃VS₄^{10b}$ and PhSNa¹³ were prepared as reported. Reagents R₂dtcNa ($R_2 = Me_2$, Et₂, and OC₄H₈) were synthesized by the reaction of R_2NH , NaOH, and CS_2 in water. CuCl was purchased from Aldrich and used without further purification.

 $(Et_4N)_3[VS_4Cu_4(OC_4H_8dtc)(PhS)_3]$ (I). To a stirred slurry of $(NH₄)₃VS₄$ (0.66 g, 2.83 mmol) and CuCl (0.84 g, 8.49 mmol) in 30 mL of DMF was added a solution of OC_4H_8dtcNa (2.10 g, 11.34 mmol), PhSNa (1.50 g, 11.35 mmol), and Et₄NCl (1.88 g, 11.35 mmol) in 70 mL of DMF. The resulting solution was stirred at room temperature for 6.5 h. After filtration, the filtrate was concentrated to reduce the

- (5) (a) Zhu, N.; Zheng, Y.; Wu, X. *J. Chem. SOC., Chem. Commun.* **1990,** 780. (b) Zhu, N.; Wu, R.; Wu, X. *Acru Crystullogr.* **1991,** *C47,* 1537. *(c)* Zhu, N.; Zheng, Y.; Wu, X. *Znorg. Chem.* **1990,29,** 2707. (d) **Du, S.;** Zhu, N.; Chen, P.; Wu, X. *Polyhedron* **1992,** *IZ,* 2495.
- (6) (a) Liu, *Q.;* Huang, L.; Liu, H.; Lei, X.; Wu, D.; Kang, B.; Lu, J. *Znorg. Chem.* **1990, 29,** 4131. (b) Liu, *Q.;* Lei, X.; Huang, L.; Chen, W.; Zhao, K.; Chen, D.; Liu, H.; Lu, J. *Sci. Sin., Ser. B:* **1990, 33,** 1446. *(c)* Liu, **Q.;** Huang, L.; Lei, X.; Wang, F.; Chen, D.; Lu, J. *Sci. Sin., Ser. B:* **1991, 34,** 1036.
- **(7)** (a) Lei, X.; Liu, *Q.;* Liu, H. *Jiegou Huaxue* **1988, 7,** 99. (b) Huang, Z.; Lei, X.; Kang, B.; Liu, J.; Liu, Q.; Hong, M.; Liu, H. *Inorg. Chim. Acta* **1990, 169,** 25. *(c)* Lei, **X.;** Huang, Z.; Hong, M.; Liu, **Q.;** Liu, H. *Jiegou Huuxue* **1990, 9,** 53. (d) Liu, **J.;** Lei, X.; Kang, B.; Huang, Z.; Hong, M. *Jiegou Huaxue* **1991,** *IO,* 196.
- (8) (a) Lei, **X.;** Huang, Z.; Liu, *Q.;* Hong, M.; Liu, H. *Inorg. Chem.* **1989, 28,** 4302. (b) Lei. **X.;** Huang, Z.; Liu, Q.; Hong, M.; Liu, H. *Znorg, Chim. Acra* **1989,** *164,* 119. (c) Liu, H.; Cao, R.; Lei, X.; Huang, Z.; Hong, M.; Kang, B. *J. Chem.* Soc., *Dalton Trans.* **1990,** 1023.
- (9) (a) Hales, **B.** J.; Case, E. E.; Momingstar, J. E.; Dzeda, M. F.; Mauterer, L. **A.** *Biochemistry* **1986, 25,** 7251. (b) Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. *Nurure* **1986, 322,** 388.
- (10) **(a)** Rauchfuss, **T.** B.; Weatherill, T. D.; Wilson, S. R.; Zebrowski, J. P. *J. Am. Chem.* SOC. **1983,** *105,* 6508. (b) **Do, Y.;** Simhon, E. D.; Holm, R. H. *Znorg. Chem.* **1985, 24,** 4635. (c) Kovacs, **J.** A,; Holm, R. H. *Znorg. Chem.* **1987, 26,** 702. (d) Kovacs, **J.** A,; Holm, R. H. *Inorg. Chem.* **1987, 26,** 711. (e) Nordlander, E.; Lee, *S.* C.; Cen, W.; Wu, Z. *Y.;* Natoli, C. R.; Cicco, **A.** D.; Filipponi, **A.;** Hedman, B.; Hodgson, K. *0.;* Holm, R. H. *J. Am. Chem. SOC.* **1993,** *115,* 5549.
- (11) (a) Yang, Y.; Huang, L. ; Liu, *Q.;* Kang, B. *Actu Crysrullogr.* **1991,** *C47,* 2085. (b) Yang, Y.; Liu, Q.; Wu, D. *Znorg. Chim. Acru* **1993, 208,** 85.
- (12) (a) Yang, Y.; Liu, *Q.;* Huang, L.; Kang, B.; Lu, J. *J. Chem. SOC., Chem. Commun.* **1992,** 1512. (b) Yang, Y.; Liu, Q.; Huang, L.; Wu, D.; Kang, B.; Lu, J. *Znorg Chem.* **1993, 32,** 5431. (c) Yang, Y.; Liu, Q. *Actu Crystallogr.* **1993, C49,** 1623.
- (13) Hagen, K. S.; Reynolds, J. G.; Holm, R. H. *J. Am. Chem. SOC.* **1981, 103,** 4054.

volume to 4 mL in vacuo and then filtered to remove the precipitates formed. A CH₃CN/(CH₃)₂CO mixed solvent (30 mL, v/v ratio 1:1) was added to the filtrate. The solution was allowed to stand for 2 days. The precipitates and inorganic salts deposited were filtered out, and small portions of $(CH₃)₂CO$ was added until black crystalline began to separate. The black-red crystals formed after leaving the filtrate for several days at 5 °C were collected, washed with $(CH₃)₂CO$, and dried in vacuo, affording 0.5 g (yield 18% based on Cu) of **I.** Anal. Calcd for C₄₇H₈₃Cu₄ON₄S₉V: C, 42.96; H, 6.37; Cu, 19.35; N, 4.26; S, 21.96; V, 3.88. Found: C, 40.65; H, 6.09; Cu, 19.09; N, 4.03; **S,** 23.92; V, 3.87. IR (KBr, cm-I): 464.6 **(s),** 546.5 (m), 696.6 **(s),** 748.2 **(s),** 782.3 **(s),** 1002.6 **(s),** 1021.8 **(s),** 1471.7 **(s),** 1574.0 **(s).** Electronic spectrum in DMSO, λ_{max} , nm (ϵ_M , M⁻¹ cm⁻¹): 268 (36 000), 288 (32 000), 350 (15 **000),** 410 (12 **000),** 520 (2700). 'H NMR (DMSO-&): 6 1.12 (CH₃, Et₄N), 3.16 (CH₂, Et₄N), 3.59 (NCH₂, dtc), 4.16 (OCH₂, dtc), 7.10 (CH₃, Et₄N), 50.0 (NC, dtc), 51.6 (CH₂, Et₄N), 65.8 (OC, dtc), 6.73 (p-H), 6.92 (m-H), 7.63 (o-H) ppm. ¹³C NMR (DMSO- d_6): δ 119.8 (p-C), 126.9 (m-C), 132.1 (o-C), 148.6 (SC, PhS), 209.3 (S₂C, dtc) ppm.

 $(Et_4N)_3[VS_4Cu_4(Et_2dtc)(PhS)_3]$ (I'). Compound I' was prepared by the same procedure as for **I** with the use of Et_2dtcNa (1.47 g, 8.58) mmol) instead of OC₄H₈dtcNa. The yield was 17% (based on Cu). Anal. Calcd for $C_{47}H_{85}Cu_4N_4S_9V$: C, 43.42; H, 6.59; Cu, 19.56; N, 4.31; **S,** 22.20; V, 3.92. Found: C, 43.03; H, 6.46; Cu, 19.40; **N,** 4.39; **S,** 22.22; V, 4.07. IR (KBr, cm-I): 462.8 **(s),** 665.8 **(s),** 747.2 **(s),** 762.0 **(s),** 998.3 **(s),** 1022.2 **(s),** 1474.1 **(s),** 1574.8 **(s).** 'H NMR 3.89 (CH₂, dtc), 6.71 (p-H), 6.91 (m-H), 7.63 (o-H) ppm. ¹³C NMR (DMSO-d₆): δ 1.12 (CH₃, Et₄N), 1.21 (CH₃, dtc), 3.14 (CH₂, Et₄N), (DMSO-&) 6 7.03 (CH3, EkN), 12.31 (CH3, dtc), 47.14 (CH2, dtc), 51.41 (CH₂, Et₄N), 119.9 (p-C), 126.9 (m-C), 132.1 (o-C), 148.1 (SC, PhS), 207.1 (CS₂, dtc) ppm.

