Uncharged Mixed-Ligand Clusters with the $[Fe_4S_4]^+$ and $[Fe_4S_4]^{2+}$ Cores. Synthesis, Structural Characterization, and Properties of the $Fe_4S_4X(^*Bu_3P)_3$ (X = Cl, Br, I) and $Fe_4S_4(SPh)_2(^*Bu_3P)_2$ Cubanes

Marni A. Tyson, Konstantinos D. Demadis, and Dimitri Coucouvanis*

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055

Received June 2, 1995

Highly reduced Fe/S clusters that formally contain mostly or entirely tetrahedrally coordinated Fe^{II} subsites are not commonly encountered among the non-heme iron-sulfur proteins.¹ In the latter the Fe/S cubane-type sites have been observed in the +3, +2, and +1 oxidation levels that contain the [Fe₄S₄]³⁺, [Fe₄S₄]²⁺, and [Fe₄S₄]⁺ cores.² A unique situation exists in the P-clusters of nitrogenase in which spectroscopic data indicate the presence of super-reduced cubanes that possibly contain [Fe₄S₄]^o cores.³ The presence of two bridged Fe₄S₄ subunits within the octanuclear P-clusters has been revealed in the recently determined structure of the FeMo protein of nitrogenase.⁴

The synthesis of single cubane clusters that contain the $[Fe_4S_4]^\circ$ core has not been realized. However the stabilization of reduced Fe/S clusters by aliphatic phosphines has been demonstrated in the "spontaneous-assembly" synthesis of the Fe₆S₆(PR₃)₄Cl₂ "basket" clusters.⁵ Our initial attempts to obtain Fe₄S₄ cubanes with aliphatic phosphines as terminal ligands were not successful, and substitution of the chloride ligands in the $[Fe_4S_4(Cl)_4]^{2-}$ cubanes⁶ with π -accepting, sterically unencumbered, PR₃ phospine ligands led to the collapse of the Fe₄S₄ unit and formation of the Fe₆S₆(PR₃)₄Cl₂ "basket" clusters.⁵ In contrast, with sterically hindered PR₃ ligands, the same reaction proceeds with a retention of the Fe₄S₄ core structure.

In this communication we report results of our synthetic studies with sterically hindered phosphines and the synthesis, structural characterization, and spectroscopic properties of the neutral, mixed-ligand Fe₄S₄ cubanes of the type Fe₄S₄X(PⁱBu₃)₃ (X = Cl, I, Br, II, and I, III). These molecules are the first example of uncharged iron-sulfur cubanes that contain the reduced [Fe₄S₄]⁺ core. Their synthesis is accomplished upon addition of 4 equiv of PⁱBu₃ (in tetrahydrofuran, THF, solution) to an acetonitrile, CH₃CN, solution of the appropriate (Bu₄N)₂-[Fe₄S₄X₄] cluster,⁶ with the subsequent addition of NaBPh₄. After removal of NaX, the compounds are obtained in crystalline form, in ~60% yields, by slow crystallization from CH₃CN after

- (1) Spiro, T. G. Iron-Sulfur Proteins; Wiley-Interscience: New York, 1982; Vol. 4.
- (2) (a) Berg, J. M.; Holm, R. H. In *Metal Ions in Biology*; Spiro, T. G., Ed.; Wiley-Interscience: New York, 1982; Vol. 4, Chapter 1. (b) Holm, R. H.; Ciurli, S.; Weigel, J. A. In *Progress in Inorganic Chemistry: Bioinorganic Chemistry*; Lippard, S. J., Ed.; John Wiley & Sons, Inc.: New York, 1990; Vol. 38, p 1.
- (3) Burgess, B. K. In Molybdenum Enzymes, Cofactors and Model Systems; Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993; Chapter 10.
- (4) (a) Chan, M. K.; Kim, J.; Rees, D. C. Science 1993, 260, 792. (b) Bolin, J. T.; Ronco, A. E.; Morgan, T. V.; Mortenson, L. E.; Xuong, N. H. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1078. (c) Rees, D. C.; Kim, J.; Georgiadis, M. M.; Komiya, H.; Chirino, A. J.; Woo, D.; Schlessman, J.; Chan, M. K.; Joshua-Tor, L.; Santillan, G.; Chakrabarti, P.; Hsu, B. T. In Molybdenum Enzymes, Cofactors and Model Systems; Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993; Chapter 11. (d) Bolin, J. T.; Campobasso, N.; Muchmore, S. W.; Morgan, T. V.; Mortenson, L E. Ibid., Chapter 12.
- (5) Snyder, B. S.; Holm, R. H. Inorg. Chem. 1988, 27, 2339.
- (6) Wong, G. B.; Bobrick, M. A.; Holm, R. H. Inorg. Chem. 1978, 17, 578.

