The Benzannelation Approach to Novel Gallium and Indium Heterocycles

Andreas Decken, François P. Gabbaï, and Alan H. Cowley*

Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712

Received February 24, 1995

Main group heterocycles are of interest to the pharmaceutical, agricultural chemical, and materials science communities.¹ To date, most of the emphasis has been placed on carbocyclic systems that incorporate an element from groups 14-16. Interestingly, and with the obvious exception of boron,² there is a paucity of information concerning the corresponding ring systems of the heavier group 13 elements.³ Recognizing that element–carbon bonds are significantly weaker for the heavier congeners, we have targeted group 13 ring systems in which the bonding is enhanced by conjugation and/or benzannelation. Here we report a new class of benzannelated heterocycles involving gallium and indium.

Experimental Section. General Considerations. All experiments were performed under anaerobic and anhydrous conditions using standard Schlenk techniques or a HE-493 Vacuum Atmospheres drybox. Solvents were dried over sodium and distilled from sodium benzophenone ketyl under argon prior to use. Ar*GaCl₂,^{4.5} Ar*InBr₂,⁴ 2,2'-dilithiobiphenyl,⁶ and 2,2'-dilithiobiphenyl•2TMEDA⁷ were prepared according to literature procedures. The GaCl₃ was used as received (Strem). NMR spectra were recorded on a GE QE-300 spectrometer (¹H, 300.15 MHz; ¹³C, 75.48 MHz; 295 K). ¹H and ¹³C NMR spectra are referenced to C₆D₆ which was dried over sodium–potassium alloy and distilled prior to use; ¹H and ¹³C chemical shifts are reported relative to Si(CH₃)₄ (0.00 ppm).

Synthesis of 1. A mixture of Ar*GaCl₂ (768 mg, 2 mmol) and 2,2'-dilithiobiphenyl (332 mg, 2 mmol) in 10 mL of Et₂O was allowed to react at 25 °C for 4 h. The reaction mixture was filtered, following which the filtrate was concentrated and cooled to -20 °C. The yield of the resulting colorless crystals of 1 was 30%. MS (CI+), *m/e* (%): 467 = M⁺ (100). HRMS (CI+), *m/e*: calcd, 467.2229; found, 467.2224. Mp (uncorrected): 181 °C. ¹H NMR, δ : 7.91 (d, 7.8 Hz, 2H), 7.72 (d, 6.6 Hz, 2H), 7.56 (s, 2H), 7.30 (d, 6.6 Hz of d, 7.2 Hz, 2H),

- (2) (a) For a review, see: Morris, J. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds; Pergamon: Oxford, 1982; Vol 1, Chapter 5. (b) See also: Narula, C. K.; Nöth, H. Inorg. Chem 1985, 24, 2532. (c) Narula, C. K.; Nöth, H.; Prigge, H.; Rotsch, A.-R.; Gopinathan, S.; Wilson, J. W. J. Organomet. Chem. 1986, 310, 1.
- (3) (a) Krüger, C; Sekutowski, J. C.; Hoberg, H.; Krause-Going, R. J. Organomet. Chem. 1977, 141, 141. (b) Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988, 110, 2310. (c) Cowley, A. H.; Gabbaï, F. P.; Decken, A. Angew. Chem., Int. Ed. Engl. 1994, 33, 1370. (d) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 1880. (e) Cowley, A. H.; Corbelin, S.; Jones, R. A.; Lagow, R. J.; Nail, J. W. J. Organomet. Chem. 1994, 464, C1. (f) Herberich, G. E.; Englert, U.; Posselt, D. J. Organomet. Chem. 1994, 461, 21. (g) Schumann, H.; Just, O.; Seuss, T. D.; Görlitz, F. H. J. Organomet. Chem. 1994, 466, 5.
- (4) Schultz, S.; Pusch, S. Pohl, E.; Dielkus, S.; Herbst-Irmer, R.; Meller, A; Roesky, H. W. Inorg. Chem. 1993, 32, 3343.
- (5) Petrie, M. A., Power, P. P., Rasika Dias, H. V., Ruhlandt-Senge, K., Waggoner, K. M., Wehmschulte, R. J. Organometallics 1993, 12, 1086.
- (6) Gilman, H., Gorsich, R. D. J. Am. Chem. Soc. 1955, 77, 6380.
- (7) Neugebauer, W.; Kos, A. J.; Schleyer, P. v. R. J. Organomet. Chem. 1982, 228, 107.

7.22 (d, 6.9 Hz of d, 7.2 Hz, 2H), 1.35 (s, 9H), 1.33 (s, 18H). ¹³C NMR, δ : 157.8 (q), 151.0 (q), 149.7 (q), 145.1 (q), 135.6, 130.2, 121.8, 121.0, 37.8 (q), 35.1 (q), 33.3, 32.6.