 $(Et_4N)_2[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]$ **(II).** A mixture of $(NH_4)_3VS_4$ (0.52 g, 2.23 mmol), CuCl (0.67 g, 6.77 mmol), OC₄H₈dtcNa (1.66 g, 8.96 mmol), PhSNa (1.30 g, 9.84 mmol), and EkNC1 (1.50 g, 9.05 mmol) in 200 mL of DMF was stirred for 20 h. The solution became black-red and brown-red precipitates were observed. After filtration the filtrate was concentrated in vacuo to reduce the volume to 130 mL and then filtered. To the filtrate was added 100 mL of $CH_3CN/(CH_3)_{2}$ -CO (vlv ratio 1:l). The solution was allowed to stay for several days at room temperature, causing the separation of black prismatic crystals which were collected, washed with $(CH₃)₂CO$, and dried in vacuo (yield 0.4 g, 30% based on V). Anal. Calcd for $C_{38}H_{66}Cu_2N_4O_2S_{10}V_2$: C, 39.32; H, 5.73; Cu, 10.95; N, 4.83; **S,** 27.62; V, 8.78. Found: C, 38.22; H, 5.57; Cu, 14.12; N, 4.67; **S,** 27.86; **V,** 8.90. IR (KBr, cm-I): 353.0 **(s),** 479.4 **(s),** 540.5 (m), 692.5 **(s),** 737.2 **(s),** 778.9 **(s),** 996.1 **(s),** 1024.0 *(s),* 1468.8 **(s),** 1572 **(s).** IH NMR (DMSO-&): 6 1.16 (CH3, EkN), 3.18 (CH₂, Et₄N), 3.68 (NCH₂, dtc), 4.04 (OCH₂, dtc), 6.83 (p-H), 7.39 $(m-H)$, 7.48 $(o-H)$ ppm.

 $(Et_4N)_3[VS_4Cu_4(OC_4H_8dtc)_2(PhS)_2]$ (III). To the above filtrate from which complex **II** had been separated $5-10$ mL of $(CH_3)_2CO$ was added. After storage for several days at 4 °C, black hexagonal crystals of **111** were collected (yield 0.42 g, 31% based on Cu). Anal. **S,** 23.45; V, 3.73. Found: C, 39.88; H, 6.29; Cu, 18.30; N, 5.17; **S,** 23.25; V, 3.91. IR (KBr, cm-I): 465.0 **(s),** 546.2 (m). 694.7 **(s),** 747.7 **(s),** 782.4 **(s),** 1003.7 **(s), 1022.1 (s),** 1478.7 **(s),** 1575.0 **(s).** Electronic spectrum in DMSO, $λ_{max}$, nm ($ε_M$, M⁻¹ cm⁻¹): 268 (53 000), 290 (sh, Calcd for $C_{46}H_{86}Cu_4N_5O_2S_{10}V$: C, 40.42; H, 6.34; Cu, 18.60; N, 5.12; 40 **000),** 340 (17 **000),** 418 (15 **000).** 'H NMR (DMSO-d6): 6 1.12 (CH₃, Et₄N), 3.15 (CH₂, Et₄N), 3.59 (NCH₂, dtc), 4.16 (OCH₂, dtc), 7.08 (CH₃, Et₄N), 49.9 (NC, dtc), 51.5 (CH₂, Et₄N), 65.8 (OC, dtc), 6.73 (p-H), 6.92 (m-H), 7.63 (o-H) ppm. ¹³C NMR (DMSO- d_6): δ 119.8 (p-C), 126.9 (m-C), 132.1 (o-C), 148.4 (SC, PhS), 208.7 (CS₂, dtc) ppm.

 $(Et_4N)_3[VS_4Cu_4(PhS)_4]$ (IV). To a stirred slurry of $(NH_4)_3VS_4$ (0.66g, 2.83 mmol) and CuCl (0.84g, 8.48 mmol) in 30 mL of DMF was added a solution of PhSNa (1.50g, 11.35 mmol) and Et₄NCl (1.90g, 11.46 mmol) in 70 mL of DMF, and the mixture was stirred for 24 h. The solution became brown-red and was concentrated in vacuo to reduce the volume to 30 mL. After filtration, the filtrate was added with 40 mL of $CH_3CN/(CH_3)_2CO$ (v/v ratio 1:1) and allowed to stay for several days to cause the deposition of black precipitates which were removed by filtration. To the filtrate were added 2×20 mL

$$
{}^{a}R = \sum |F_{\circ}| - |F_{\circ}| / |\sum |F_{\circ}|.
$$
 ${}^{b}R_{w} = [\sum w(|F_{\circ}| - |F_{\circ}|)^{2}/\sum w|F_{\circ}|^{2}]^{1/2}.$

portions of $CH_3CN/(CH_3)_2CO$. The resulting solution was placed in the refrigerator for \sim 3 days to cause the separation of black cubic crystals which were collected, washed with $(CH₃)₂CO$, and dried in vacuo, affording 0.5g (19% based on Cu) of **IV.** Anal. Calcd for 4.04. Found: N, 46.69; H, 6.64; Cu, 20.93; N, 4.26; S, 20.09; V. 4.23. IR (KBr, cm-I): 353.0 **(s),** 479.4 *(s),* 540.5 (m), 695.2 **(s),** 737.2 (s), 778.9 (s), 996.1 (s), 1024.0 (s), 1468.8 (s), 1572.0 (s). Electronic spectrum in DMSO, **J.,,** nm **(c~,** M-' cm-I): 265(sh, 34 *000).* 288 (57 000), 360 (19000), 420 (sh, 11 000), 540 (1800). IH NMR (m-H), 7.64 (o-H) ppm. I3C NMR (DMSO-d6): *b* 7.08 (CH3, EhN), PhS) ppm. $C_{48}H_{80}Cu_4N_3S_8V$: C, 45.72; H, 6.40; Cu, 20.16; N, 3.33; S, 20.34; V, (DMSO-d₆): δ 1.02 (CH₃, Et₄N), 3.05 (CH₂, Et₄N), 6.75 (p-H), 6.92 51.5 (CH₂, Et₄N), 120.1 (p-C), 127.0 (m-C), 132.0 (o-C), 147.8 (SC,

 $(Et_4N)_2[V_2Cu_2S_4(Me_2dtc)_2(PhS)_2]$ **(V).** A mixture of $(NH_4)_3VS_4$ (0.60 g, 2.57 mmol), CuCl (0.51 g, 5.15 mmol), Me2dtcNa (0.74 g, 5.17 mmol), PhSNa (0.68 g, 5.15 mmol), and Et4NC1 (0.86 g, 5.17 mmol) in 100 mL of DMF was stirred for 20h. After concentration in vacuo to reduce the volume to 30 mL, the cloudy mixture was filtered. To the filtrate was added 40 mL of $CH_3CN/(CH_3)_2CO$ (v/v ratio 1:1). The resulting solution was allowed to stand for 3 days to cause the separation of dark-red microcrystals which were collected, washed with $(CH₃)₂CO$, and dried in vacuo, affording $0.31g$ (22% based on V) of **V**. The crystal structure of **V** has been reported.^{12c} IR (KBr, cm⁻¹): 359.2 (m), 480.7 (s), 695.7 (s), 740.0 (s), 779.1 (s), 994.6 (m). 1022.0 (m), 1467.9 (s), 1524.5 (s), 1571.3 **(s).**

X-ray Crystallography and Structure Solution. (a) Data Collection and Reduction. Data were collected at 23 ± 1 °C on an MSC/ Rigaku diffractometer for **I, 11,** and **111** and on an Enraf-Nonius CAD4 diffractometer for **IV** and I'. A single crystal carefully chosen for each compound was coated with epoxy resin and mounted on a glass fiber. Graphite-monochromitized Mo $K\alpha$ radiation was used for data collection and cell dimension measurements. Intensity data for all crystals were obtained with use of a ω -2 θ scan technique. Throughout the data collection three standard reflections were monitored every 250 reflections to monitor crystal and instrumental stability. LP corrections and a empirical absorption correction based on a series of ψ -scans were applied to the data. After structure refinement with isotropic thermal parameters, an empirical absorption correction using the DIFABS program¹⁴ was made for all complexes. Crystal parameters are listed in Table 1.