Figure 1. EPR spectrum of the $Fe_4S_4({}^{1}Bu_3P)_3Cl$ cluster in frozen CH_2 - Cl_2 solution at 32 K.

removal of THF in vacuo. The crystals of I-III are obtained as CH₃CN monosolvates.⁷ In the syntheses of I, II, or III, the isolation of 'Bu₃P=S⁸ as a reaction byproduct indicates that the ^tBu₃P reagent abstracts μ_3 -S²⁻ from the [Fe₄S₄X₄]²⁻ starting material in a reductive desulfurization process⁹ that accounts for the observed core reduction in the final product. In the $Fe_6S_6(PR_3)_4Cl_2$ "basket" clusters,⁵ the Fe atoms bound to the PR₃ ligands show a trigonal pyramidal coordination that apparently has considerable stability and may play a significant role in the rearrangement of the reduced Fe₄S₄ clusters and formation of the hexanuclear "basket" structure. The retention of the cubane structure in the synthesis of I, II, or III (with tetrahedral $(\mu$ -S)₃Fe(P^tBu₃) units) very likely is a direct consequence of steric effects and the fact that trigonal pyramidal coordination for a $(\mu$ -S)₃Fe(P^tBu₃) unit (a structural feature of the Fe₆S₆ "basket" clusters) is structurally incompatible with the $\sim 180^{\circ}$ cone angle¹⁰ of the P^tBu₃ ligand.

The EPR spectra of frozen CH₂Cl₂ solutions of I (Figure 1), II, and III at 32 K are consistent with a pure $S = \frac{1}{2}$ ground state, with $g_{av} \approx 2.00$. Magnetic susceptibility measurements of I¹¹ as a function of temperature show antiferromagnetic coupling and the magnetic moment approaches $S = \frac{1}{2}$ at low temperatures.

- (9) Precedents of alkylphosphines functioning as sulfur receptors from Fe/S clusters include the following: (a) Pohl, S.; Opitz, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 863. (b) Scott, M. J.; Holm, R. H. Angew. Chem., Int. Ed. Engl. 1993, 32, 564. (c) Demadis, K. D.; Campana, C. F.; Coucouvanis, D. J. Am. Chem. Soc., in press.
- (10) Tolman, C. A. Chem. Rev. 1977, 77, 33.
- (11) Magnetic data of I were collected on a SQUID magnetometer from 4 K ($\mu_{eff} = 2.25 \ \mu_{B}$) to 300 K ($\mu_{eff} = 4.79 \ \mu_{B}$).

⁽⁷⁾ Anal. Calc for Fe₄S₄ClP₃NC₃₆H₈₄, **I** (MW = 1035): C, 44.09; H, 8.18; N, 1.35. Found: C, 44.06; H, 7.96; N, 1.25. Anal. Calc for Fe₄S₄-BrP₃NC₃₆H₈₄, **II** (MW = 1080): C, 42.28; H, 7.84; N, 1.30. Found: C, 42.46; H, 7.62; N, 1.07. Anal. Calc for Fe₄S₄IP₃NC₃₆H₈₄, **III** (MW = 1127): C, 40.51; H, 7.52; N, 1.24. Found: C, 39.80; H, 7.52; N, 1.42. Vibrations at 485 (m), 501 (s), 663 (m), 808 (s), 934 (m), 1023 (vs), 1176 (vs), four bands from 1371 to 1483 (vs), and six bands from 2872 to 3012 (vs) cm⁻¹ attributable to the PⁱBu₃ ligand occur in the mid infrared spectrum of **II**: 305 (s), 367 (s) cm⁻¹. Far infrared spectrum of **II**: 290 (m), 367 (s) cm⁻¹. The electronic spectra of **I**-**III** (in CH₂Cl₂) are featureless, with a gradual increase in absorption from 700 to 250 nm.

⁽⁸⁾ Phosphine sulfide was identified by infrared spectroscopy.