Synthesis of 3. A solution of GaCl₃ (350 mg, 2 mmol) in 5 mL of Et₂O was added dropwise to a solution of 2,2'dilithiobiphenyl (400 mg, 2.4 mmol) in 5 mL of Et₂O at -78 °C. Stirring was continued for 2 h at -78 °C after which the reaction mixture was allowed to warm to 25 °C. After being stirred for 1 h at 25 °C, the reaction mixture was filtered and the solvent was removed under reduced pressure to yield a pale yellow oil. Alternatively, the filtrate was treated immediately with Ar*Li (504 mg, 2 mmol) in 10 mL THF. The resulting reaction mixture was filtered, following which the filtrate was concentrated and cooled to -20 °C to afford a <10% yield of colorless powder 1.

Synthesis of 4. A mixture of Ar*InBr₂ (104 mg, 0.2 mmol) and 2,2'-dilithiobiphenyl•2TMEDA (90 mg, 0.23 mmol) in 4 mL of Et₂O was allowed to react at -78 °C for 30 min, during which time the yellow reaction mixture became colorless and a precipitate formed. The reaction mixture was warmed to 25 °C, filtered, and the solvent was removed from the filtrate to afford colorless, microcrystalline 4 in ~13% yield. MS (CI+), *m/e* (%): 513 = M + H (57). HRMS (CI+), *m/e*: calcd, 513.2012; found, 513.2015. ¹H NMR, δ : 8.09 (d, 6.6 Hz, 2H), 7.90 (d, 6.6 Hz, 2H), 7.59 (s, 2H), 7.32 (m, 2H), 7.20 (d, 6.6 Hz of d, 7.5 Hz, 2H), 1.36 (s, 9H), 1.29 (s, 18H). ¹³C NMR, δ : 157.5 (q), 155.1 (q), 150.4 (q), 149 (q), 137.6, 129.7, 129.0, 122.9, 120.9, 37.0 (q), 35.1 (q), 32.6, 31.6.

Crystal Structure of 1. A colorless crystal of 1 suitable for X-ray diffraction study was obtained by cooling a concentrated solution of 1 in Et_2O to -20 °C. The crystal was mounted in a thin walled glass capillary under argon and sealed. A selection of crystal and refinement data is collected in Table 1.

The cell dimensions were determined by least-squares refinement of 25 reflections with $18 < 2\theta < 25^{\circ}$. Molecules of 1 crystallize in the triclinic space group $P\overline{1}$ with 2 molecules per unit cell. A total of 4592 independent reflections were collected on an Enraf Nonius CAD4 diffractometer at 300 K ($2\theta - \theta$ scan technique, $4 < 2\theta < 50^{\circ}$) using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Lorentz and polarization corrections were applied to the data. A total of 2703 reflections were observed ($F \ge 4.0\sigma(F)$) and used for structure solution (direct methods) and refinement. All non-hydrogen atoms were refined anisotropically and hydrogen atoms included in calculated positions and refined isotropically with a common thermal parameter. Full-matrix least-squares refinement on F using the SHELXTL-PLUS⁸ program package converged to R = 6.42%and a goodness of fit of 1.23.

Results and Discussion. As reported previously for analogous main group ring systems, transmetalation reactions involving metal halides and the corresponding zirconacycles can be employed to produce metallacyclopentadiene⁹ and

 ⁽a) Taylor, E. C., Ed. The Chemistry of Heterocyclic Compounds; Wiley: New York, 1993. (b) Wong, C. P., Ed. Polymers for Electronic and Photonic Applications; Academic: Boston, MA, 1993; pp 1-661.

⁽⁸⁾ Sheldrick, G. M. SHELXTL-PLUS; Siemens Analytical X-ray Instruments: Inc. Göttingen, Germany, 1990.

Table 1. Selected Crystallographic Data for 1

formula	C ₃₀ H ₃₇ Ga
fw	467.3
cryst size, mm	$0.12 \times 0.18 \times 0.24$
cryst syst	monoclinic
space group	$P\overline{1}$
a, b, and c, Å	9.078(1), 11.257(2), 13.231(1)
$\alpha, \beta, \text{ and } \gamma, \text{ deg}$	76.49(1), 84.59(1), 88.57(1)
V, Å3	1308.9(7)
Z	2
λ, Å	0.71073
$D_{\text{calcd}}, \text{g/cm}^3$	1.186
μ , mm ⁻¹	1.065
$R(F)$ and $R_{w}(F)^{a}$ %	6.42. 6.77

 ${}^{a}R = \sum ||F_{0}| - |F_{c}||/\sum |F_{o}|. R_{w} = \sum [w^{1/2}||F_{o}| - |F_{c}||]/\sum [w^{1/2}|F_{o}|].$ w = 1.0000/($\sigma^{2}(F)$ + 0.001000(F^{2}).

metallaindene¹⁰ compounds. Unfortunately, the "metallacycle transfer" synthetic methodology was not applicable in the present case because of the unavailability of the requisite zirconafluorene.¹¹

The first benzannelated species, a gallafluorene (1), was prepared via the salt elimination reaction of $Ar*GaCl_2$ ($Ar* = 2,4,6-t-Bu_3C_6H_2$) with 2,2'-dilithiobiphenyl (2) (Scheme 1).