(b) Determination of Structures. All calculations were performed on a VAX computer using the SDP package.¹⁵ The initial structure was solved by direct methods for each complex. The major atoms were located from an E-map. Subsequent difference Fourier calculations revealed the positions of remaining non-hydrogen atoms. All non-hydrogen atoms in these complexes were refined anisotropically

Table 2. Selected Positional Parameters and Their Estimated Standard Deviations for $[Et_4N]_3[VS_4(CuSPh)_3(CuS_2CNC_4H_8O)]$

atom	х	у	z	$B, ^a$ \AA^2
v	0.9798(2)	$-0.0446(2)$	0.2949(3)	4.19(9)
Cu(1)	0.9772(2)	0.0212(1)	0.1620(2)	5.13(7)
Cu(2)	0.9232(2)	$-0.1143(1)$	0.1879(2)	4.57(7)
Cu(3)	0.9868(2)	$-0.1067(1)$	0.4312(2)	6.47(9)
Cu(4)	1.0379(2)	0.0323(1)	0.3914(2)	5.60(8)
S(1)	1.0208(4)	$-0.0602(3)$	0.1575(4)	5.0(2)
S(2)	0.8898(4)	$-0.1014(3)$	0.3311(5)	5.6(2)
S(3)	1.0799(4)	$-0.0505(2)$	0.3869(5)	5.5(2)
S(4)	0.9297(4)	0.0341(3)	0.3009(4)	5.3(2)
S(11)	0.9795(5)	0.0825(3)	0.0638(5)	7.1(2)
S(21)	0.8621(4)	$-0.1683(3)$	0.0998(5)	5.3(2)
S(31)	1.0064(7)	$-0.1540(4)$	0.5504(6)	12.0(3)
S(41)	1.0481(4)	0.0843(3)	0.5225(4)	5.1(2)
S(42)	1.1450(4)	0.0956(3)	0.3616(5)	5.3(2)
O(4)	1.269(1)	0.2154(8)	0.605(1)	$10.0(6)*$
C(11)	0.991(2)	0.059(1)	$-0.049(2)$	$6.1(7)$ *
C(12)	0.984(2)	0.008(1)	$-0.071(2)$	$6.2(7)$ *
C(13)	0.992(2)	$-0.011(1)$	$-0.161(2)$	$7.9(8)$ *
C(14)	1.009(2)	0.029(1)	$-0.231(2)$	$7.2(7)*$
C(15)	1.015(2)	0.081(1)	$-0.206(2)$	$8.0(8)*$
C(16)	1.008(2)	0.104(1)	$-0.116(2)$	$11(1)$ *
C(21)	0.907(1)	$-0.1647(9)$	$-0.010(2)$	$4.7(6)$ *
C(22)	0.854(1)	$-0.177(1)$	$-0.085(2)$	$6.3(7)$ *
C(23)	0.885(2)	$-0.176(1)$	$-0.174(2)$	$7.4(8)$ *
C(24)	0.965(2)	$-0.164(1)$	$-0.189(2)$	$8.4(8)$ *
C(25)	1.015(2)	$-0.150(1)$	$-0.114(2)$	$7.6(8)$ *
C(26)	0.983(2)	$-0.151(1)$	$-0.019(2)$	$6.1(6)$ *
C(31)	0.934(2)	$-0.204(1)$	0.566(2)	$9.0(9)*$
C(32)	0.958(3)	$-0.240(2)$	0.632(3)	$11(1)$ *
C(33)	0.896(6)	$-0.271(3)$	0.682(6)	$27(4)$ *
C(34)	0.847(3)	$-0.272(2)$	0.606(3)	$14(1)$ *
C(35)	0.787(3)	$-0.247(2)$	0.546(3)	$18(2)$ *
C(36)	0.864(2)	$-0.204(1)$	0.531(2)	$10(1)$ *
C(40)	1.122(1)	0.1171(9)	0.464(2)	$5.1(6)$ *
N(4)	1.160(1)	0.1550(8)	0.502(1)	$6.1(5)*$
C(41)	1.222(2)	0.186(1)	0.450(2)	$7.6(8)$ *
C(42)	1.295(2)	0.193(1)	0.519(2)	$9.3(9)*$
C(43)	1.138(2)	0.176(1)	0.595(2)	$9.1(9)*$
C(44)	1.212(2)	0.191(1)	0.660(2)	$12(1)$ *

^a Starred values denote atoms that were refined isotropically. Values for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3)[a^2\beta(1,1) + b^2\beta(2,2)]$ + $c^2\beta(3,3)$ + ab(cos γ) $\beta(1,2)$ + ac(cos β) $\beta(1,3)$ + bc(cos α) $\beta(2,3)$].

by full-matric least-squares methods except as otherwise noted. For complex **I,** the V, Cu, and *S* atoms were refined anisotropically and the other non-hydrogen atoms were refined isotropically. Complex **I1** contains two carbon atoms $C(22)$ and $C(24)$ belonging to the OC_4H_8 dtc group, which were found to be disordered over two positions with equal occupancies and were refined isotropically. The positions of the

⁽¹⁴⁾ Walker, N.; Stuart, D. Acta Crystallogr. **1983. A39,** 159.

⁽¹⁵⁾ Frenz, B. **A.** In *Computing* **in** Crystallographp; Schenk, H., Olthof-Hazekamp, R., Van Koningsveld, H., Bassi, *G.* C., Eds.; Delft University Press: Delft. The Netherlands, 1978.

Table **3.** Selected Positional Parameters and Their Estimated Standard Deviations for $[Et_4N]_3[VS_4(CuSPh)_3(CuS_2CNEt_2)]$

atom	x	y	z	B , ^a \AA ²
V	0.9759(0)	0.1837(0)	0.8435(0)	3.21(2)
Cu(1)	0.9995(1)	0.01172(9)	1.00357(9)	4.37(2)
Cu(2)	0.8371(1)	0.28474(9)	0.98994(9)	4.38(2)
Cu(3)	0.9298(1)	0.36177(9)	0.69841(9)	4.54(2)
Cu(4)	1.1375(1)	0.07323(9)	0.71297(9)	4.18(2)
S(1)	1.0349(2)	0.1875(2)	1.0044(2)	4.13(5)
S(2)	0.7882(2)	0.2837(2)	0.8221(2)	4.55(5)
S(3)	1.1235(2)	0.2553(2)	0.7155(2)	4.39(5)
S(4)	0.9709(2)	0.0114(2)	0.8272(2)	4.21(5)
S(11)	1.1022(3)	$-0.1441(2)$	1.1074(2)	4.86(5)
S(12)	0.8251(2)	$-0.0609(2)$	1.1484(2)	5.07(6)
S(21)	0.7315(3)	0.3613(3)	1.1217(2)	7.04(8)
S(31)	0.9023(3)	0.5191(3)	0.5857(3)	6.97(7)
S(41)	1.2810(3)	$-0.0322(2)$	0.6237(2)	6.20(7)
N(10)	0.941(1)	$-0.2393(7)$	1.2722(7)	6.4(2)
C(10)	0.9573(9)	$-0.1552(7)$	1.1864(8)	4.8(2)
C(11)	0.818(1)	$-0.251(1)$	1.3363(9)	6.4(3)
C(12)	0.732(2)	$-0.326(1)$	1.298(1)	12.9(5)
C(13)	1.059(1)	$-0.324(1)$	1.294(1)	8.0(4)
C(14)	1.125(1)	$-0.292(1)$	1.381(1)	10.9(5)
C(21)	0.610(1)	0.4691(9)	1.0714(9)	6.3(3)
C(22)	0.596(1)	0.5081(9)	0.9644(9)	6.7(3)
C(23)	0.505(1)	0.604(1)	0.932(1)	9.2(4)
C(24)	0.429(2)	0.651(1)	1.001(1)	12.1(4)
C(25)	0.437(1)	0.618(1)	1.115(1)	12.5(4)
C(26)	0.538(1)	0.525(1)	1.149(1)	8.5(4)
C(31)	0.743(1)	0.5785(9)	0.6077(9)	8.0(3)
C(32)	0.639(1)	0.518(1)	0.599(1)	9.2(4)
C(33)	0.507(2)	0.565(1)	0.594(1)	12.3(5)
C(34)	0.488(2)	0.675(1)	0.612(1)	11.3(5)
C(35)	0.570(2)	0.733(1)	0.6262(9)	10.9(5)
C(36)	0.708(2)	0.675(1)	0.620(1)	10.2(5)
C(41)	1.3699(8)	0.050(1)	0.5105(7)	5.8(3)
C(42)	1.455(1)	$-0.011(1)$	0.4396(8)	8.7(3)
C(43)	1.522(1)	0.042(2)	0.347(1)	11.5(5)
C(44)	1.509(1)	0.163(1)	0.3306(9)	9.4(4)
C(45)	1.428(1)	0.227(1)	0.402(1)	9.4(4)
C(46)	1.3592(9)	0.166(1)	0.4917(8)	6.8(3)

