group, besides the influence of its steric demands, may also exert an electron-withdrawing effect, even through an alkane chain, causing some enhanced susceptibility to bond breaking.

The conclusion from these studies is that **III** is probably too reactive for use as a probe due to its light sensitivity and rapid hydrolysis. Nevertheless, our results point toward the development of more specific reagents capable perhaps of DNA-protein cross-linking in a discrete two-step process. Acknowledgment. This work was supported by grants from the Lake Champlain Cancer Research Organization and the American Cancer Society (ACS DHP-2D).

Supplementary Material Available: Figures showing changes in conductivity (aqueous solutions of cis-[RuCl₂(Me₂SO)₄], II and III) and UV/visible spectra (aqueous solutions of I and III) with time (4 pages). Ordering information is given on any current masthead page. IC941444X

Additions and Corrections

1995, Volume 34

F. Ekkehardt Hahn, Michael Keck, and Kenneth N. Raymond*: Catecholate Complexes of Silicon: Synthesis and Molecular and Crystal Structures of [Si(cat)₂]·2THF and Li₂[Si(cat)₃]·3.5dme (cat = Catecholate Dianion).

Page 1403. In the synthesis of $Li_2[Si(cat)_3]$ -3.5dme, there is an error in the stoichiometry for the amounts as given. The following are correct: 1.04 mL of SiCl₄, which corresponds to 1.54 g or 9.067 mmol. The subsequent yield of $Li_2[Si(cat)_3]$ -3.5dme was 3.43 g.

IC951925W