Figure 2. Structures of the $Fe_4S_4({}^{t}Bu_3P)_3Cl(A)$ and the $Fe_4S_4(SPh)_2({}^{t}Bu_3P)_2(B)$ clusters, showing the labeling scheme and 40% probability ellipsoids drawn by ORTEP. Mean values of selected interatomic distances (Å) and angles (deg) are reported with the first number in parentheses representing the calculated standard deviation from the mean and the second the number of *n* independent distances or angles as follows. A: Fe···Fe, 2.768(9, 6) (range: 2.737(4)-2.802(5)); Fe-S, 2.297(7, 12) (range: 2.266(7)-2.324(6)); Fe-P, 2.458(7,3) (range: 2.452(7)-2.463(6)); Fe-Cl, 2.244(5, 1); Fe-Fe-Fe, 60.0(2, 12); Fe-S-Fe, 74.1(2, 12); S-Fe-S, 103.9(3, 12); S-Fe-P 115 (1, 9) (range: 112.6(2)-118.6(2)). B (located on a crystallographic 2-fold axis): Fe···Fe, 2.740(5, 3) (range: 2.729(2)-2.749(1)); Fe-S, 2.298(2, 2); Fe-S, 2.267(8,4) (range: 2.257(2)-2.287(2)); Fe-SR, 2.257(2), 2.240(3); Fe-P, 2.468(2); Fe-Fe-Fe, 60.0(2, 12); Fe-S-Fe, 74.1(2, 12); S-Fe-S, 103.9(3, 12); S-Fe-S, 103.9(3, 12); S-Fe-P, 115 (1, 9) (range: 109.7(1)-119.5-(1))).

The structure of I has been determined.¹² The neutral cluster approaches idealized C_{3v} symmetry when viewed down the Fe-Cl bond (Figure 2A). The Fe_4S_4 core shows the now classical cubane structure with mean Fe-S and Fe-Fe bond lengths of 2.297(7) and 2.768(10) Å, respectively. These values are within 3σ from those previously reported for a plethora of $[Fe_4S_4]^+$ cores¹³ and only slightly longer than those of the $[Fe_4S_4]^{2+}$ cores in the oxidized clusters.² Unlike the multitude of core distortions (and subsets of Fe-S bonds) found in reduced clusters with terminally coordinated RS⁻ ligands,¹³ the Fe-S bonds in I cannot be separated in identifiable, statistically significant, subsets. The mean Fe-P bond length in the distorted tetrahedral $(\mu$ -S)₃Fe(PⁱBu₃) unit at 2.458(7) Å is 0.149 Å longer than that found for the trigonal pyramidal $(\mu$ -S)₃Fe(PⁿBu₃) units in the $Fe_{6}S_{6}(P^{n}Bu_{3})_{4}Cl_{2}$ cluster.⁵ The Fe-Cl bond length is only slightly longer than the Fe-Cl bonds found in the oxidized, mixed-ligand cubanes.14

The cyclic voltammetry of I in 1,2-dichloroethane on a Pt electrode (vs Ag/AgCl) shows a quasi-reversible (q-r.) oxidation at -69 mV ($\Delta E = 107 \text{ mV}$) and an irreversible reduction at -1200 mV. The Br⁻ (II) and I⁻ (III) analogs display identical patterns.¹⁵ It is worth emphasizing that in I-III, the [Fe₄S₄]²⁺/ [Fe₄S₄]⁺ core redox couple occurs at potentials 600-1200 mV

- (13) (a) Carney, M. J.; Papaefthymiou, G. C.; Frankel, R. B.; Holm, R. H. Inorg. Chem. 1989, 28, 1497. (b) Carney, M. J.; Papaefthymiou, G. C.; Spartalian, K.; Frankel, R. B.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 6084.
- (14) (a) Kanatzidis, M. G.; Baenzinger, N. C.; Coucouvanis, D.; Simopoulos, A.; Kostikas, A. J. Am. Chem. Soc. 1984, 106, 4500. (b) Weigel, J. A.; Srivastava, K. P.; Day, E. P.; Münck, E.; Holm, R. H. J. Am. Chem. Soc. 1990, 112, 8015. (c) Stack, T. P. D.; Holm, R. H. J. Am. Chem. Soc. 1988, 110, 3484.
- (15) Voltammetry of **II** (Pt working, Ag/AgCl reference, in 1,2-dichloroethane, Bu₄NPF₆ supporting electrolyte): oxidation (q-r.) at -32 mV($\Delta E = -144 \text{ mV}$) and a reduction at -1300 mV (irreversible, i.r.). Voltammetry of **III**: oxidation (q-r.) at -80 mV ($\Delta E = -161 \text{ mV}$) and a reduction at -1350 mV (i.r.) at scan rates of 400 mV/s.