Values for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/ 3 [$a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos\gamma)\beta(1,2) + ac(\cos\beta)\beta(1,3)$ + $bc(\cos \alpha)\beta(2,3)$].

hydrogen atoms were calculated and included in the structure factor calculations but were not refined. The standard deviations of an observation with unit weight are 2.13, 0.93, 1.60, 0.85, and 1.48 for complexes **I,** 1', **11, 111,** and **IV,** respectively. The maximum and minimum peak values in the final difference Fourier map are $+0.76$ and -0.43 e/ \AA ³ for **I**, $+0.54$ and -0.50 e/ \AA ³ for **I'**, $+0.65$ and -0.43 e/ \AA^3 for **II**, $+0.39$ and -0.45 e/ \AA^3 for **III**, and $+0.54$ and -0.48 e/ \AA^3 for **IV,** respectively.

Other Physical Measurements. Infrared spectra were recorded on an FTS-40 spectrophotometer. Electronic spectra were obtained in DMSO solution on a Shimazu UV-300 spectrophotometer. Electrochemical measurements were performed in the cyclic voltammetric mode on a DHZ-1 electrochemical multipurpose instrument and an X-Y recorder with SCE reference electrode, Pt plate working electrode, and Pt auxiliary electrode. The supporting electrolyte was Bu₄NClO₄. ¹H, ¹³C, and ⁵¹V NMR spectra were recorded on a Bruker-AM 500 spectrometer with Me₄Si and VOCl₃ as standards, respectively.

Results and Discussion

Synthesis. From a reaction mixture comprising $(NH_4)_3VS_4$, CuCl, R₂dtcNa, PhSNa, and Et₄NCl in DMF solution, we have isolated two kinds of complexes, $[V_2Cu_2S_4(R_2dtc)_2(PhS)_2]^{2-}$ cubane-like clusters (II and V) and $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^{3-}$ complexes (I, I', III, and IV). It is suggested that the VS₄Cu₄ complexes are formed by a coordination reaction and can be

Table **4.** Selected Positional Parameters and Their Estimated Standard Deviations for $(Et_4N)_2[V_2Cu_2S_4(SPh)_2(S_2CNC_4H_8O)_2]$

x	у	z	$B,^a \AA^2$
0.58683(9)	0.1563(1)	0.7720(1)	4.62(4)
0.4915(1)	0.2721(2)	0.6701(1)	3.52(5)
0.5898(2)	0.3070(3)	0.7698(2)	4.02(9)
0.5093(2)	0.1297(3)	0.8482(2)	3.90(9)
0.6897(2)	0.0868(3)	0.8080(2)	4.4(1)
0.4059(2)	0.3348(3)	0.5543(2)	4.7(1)
0.5528(2)	0.3281(3)	0.5820(2)	4.9(1)
0.4341(6)	0.405(1)	0.2883(6)	12.1(5)
0.4605(6)	0.383(1)	0.4428(7)	6.7(4)
0.6794(7)	$-0.026(1)$	0.8156(8)	4.3(4)
0.6141(8)	$-0.066(1)$	0.8001(8)	5.0(4)
0.6076(9)	$-0.161(1)$	0.804(1)	7.5(6)
0.670(1)	$-0.210(1)$	0.828(1)	10.6(8)
0.733(1)	$-0.168(2)$	0.844(1)	11.0(8)
0.7375(9)	$-0.079(1)$	0.838(1)	8.0(6)
0.4717(7)	0.354(1)	0.5154(8)	4.6(4)
0.5192(8)	0.394(1)	0.4124(8)	8.3(5)
0.502(1)	0.354(2)	0.346(2)	$5.4(7)*$
0.505(2)	0.443(3)	0.349(2)	$8(1)^{*}$
0.3909(9)	0.397(2)	0.390(1)	12.1(7)
0.381(2)	0.436(2)	0.324(2)	$5.6(8)$ *
0.379(1)	0.365(2)	0.323(2)	$5.0(7)$ *

Starred values denote atoms that were refined isotropically. Values for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3)[a^2\beta(1,1) + b^2\beta(2,2)]$ + $c^2\beta(3,3)$ + $ab(\cos \gamma)\beta(1,2)$ + $ac(\cos \beta)\beta(1,3)$ + $bc(\cos \alpha)\beta(2,3)$].

expressed by eq 1.

$$
VS_4^{3-} + 4CuCl + nR_2dtc^- + (4 - n)PhS^- \rightarrow
$$

[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]³⁻ + 4Cl⁻ (1)

In comparison with the synthetic system^{3b-d,8c} using thiometalate synthon OMS_3^{2-} or MS_4^{2-} (M = Mo, W), although we can also expect V/Cu/S cubane-like structures similar to $[MCu₃S₃Cl]^{3b-d}$ or $[M₂Cu₅S₆]^{8c}$ (M = Mo, W), the failure of obtaining the structures in this reaction demonstrates that $VS₄³$ ligand, just like $M_0S_4^{2-}$ or WS_4^{2-} , is not a favorable synthon in the synthesis of a compound with the $[VCu₃S₄]$ cubane skeleton. It was mentioned^{3b-d} that the formation of the $[MCu₃S₃Cl]$ structure was expected on using the synthon $OMS₃²⁻$ owing to the preferred formation of the Cu-S over the Cu-O bond. However, a new type of $V_2Cu_2S_4$ cubanelike cluster is obtained in the present reaction system due to the reduction of VS_4^{3-} . The $V_2Cu_2S_4$ clusters have relatively less solubility in DMF or DMSO than the $VS₄Cu₄$ complexes have, so that the former will be deposited first from the reaction solution when the mixed solvents $CH₃CN/(CH₃)₂CO$ are added to. The molar ratio of $VS₄³-/CuCl = 1/3$ that we usually chose for syntheses is available for the formation of both kinds of complexes. The use of excess CuCl seems not to be always profitable for raising the yield of $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^{3-}$ as yields of not more than 30% are generally observed in all reproducible preparations, while the yield of the $V_2Cu_2S_4$ cluster is improved by adjusting the molar ratio of $VS₄³⁻/CuCl$ to 1/1. It is also noticed that both $V_2Cu_2S_4$ and VS_4Cu_4 complexes contain mixed ligands, R_2 dtc⁻ and PhS⁻. A similar metal thiocubane, $[Fe_4S_4(Et_2dtc)_2(PhS)_2]^{2-}$, had been obtained in a ligand substitution reaction of $[Fe_4S_4(Et_2dtc)_2Cl_2]^{2-}$ with PhS⁻ by Coucouvanis and co-workers.¹⁶ Interestingly, in the $V_2Cu₂S₄$ clusters, R_2 dtc⁻ and PhS⁻ ligands are ligated selectively to vanadium and copper, respectively, even though R_2 dtc group

⁽¹⁶⁾ Kanatzidis, **M.** *G.:* Ryan, **M.;** Coucouvanis, D.: Simopoulos, **A,:** Kostikas, A. *Inorg. Chem.* **1983**, 22, 179.