The corresponding reaction of 2 with GaCl₃ resulted in the formation of an unstable oil (3) which was not isolated but treated in situ with Ar*Li to afford a low yield of 1. The proposed formulation for 1 is consistent with the ${}^{1}H$ and ${}^{13}C$ NMR spectral data, the observation of an HRMS peak corresponding to M^+ , and a satisfactory combustion analysis. Confirmation was provided by an X-ray crystallographic study. Individual molecules of 1 (Figure 1) crystallize in the triclinic space group $P\overline{1}$, and there are no short intermolecular contacts. The GaC₄ ring is planar within experimental error and the largest deviation is found for the gallium atom which protrudes 0.09 Å from the mean plane of the five-membered ring. Comparison of the metrical parameters for the GaC4 ring of the benzannelated and non-benzannelated^{3c} systems reveals that in the former the $C_{\alpha} - C_{\beta}$ distances are ~0.1 Å smaller due to the involvement of the double bonds in the aromatic π system. It should be noted that the metrical parameters for the biphenyl skeleton in the gallafluorene and the free hydrocarbon¹² are virtually

Figure 1. Crystal structure and numbering scheme for 1 at the 30% probability level, with hydrogen atoms omitted for clarity. Important bond distances (Å) and angles (°): Ga-C(1) = 1.949(6), Ga-C(24a) = 1.969(6), Ga-C(25a) = 1.954(8), C(24a)-C(30) = 1.42(1), C(29)-C(30) = 1.48(1), C(29)-C(25a) = 1.400(9); C(1)-Ga-C(24a) = 130.5(3), C(1)-Ga-C(25a) = 139.2(3), C(24a)-Ga-C(25a) = 90.2(3), Ga-C(24a)-C(30) = 106.5(4), C(24a)-C(30)-C(29) = 118.0(5), Ga-C(25a)-C(29) = 108.0(5), C(25a)-C(29)-C(30) = 117.0(6).

identical. The only significant difference can be found in the distortion of the biphenyl system to accommodate the gallium atom in the five-membered ring. The angles C(24A)-C(30)-C(29) (118.0(5)°) and C(25A)-C(29)-C(30) (117.0(6)°) are notably smaller than those in the free ligand (123.8(5)°). The dihedral angle between the Ar* and gallafluorene rings is 88.7°; hence the *ortho-t*-Bu groups provide steric protection above and below the trigonal planar gallium center (sum of bond angles = $359.3(3)^{\circ}$). A further point of structural interest relates to the short contact between the gallium atom and H(9C) (2.004 Å). One of the *t*-Bu groups is oriented such that the aforementioned hydrogen atom points toward the gallium center. The Ga-aryl and Ga-C(ring) bond lengths are almost identical and fall within the single bond range.

Interestingly, there was no evidence of reaction between 2 and Ar*InBr₂ and, as a consequence, it was necessary to employ the activated reagent 2.2TMEDA (Scheme 1). We have not been successful in growing single crystals of the indafluorene 4 because of the presence of traces of LiBrTMEDA in the product. Nevertheless, the identity of 4 is clear from the observation of the M⁺ ion by high-resolution CI mass spectroscopy and also from the fact that the ¹H and ¹³C{¹H} NMR spectra for 4 are extremely similar to those for 1.

Acknowledgment. Gratitude is expressed to the National Science Foundation and the Robert A. Welch Foundation for generous financial support.

Supporting Information Available: Tables of X-ray crystallographic data, bond distances, bond angles, atomic parameters, and thermal parameters for **1** (8 pages). Ordering information is given on any current masthead page.

IC9501982

⁽⁹⁾ See, for example, ref 3a,c and literature cited therein.

⁽¹⁰⁾ Buchwald, S. L.; Fisher, R. A.; Foxman, B. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 771.

⁽¹¹⁾ The titanium analogue is known; however, this compound has not been isolated in synthetically useful yields. See: Rausch, M. D.; Kleemann, L. P.; Boon, W. H. Synth. React. Inorg. Met.-Org. Chem. 1985, 15, 923.

⁽¹²⁾ Charbonneau, G.-P.; Delugeard, Y. Acta Crystallogr., Sect. B 1977, 33, 1586.