less negative than that observed in other synthetic Fe/S cubanes and underscores the stabilization of the reduced state¹⁶ by the $P^{t}Bu_{3}$ ligands.

An attempt to replace the Cl⁻ ligand in I with PhS⁻ has led to the formation of the oxidized, neutral $[Fe_4S_4(SPh)_2(P'Bu_3)_2]^\circ$ cluster, IV, in what appears to be an "all or nothing" low-yield reaction. In the presence of PhSSPh as an oxidizing agent, the reaction of I with 1 equiv of NaSPh proceeds to form IV in 90% yield.¹⁷ The structure of the EPR silent (32 K) IV has been determined¹⁸ (Figure 2B). The $[Fe_4S_4]^{2+}$ core in this mixedligand cluster is located on a crystallographic 2-fold axis and shows axial elongation along an idealized 2-fold axis perpenticular to the crystallographic 2-fold axis. The mean values of the structural parameters are unexceptional and similar to those found in numerous other similar clusters. The cyclic voltammetry of IV shows a reversible reduction wave at -600 mV.

The new $P^{i}Bu_{3}$ cubanes with excellent solubility in nonpolar, noncoordinating solvents are expected to be well suited for the synthesis of new, reduced, Fe/S clusters of possible relevance to the P-clusters of the FeMo proteins of nitrogenase. Studies of the structural, electronic, and reactivity properties of these compounds are currently underway in our laboratory.

Acknowledgment. This work was made possible by funding from the National Institutes of Health (Grant GM-33080). The authors wish to thank Dr. R. H. Sands and Dr. W. R. Dunham for obtaining EPR spectra.

Supporting Information Available: Listings of positional parameters, thermal parameters, selected bond distances and angles, and crystal data (16 pages). Ordering information is given on any current masthead page.

⁽¹²⁾ Crystal and refinement data: Black crystals of I are triclinic, space group $P\bar{1}$, with a = 11.476(6) Å, b = 14.54(1) Å, c = 18.186(9) Å, $\alpha = 68.14(6)^\circ$, $\beta = 86.59(4)^\circ$, $\gamma = 68.42(6)^\circ$, V = 2608(3) Å³, and Z = 2. Single-crystal diffraction data for I were collected on a Nicolet P3F diffractometer using MoK α radiation at ambient temperature. The solution of the structure was carried out using direct methods and Fourier techniques. The refinement of the structure by full-matrix least-squares methods was based on 6804 unique reflections ($2\theta_{max} = 45^\circ$, $I > 3\sigma(I)$). Refinement of 415 parameters has converged to $R(R_w) = 0.082$ (0.092).

IC950695I

⁽¹⁶⁾ I is readily oxidized by $[Fe(Cp)_2]PF_6$. Mid infrared spectrum shows $\nu(PF)$ at 559 (s) and 840 (vs) cm⁻¹. Far infrared spectrum: 346 (s), 354 (s), 371 (s), 377 (s) cm⁻¹.

⁽¹⁷⁾ Anal. Calc for $Fe_4S_6P_2C_{36}H_{64}$, IV (MW = 974.6): C, 44.37; H, 6.62. Found: C, 44.82; H, 6.70.

⁽¹⁸⁾ Compound IV crystallizes in monoclinic space group C2/c with a = 16.598(4) Å, b = 19.472(4) Å, c = 15.060(2) Å, $\beta = 112.36(1)^\circ$, and Z = 4. Single-crystal diffraction data for IV were collected on a Nicolet P3F diffractometer using Mo K α radiation at ambient temperature. The solution of the structure was carried out using direct methods and Fourier techniques. The refinement of the structure by full-matrix least-squares methods was based on 4734 unique relections ($2\theta_{max} = 45^\circ$, $l > 3\sigma(l)$). Refinement of 217 parameters converged to $R(R_w) = 0.037$ (0.036).