Table 5. Selected Positional Parameters and Their Estimated Standard Deviations for $[Et_4N]_3[VS_4(CuSPh)_2(CuS_2CNC_4H_8O)_2]$

atom	х	y	\overline{z}	$B,^a \AA^2$
V	0.4513(1)	0.7605(1)	0.6445(0)	3.83(6)
Cu(1)	0.37673(8)	0.8412(1)	0.7246(2)	4.91(5)
Cu(2)	0.51362(8)	0.7832(1)	0.7854(2)	4.85(5)
Cu(3)	0.53590(9)	0.6931(1)	0.5663(2)	6.46(6)
Cu(4)	0.3911(1)	0.7301(1)	0.4989(2)	6.71(6)
S(1)	0.4262(2)	0.7473(2)	0.7877(3)	4.54(9)
S(2)	0.5356(2)	0.8052(3)	0.6430(4)	5.5(1)
S(3)	0.4478(2)	0.6512(3)	0.5760(4)	6.5(1)
S(4)	0.3938(2)	0.8403(3)	0.5801(4)	5.9(1)
S(11)	0.3184(2)	0.9231(3)	0.7804(5)	7.8(2)
S(21)	0.5748(2)	0.7951(3)	0.8942(4)	7.0(1)
S(31)	0.6073(2)	0.5996(3)	0.5891(4)	7.0(1)
S(32)	0.5936(2)	0.6948(3)	0.4304(4)	6.9(1)
S(41)	0.3131(2)	0.6562(4)	0.4463(4)	7.4(2)
S(42)	0.3848(3)	0.7529(4)	0.3403(4)	8.9(2)
O(30)	0.7743(8)	0.548(1)	0.396(1)	15.2(7)
O(40)	0.256(2)	0.628(2)	0.110(2)	14(1)
C(11)	0.3136(8)	0.914(1)	0.895(1)	6.0(5)
C(12)	0.3499(9)	0.8787(9)	0.946(1)	8.1(6)
C(13)	0.346(1)	0.877(1)	1.035(2)	10.3(8)
C(14)	0.303(1)	0.915(2)	1.081(2)	15(1)
C(15)	0.263(1)	0.950(2)	1.026(2)	14(1)
C(16)	0.2703(9)	0.951(1)	0.934(2)	9.8(7)
C(21)	0.5501(7)	0.7738(9)	1.007(1)	5.5(4)
C(22)	0.4958(8)	0.7694(9)	1.029(1)	6.4(5)
C(23)	0.4826(9)	0.750(1)	1.117(2)	9.7(7)
C(24)	0.5228(9)	0.735(1)	1.181(1)	9.3(6)
C(25)	0.5752(9)	0.741(1)	1.158(1)	8.0(6)
C(26)	0.5915(9)	0.758(1)	1.070(2)	8.3(6)
N(30)	0.679(1)	0.612(1)	0.471(1)	14.4(8)
C(30)	0.6298(7)	0.632(1)	0.498(1)	6.7(5)
C(31)	0.691(1)	0.621(2)	0.378(3)	21(2)
C(32)	0.752(2)	0.618(2)	0.362(2)	18(1)
C(33)	0.705(1)	0.546(2)	0.509(2)	17(1)
C(34)	0.763(1)	0.543(2)	0.492(2)	16(1)
N(40)	0.3024(6)	0.6770(9)	0.274(1)	8.3(4)
C(40)	0.3313(8)	0.695(1)	0.351(2)	8.2(6)
C(41)	0.253(1)	0.625(2)	0.270(2)	13.0(9)
C(42)	0.222(1)	0.627(2)	0.186(2)	18(1)
C(43)	0.322(1)	0.708(2)	0.188(2)	15(1)
C(44)	0.292(2)	0.689(2)	0.105(3)	25(2)

*^a*Values for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/ $3\int a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos\gamma)\beta(1,2) + ac(\cos\beta)\beta(1,3)$ + $bc(\cos \alpha)\beta(2,3)$].

has a high tendency to chelate to the copper atom. This selective coordination can be attributed to the required coordination number (not more than four) of copper. In contrast with this situation, copper atoms in the $VS₄Cu₄$ complexes bind to either benzenethiolate or R_2 dtc ligand to give three or four coordinate geometry. Therefore, a series of $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^{3-}$ complexes with $n = 0, 1$, and 2 have been obtained from the assembly system. However, the attempt to prepare the complexes with $n = 3$ and 4 has not yet been successful even by using an excess of RzdtcNa. **As** both ligand and reducing agent, benzenethiolate coordinates to copper atom and could be involved in the reduction of $V(V)$ to $V(IV)$, which has been found in the V/S/PhS complex, 17 promoting the formation of the $V_2Cu_2S_4$ cluster. Besides, in the coordination reaction to give $VS₄Cu₄$ complexes, the presence of thiolate in the reaction system is proved to be necessary, since its absence or presence in less than a $1/1$ molar ratio of PhS $^{-}/R_2$ dtc⁻ has led to the oxidation of Cu(I) and later the formation of $Cu(R_2dtc)_2$ as the only separable product. We propose that $[Cu^T(SP_h)]$ and $[(R₂$ $dtc)Cu¹$ are the reactive intermediates which occur in the reaction process and are coordinated gradually by the $VS₄$ unit

Table 6. Selected Positional Parameters and Their Estimated

ruvit vi - Sciected I Osmonar I aramcters and Their Estimated Standard Deviations for $(Et_4N)_3[VS_4(CuSPh)_4]$							
atom	х	у	\overline{z}	$B,^a \AA^2$			
V	0.5872(5)	0.0557(4)	0.7500(0)	4.9(1)			
Cu(1)	0.7316(2)	0.0512(2)	0.6903(1)	5.93(7)			
Cu(2)	0.4366(2)	0.0542(2)	0.6931(1)	6.27(7)			
S(1)	0.5839(5)	0.1366(4)	0.6931(2)	6.2(2)			
S(2)	0.4442(6)	$-0.0281(5)$	0.7500(0)	5.3(2)			
S(3)	0.7363(8)	$-0.0224(5)$	0.7500(0)	5.6(2)			
S(11)	0.8588(6)	0.0280(5)	0.6443(2)	7.4(2)			
S(21)	0.2991(6)	0.0394(5)	0.6511(2)	8.8(2)			
C(11)	0.813(2)	0.050(1)	0.5941(7)	6.4(7)			
C(12)	0.714(2)	0.074(2)	0.5859(9)	9.4(8)			
C(13)	0.682(2)	0.094(2)	0.5453(9)	9.3(9)			
C(14)	0.754(3)	0.074(2)	0.5146(7)	11(1)			
C(15)	0.856(2)	0.051(2)	0.5234(9)	12(1)			
C(16)	0.890(2)	0.036(2)	0.5646(8)	10.2(9)			
C(21)	0.312(2)	0.101(2)	0.6088(7)	6.7(7)			
C(22)	0.386(2)	0.164(2)	0.6009(9)	10.5(9)			
C(23)	0.401(3)	0.225(2)	0.567(1)	16(1)			
C(24)	0.313(3)	0.204(2)	0.540(1)	14(1)			
C(25)	0.232(3)	0.148(2)	0.5439(9)	13(1)			
C(26)	0.234(3)	0.096(2)	0.5778(8)	13(1)			

Values for anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/ 3 [$a^2\beta(1,1) + b^2\beta(2,2) + c^2\beta(3,3) + ab(\cos\gamma)\beta(1,2) + ac(\cos\beta)\beta(1,3)$ + $bc(\cos \alpha)\beta(2,3)$].

Table 7. Selected Bond Distances and Angles for **I1**

Bond Distances in A							
$Cu-Cu'$	3.338(3)	$Cu-S(11)$	2.224(4)				
$Cu-V$	2.791(3)	$V-S(1)$	2.263(4)				
$Cu-V'$	2.772(3)	$V-S(1')$	2.303(4)				
v–v′	2.787(4)	$V-S(2)$	2.156(4)				
$Cu-S(1)$	2.258(4)	$V-S(21)$	2.425(4)				
$Cu-S(2)$	2.431(4)	$V-S(22)$	2.459(4)				
$Cu-S(2')$	2.426(4)						
		Bond Angles in deg					
$S(1)$ –Cu–S(2)	101.4(1)	$S(2)-V-S(21)$	106.4(2)				
$S(1) - Cu - S(2')$	99.6(1)	$S(2)-V-S(22)$	102.6(2)				
$S(1) - Cu - S(11)$	116.5(1)	$S(21)-V-S(22)$	71.4(1)				
$S(2) - Cu - S(2')$	90.1(1)	$Cu-S(1)-V$	76.2(1)				
$S(2)$ –Cu–S(11)	118.2(1)	$Cu-S(1)-V'$	74.9(1)				
$S(2') - Cu - S(11)$	125.8(1)	$V-S(1)-V'$	75.2(1)				
$S(1)-V-S(1')$	98.7(1)	$Cu-S(2)-Cu'$	86.8(1)				
$S(1)-V-S(2)$	108.1(1)	$Cu-S(2)-V$	74.1(1)				
$S(1)-V-S(21)$	142.2(1)	$Cu'-S(2)-V$	74.7(1)				
$S(1)-V-S(22)$	86.4(1)	$Cu-S(11)-C(11)$	111.1(5)				
$S(1') - V - S(2)$	109.1(1)	$V-S(21)-C(20)$	89.1(5)				
$S(1') - V - S(21)$	84.2(1)	$V-S(22)-C(20)$	87.7(5)				
$S(1') - V - S(22)$	144.4(1)						

to form the final product $[VS_4Cu_4(R_2dtc)_n(PhS)_{4-n}]^{3-}$ (Figure 1). Because dialkyldithiocarbamate can stabilize the high oxidation state of the metal atom in $M(R_2dt)$, ¹⁸ the intermediate $[(R_2dtc)Cu]$ will be easily oxidized to give $(R_2dtc)_{2}Cu$. The other reactive intermediate [Cu(SPh)] may be protected from the rapid oxidation by using excess PhSNa to produce $[Cu(SPh)₃]$ ²⁻ which was obtained by Coucouvanis¹⁹ and Garner.²⁰ In this case, the action of the thiolate can be envisioned to restrain the formation of the unstable intermediate $[(R_2dtc)Cu]$ when increasing the molar ratio of PhS⁻/R₂dtc⁻. It should also be pointed out that, in addition to complex **V,** we have separated a little amount of $[V_3S_7(Me_2dtc)_3]^{-11b}$ a triangular V₃ cluster with yield of \approx 3%. Manifold products being obtained and having no high yield indicate that the

⁽¹⁸⁾ Kanatzidis, M. G.; Baenziger, N. C.; Coucouvanis, D.; Simopoulos, **A.;** Kostikas, **A.** *J. Am. Chem. SOC.* **1984.** 106, 4500.

⁽¹⁹⁾ Coucouvanis. D.; Murphy, C. N.; Kanodia, S. K. *Inorg. Chem.* **1980,** *19,* 2993.

⁽²⁰⁾ Gamer, C. D.; Nicholson, J. R.; Clegg, W. *Inorg. Chem.* **1984,** 23, 2148.

Figure 1. Supposed scheme of the formation process for the VS_4Cu_4 complexes.

reaction system would be more complex beyond expectation and that such reactions are expected to be under statistical control.

Structure. VS₄Cu₄ Complexes I, I', III and IV. In these structures, the Et_4N^+ cations in the asymmetric units are well separated from the respective anion. The structures of the anions I, 1', I11 and **IV,** are presented in parts A, B, D, and E of Figure 2. All the anions contain a common essentially tetrahedral VS4 unit with $S-V-S$ bond angles ranging from 107.8(3) to 111.2-(4)°. Five metal atoms $4Cu + V$ are nearly coplanar with deviations of not more than 0.1 A from the least squares plane. The two mutually trans copper atoms together with central V atom form a nearly linear array with $Cu \cdot \cdot \cdot V \cdot Cu$ angles ranging from 172.7(2) to 177.1(1)°. These features make the $VS₄Cu₄$ core an approximate D_{2d} symmetry for each complex. However, the presence of ligands causes the lowering of symmetry. The anion of IV with a PhS $^-$ ligand ligated to each copper atom has a crystallographically imposed C_s symmetry, while the anion of III has two pairs of ligands, $OC₄H₈dtc⁻$ and PhS⁻, bound to the four copper atoms in a cis-form, accompanying an approximate C_s symmetry which is not, however, crystallographically imposed. Both two anions of I and I' have no symmetry due to unsymmetrical arrangement of the ligands. These complexes except of IV contain two types of copper atoms, one trigonally and the other pseudotetrahedrally coordinated. In Table 8 are collected the main structural features of the VS_{4} - $Cu₄$ cores in these complexes. Shorter $Cu-S$ distances (2.180- $(3)-2.251(6)$ Å) are observed for the trigonal copper atoms than those for the tetrahedral ones $(2.264(3)-2.288(7)$ Å) as a consequence of variation of metal coordination number. It is evident that chemically equivalent $V-S$, $Cu-S$, and $V-Cu$ distances in each $VS₄Cu₄$ complexes lie respectively within narrow ranges and are comparable with those in the other two V/Cu/S complexes shown in Table 8. This indicates that either vanadium or copper atoms in each $VS₄Cu₄$ complex are electronically similar. A comparison (Table 9) of $Cu-S_{liqand}$ distances between the VS₄C_{U₄} complexes and certain complexes containing the Cu atom in a comparable coordination environment is used to estimate the Cu oxidation state. The Cu-SPh distances $(2.166(3)-2.204(6)$ Å) in the VS₄Cu₄ complexes are near to those in $[(PhSCu)MoS₄]²⁻ (2.188(2) Å)^{4c}$ and $[(PhSCu)_2MoS₄]²⁻$ (2.171(2) Å).^{4c} The Cu-S_{dtc} distances in the VS4Cu4 complexes are comparable with those in but are obviously longer than those in $Cu^{II}(OC_4H_8dtc)_2^{21}$ (2.298- (1) -2.304(1) Å). This comparison provides an estimate of the formal oxidation state of Cu(I), even though somewhat shorter Cu-SPh distances than those in $\lbrack Cu^{1}(SPh)_{3}\rbrack^{2-20}$ (2.235(4)-2.274(4) Å) were observed for the $VS₄Cu₄$ complexes, which could be attributed to the transfer of charge from $Cu(I)$ to $V(V)$, similar to delocalization from $Cu(I)$ to $Mo(VI)$, suggested for $[(PhSCu)MoS₄]²$ and $[(PhSCu)₂MoS₄]²$ by Garner,^{4c} causing the shortening of $Cu-SPh$ in Mo/Cu/S or V/Cu/S complexes. Also, X-ray photoelectron spectroscopy (XPS) gave a binding energy of 932.7ev (Cu $2P^{3/2}$) for complex I, which was a good fit to the electronic state of Cu(I) in Cu₂O. All these VS_4Cu_4 complexes are diamagnetic according to the measurements of bulk magnetic susceptibility and NMR spectra (vide infra), offering a consistent result with the estimation of the metal oxidation states of $V(V) + 4Cu(I)$. $[(R_2dt_0C_1)_3M_0S_4]^{2-\frac{7}{2}}$ $(R_2 = Et_2, C_5H_{10}; 2.367(2)-2.446(2)$ Å)

 $(Et_4N)_2[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]$ *(II).* Complex II contains well discrete $[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]^{2-}$ dianion and two Et_4N^+ cations. The structure of II dianion is presented in Figure 2C and the selected bond distances and angles in Table 7. Each asymmetrical independent unit includes a half molecule. The dianion is located on a crystallographic 2-fold axis. Each five-coordinate V atom is chelated by a $OC₄H₈dtc^-$ group and coordinated by three μ_3 -S atoms in a distorted square pyramidal site. The vanadium atom lies out of the equatorial plane toward the apical $S(2)$ atom with the $S(2)-V-S$ angles ranging from $102.6(2)$ to $109.1(1)$ °. Each four-coordinate Cu atom is coordinated in a seriously distorted tetrahedron by three μ_3 -S atoms and a terminal PhS⁻ group with S-Cu-S angles ranging from 85.2(2) to 130.4(2)°. The $V_2Cu_2S_4$ cuboidal core is condensed along the C_2 axis. Metal-S bonds to the parallel *C2* axis are obviously shorter than those perpendicular to the axis. This feature is also observed in the other $V_2Cu_2S_4$ cubane cluster **V.12c** The estimation for the oxidation state of V(1V) stemmed from the fact that $V-V'$ distances (II, 2.787(4) \AA ; **V**, 2.803(5) **A)** are comparable with those of certain V(1V) complexes which are believed to contain a $V-V$ single bond, such as $V_2(S_2)_2(Et_2dt_2)$ (2.884(4) Å),^{11a} $V_2(S_2)_2(MeCS_2)_4$ and from the fact that $V-S_{\text{dtc}}$ bond distances (II, 2.459(4)- $(2.800(2)$ Å),²² and $[V_2(S_2)_2(CS_3)_4]^{4-}$ $(2.841(6), 2.872(6)$ Å),¹⁷

⁽²¹⁾ Crystal data for Cu(OC₄H₈dtc)₂: monoclinic, space group $P2_1/n$ $(No.14)$, $a = 4.274(2)$ Å, $b = 20.713(8)$ Å, $c = 8.402(3)$ Å, $\beta = 99.71$ *(O)',* V = 733.2 A', **Z** = 2, *R* = 0.042, *R,* = 0.041. using 1129 reflections with $I > 3.0\sigma(I)$; Cu-S_{dtc} = 2.298(1), 2.298(1), 2.304(1), and 2.304(1) A.

⁽²²⁾ Duraj, **S.** A.; Andras, M. T.; Kibala, P. A. Znorg. *Chem.* **1990,** *29,* 1232.

CZS

`C14

2Y

Figure 2. ORTEP diagrams showing 50% probability ellipsoids for (A) [VS₄Cu₄(OC₄H₈dtc)(PhS)₅]³⁻, (B) [VS₄Cu₄(Et₂dtc)(PhS)₃]³⁻, (C) $[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]^2$, (D) $[VS_4Cu_4(OC_4H_8dtc)_2(PhS)_2]^{3-}$, and (E) $[VS_4Cu_4(PhS)_4]^{3-}$.

2.603(6) A; **V,** 2.434(5)-2.443(5) **A)** are near to (or somewhat longer than) those of VO(Et₂dtc)₂²³ (2.387(2)-2.410(2) Å). The measurement of bulk magnetic susceptibility of **I1** offers a diamagnetic result and supports that d^T-d^T electrons are spinpaired leading to a V-V single bond. Meanwhile, the oxidation state of Cu(1) was deduced from a comparison which showed shorter Cu-SPh bonds **(11,** 2.224(4) A; **V,** 2.229(5) A) than those observed in $[Cu(SPh)₃]²⁻ (2.235(4) - 2.274(4)$ Å) and a

transfer of charge from Cu to V similar to that observed in the VS4Cu4 complexes.

As a electron-deficient 58e cuboidal core, three types of intermetallic distances are observed including a $V-V$ bond, four V-Cu bonds ranging from 2.772(3) to 2.791(3) \AA , and Cu $\cdot \cdot$ Cu separations **(11,** 3.338(3) A, **V,** 3.351(5) A). These features indicates a "butterfly" geometry of metal atoms with two copper atoms in the "wing" positions. Interestingly, the butterfly arrays of four metal atoms are also observed in other 58e $M_2M_2S_4$ cubane-like clusters (Table 10). All the $M_2Cu_2S_4$ (M = Mo,

⁽²³⁾ **Henrick,** K.; Raston, C. L.; White, **A.** H. *J. Chem. Soc., Dalton Trans.* **1976,** 26.

Table 8. Summary of Bond Distances (\hat{A}) in VS₄Cu₃₋₆ Cores for V-Cu-S Complexes Containing a VS₄ Tetrahedral Unit

		$V-S$	$Cu^{a}-S$	Cu^b-S	$V - Cu$	ref
	mean ^c	2.199(8)	2.236(5)	2.272(4)	2.618(13)	this work
	range	$2.186(5)-2.218(6)$	$2.216(5)-2.250(5)$	$2.269(5)-2.276(6)$	$2.599(3)-2.654(4)$	
Ţ,	mean ^c	2.197(10)	2.230(11)	2.271(8)	2.613(10)	this work
	range	$2.171(3)-2.220(3)$	$2.180(3)-2.251(4)$	$2.264(3)-2.279(3)$	$2.593(2)-2.636(2)$	
Ш	mean ^c	2.201(8)	2.216(14)	2.278(4)	2.629(16)	this work
	range	$2.182(7)-2.221(7)$	$2.182(3)-2.251(6)$	$2.270(7)-2.288(7)$	$2.595(4)-2.664(5)$	
IV	mean ^c	2.203(10)	2.229(8)		2.604(8)	this work
	range	$2.18(2)-2.220(8)$	$2.205(7)-2.239(7)$		$2.596(6)-2.611(6)$	
$VS_4Cu_3(PPh_3)_4$		2.213(7) (μ_3-S)	$2.197(6)-2.233(7)$	2.336(6)	$2.615(2)-2.760(8)$	3f
		2.156(8) (μ_2-S)				
$VS_4Cu_6(PPh_3)_5Cl_3$	mean	2.214 (μ_4-S)		$2.238(3)-2.344(3)$	$2.596(3)-2.680(2)$	4e
	range	$2.208(3)-2.222(2)$				

^{*a*} The coordination number of copper atom is 3. b The coordination number of copper atom is 4. c Number in parentheses represents the standard</sup></sup> devistion from the mean, $\sigma = [\sum_{i=1}^{N} (x_i - \bar{x})^2 / N(N - 1)]^{1/2}$.

^a Number in parentheses represents the standard devistion from the mean, $\sigma = [\sum_{i=1}^{N} (x_i - \bar{x})^2 / N(N-1)]^{1/2}$.

Table 10. Intermetallic Distances (Å) in 58e M₂M'₂S₄ Cubane-like Clusters

	the longest $M \cdot M$	$M-M'$ bond	M' – M' bond	ref
$[V_2Cu_2S_4(OC_4H_8dtc)_2(PhS)_2]^{2-}$	$Cu \cdot Cu \cdot 3.338(3)$	$2.772(3)-2.791(3)$	$V - V 2.784(4)$	this work
$[V_2Cu_2S_4(Me_2dtc)_2(PhS)_2]^{2-}$	$Cu \cdot Cu 3.351(5)$	$2.762(3)-2.791(3)$	$V - V 2.803(5)$	12c
$[V_2Ag_2S_4(OC_4H_8dtc)_2(PhS)_2]^{2-}$	$Ag\cdot Ag$ 3.898(3)	$3.014(4)-3.038(4)$	$V - V 2.793(7)$	12a
$[Mo2Cu2S4(edt)2(PPh3)2]$	$Cu \cdot Cu$ 3.095(2)	$2.782(2)-2.831(1)$	$Mo-Mo 2.858(1)$	5a
$[W_2Cu_2S_4(edt)_2(PPh_3)_2]$	$Cu \cdot Cu$ (no bond)	$2.799(2)-2.845(2)$	$W-W 2.851(1)$	5b
$[V_2Fe_2S_4(MeCp)_2(NO)_2]$	$V \cdot V 2.95$	2.59	Fe – Fe 2.75	10a
$[Fe_4S_4(Et_2dtc)_2(Ph_5)_2]^{2-}$	Fe··Fe 3.053(3)	$2.779(2)-2.780(2)$	Fe – Fe 2.733(3)	16

W, V) and $V_2Ag_2S_4$ cubanes contain the longest intermetallic separations of $Cu \cdot Cu$ and Ag $\cdot \cdot$ Ag, respectively, since copper and silver atoms have saturated d^{10} electronic shells.

Spectral Features and Solution Behavior. Infrared Spectra. In the 400-500 cm⁻¹ region where $\nu(M-S_b)$ frequencies are expected,²⁴ either the VS₄Cu₄ or V₂Cu₂S₄ complexes exhibit a strong absorption at 465 cm⁻¹ for the former and at 480 cm⁻¹ for the latter. **An** absorption in the region of 350-360 cm-' for complexes **II** and **V** is assigned to V-S_{dtc} vibration.²⁵

Electronic Spectra. The absorption at ca. 350 nm for both types of complexes occurs from S_{ligand} - Cu LMCT in accordance with a similar assignment in $[(PhSCu)₁₋₂MoS₄]^{2-4c}$ The VS₄-Cuq complexes have absorptions at 410-450 nm and **520-** 550 nm assigned to the charge transfer transition of the MS4 moiety.^{3a} Other V/Cu/S complexes^{3f,4e} containing the VS₄ moiety have also absorptions near to these energies.

NMR Spectra. The ¹H and ¹³C chemical shifts for the ligands R_2 dtc⁻ and PhS⁻ of the compounds we reported here in DMSO- d_6 solution at room temperature are listed in the experimental section. All the 'H and I3C NMR spectra determined exhibit the absorption peaks very near to those of free ligands R_2 dtc⁻ and PhS⁻, indicating the diamagneticity of these compounds. It is difficult to understand whether the compounds undergo a ligand substitution or solvation by using the ⁱH and ¹³C NMR spectra. Fortunately, ⁵¹V NMR spectra afford some useful informations. Figure **3** shows the 5'V NMR spectra of the VS4Cu4 complexes **1', 111,** and **IV** in DMSO of which complexes with mixed ligands exhibit rather complicated spectral features. In comparison with the ⁵¹V chemical shifts (Table 11) of other relative V-S complexes, the $VS₄Cu₄$

⁽²⁴⁾ Muller, **A.;** Jaegermann, W.; Hellmann, W. *J. Mol. Struc.* **1983,** *100,* 559.

⁽²⁵⁾ Bradley, D. C.; Gitlitz, M. H. *J. Chem. SOC.* **A 1969,** 1152.

700

700

 $\frac{1}{\sqrt{100}}$ **750**

750

PPM

650

760. */j'6h'* ' . . *600* ' . . ' **550** '

 (C)

 (B)

600

 600

550

 (A)

Figure 4. Variation of ⁵¹V NMR spectra of $(Et_4N)_3[VS_4Cu_4(PhS)_4]$ in DMSO solution with the addition of $OC₄H₈dtcNa$.

complexes have a vanadium nucleus to be less effectively deshielded than that in VS_4^{3-26} by ca. 720 ppm. Meanwhile, it is noticed that, within the series of $VS₄Cu₄$ complexes, the

Figure 5. 51V NMR spectrum in DMSO solution initially containing $(Et_4N)_3[VS_4Cu_4(PhS)_4]$ and PPh₃ in a mole ratio of 1:100 at 297 K. showing formation of the $VS₄Cu₃$ complex.

Table 11. ⁵¹V NMR Shifts for the VS₄Cu₄ Complexes and for Selected V/S Complexes

solvent	δ ⁽⁵¹ V)	ref
DMSO	663, 670	this work
DMSO	$663(sh)$, 670	this work
DMSO	670	this work
DMSO/CD ₃ CN	970	17
DMSO	1388	26
CDCl3	103	17

variation of $\delta(^{51}V)$ is very small by ca. 7 ppm, indicating very small electronic influences from the outermost ligands on the 51V nucleus.

In order to interpret the $51V$ NMR features of the VS₄Cu₄ complexes containing mixed ligands, we have previously suggested several disproportion reactions^{12b} in solution.

$$
2[VS_{4}Cu_{4}(R_{2}dtc)_{n}(PhS)_{4-n}]^{3-} \rightleftharpoons
$$

\n
$$
[VS_{4}Cu_{4}(R_{2}dtc)_{n+1}(PhS)_{3-n}]^{3-} +
$$

\n
$$
[VS_{4}Cu_{4}(R_{2}dtc)_{n-1}(PhS)_{5-n}]^{3-}(n=1-3)
$$
 (2)

These disproportions are caused by ligand exchange and lead to the coexistence of the series of VS_4Cu_4 complexes $(n = 0-3)$ or 4). In this event, the resonance at 670 ppm must be assigned to complex **IV,** while the broad resonance peak centered at 663 ppm is considered to be the contribution of the complexes containing the R_2 dtc⁻ ligand $(n = 1-4)$ which gives rise to higher shielding than PhS⁻ does, though the difference is very small, only 7 ppm. The effect of PhS^-/R_2dtc^- exchange on the spectra of **I'** and **111** is thus to cause the resonance at 670 ppm and to widen the resonances centered at 663 ppm. In order to establish the disproportion, a ligand substitution reaction has been used. Sodium dialkylthiocarbamate (OC₄H₈dtcNa) was added to the DMSO solution of complex **IV,** causing the substitution of the coordinated PhS⁻ ligand. The ⁵¹V NMR spectra are presented in Figure 4. When mole ratio of R₂dtc⁻/ **IV** is increased from *2:* 1 to 32: 1, the original resonance peak at 670 ppm gradually lowers accompanied by a gradually risen peak occurring at 663 ppm. It means that complex **IV** is

⁽²⁶⁾ Zhang, Y.; Holm, R. H. Inorg. Chem. 1988, 27, 3875.

undergoing nucleophilic substitution to form dithiocarbamate complexes.

$$
[VS_{4}Cu_{4}(PhS)_{4}]^{3-} + nR_{2}dtc^{-} \rightarrow
$$

$$
[VS_{4}Cu_{4}(R_{2}dtc)_{n}(PhS)_{4-n}]^{3-} + nPhS^{-}
$$
 (3)

Figure 5 also exhibits the difficulty of "complete" substitution of complex **IV** and explains why we have not yet obtained the VS₄Cu₄ complexes with $n = 3$ or 4 by using an excess of R₂dtc⁻ in the assembly system. Another substitution reaction of complex **IV** was studied by using a large excess of PPh₃ in DMSO. A strong 51V resonance occurs at 853 ppm (Figure *5),* which may arise from a change of $[VS_4(CuL)_4]^{3-}$ to VS_4Cu_3 skeleton bound to PPh₃ ligands. A possible product $[VS₄Cu₃ (PPh₃)₄$] has been reported.^{3f} Here each CuL unit is supposed to contribute to the mean decrease of $51V$ chemical shift versus that of VS_4^{3-} by ca. 180 ppm. The fact that the metal chemical shifts decrease regularly as additional CuL units are bound to the MS₄ moiety has previously been seen in $[MoS₄(CuL)_n]^{m-}$ complexes²⁷ ($L = Cl$, Br, I, CN, SPh, and R₂dtc, $m = 2$, or L $=$ PPh₃).

Cyclic Voltammetry. None of all the complexes exhibits any reversible feature. For the $VS₄Cu₄$ complexes, anodic scans in DMF revealed an irreversible process at $+0.65-+0.70$ V. Under similar conditions compound **II** gave **an** irreversible wave at $+0.85$ V. No corresponding reduction peak was observed on the return scan for all these compounds. However, the oxidation peak would be assigned to the oxidation process of the PhS⁻ group, because the addition of PhSNa to the solution of **IV** causes a rise in the oxidation peak at 0.70 V. This implies a dissociable property of the coordinated ligand PhS⁻ in the solution and is consistent with the result of NMR spectra of these complexes.

Acknowledgment. This work was supported by the Climbing Program Foundation of China and the National Natural Science Foundation of China. We are grateful to Professor Hanqin Liu and Dr. Hongze Sun and Dr. Zhong Chen for invaluable assistance and discussion.

Supplementary Material Available: Tables of atomic coordinates, anisotropic thermal parameters, crystallographic data, and bond lengths and angles for compounds **I, 1', 11, 111,** and **IV** (45 pages). Ordering information is given on any current masthead page.

IC9406121

⁽²⁷⁾ (a) Cao, R. Ph.D. Thesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 1993. (b) Minelli, M.; Enemark, J. H.; Nicholson, J. R.; Garner, C. D. *Inorg. Chem.* **1984,** *23,* **4384.** (c) Charnock, J. M.; Bristow, S.; Nicholson, J. R.; Gamer, C. D. *J. Chem. Soc., Dalton Trans.* **1987,** 303.