Steric and Electronic Effects on the ¹⁰³Rh NMR Shifts of (COD)Rh(phosphine) Complexes

Cornelis J. Elsevier,*,[†] Bernd Kowall,[†] and Hans Kragten[‡]

Anorganisch Chemisch Laboratorium, J. H. van't Hoff Research Institute, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Analytisch Chemisch Laboratorium, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received September 30, 1994[®]

¹⁰³Rh NMR data of several series of (COD)Rh(phosphine) complexes, (COD)Rh(PR₃)Me, (COD)Rh(PR₃)Cl, {(COD)Rh(PR₃)₂)}Y, {(COD)Rh(PPh₃)(py)}PF₆, (COD)Rh(PR₃)₂Me, and of one NBD complex, {(NBD)Rh- $(PPh_{3})_{2}PF_{6}$, have been measured by inverse two-dimensional ¹H,¹⁰³Rh- or ³¹P,¹⁰³Rh{¹H} NMR. Within the series, $\delta(^{103}\text{Rh})$ extends from -332 for (COD)Rh(PMe_3)₂Me to +557 ppm for (COD)Rh(P(NMe_2)_3)Cl. Upon variations in the first coordination sphere, deshielding increases in the order $PR_3 < CH_3 < py \sim Cl$. Going from $P(OMe)_3$ to trialkylphosphines to $P(NMe_2)_3$ the same trend for $\delta(^{103}Rh)$ is observed within different series of compounds, which allows an interpretation of the Rh shift which is based on the properties of the phosphorus ligand. A systematic variation of PR_3 reveals that paramagnetic shielding of the metal nucleus is caused by an increase in the basicity as well as the cone angle of the ligand. Within a subseries, $\delta^{(103}$ Rh) may quantitatively be described by invoking parameters that are a measure of the basicity and the cone angle of the phosphine ligand. There is no general correlation between $\delta(^{103}\text{Rh})$ and ^{31}P NMR data. Explanations of the observed trends in $\delta(^{103}$ Rh) in terms of the paramagnetic shift are given.

Introduction

¹⁰³Rh NMR has long been considered to be difficult due to the low gyromagnetic ratio of the ¹⁰³Rh nucleus ($\Xi = 3.16$ MHz).¹ Although direct observation on high-field spectrometers has been shown to be possible,^{2,3} polarization transfer techniques like INEPT^{4,5} and inverse 2D NMR⁶⁻¹¹ have proved more convenient. Inverse 2D 103Rh, X NMR leads to a theoretical sensitivity enhancement of 360 for $X = {}^{31}P$ and 5630 for X =¹H, respectively, and therefore provides a powerful tool to obtain ¹⁰³Rh NMR data for compounds with an observable ¹H, ¹⁰³Rh or ³¹P,¹⁰³Rh coupling constant.

The number of ¹⁰³Rh NMR data in the literature still remains restricted although some reviews have been published.¹²⁻¹⁵ To take account of changes in the first coordination sphere, a series of the most common ligand atoms has been given by Mann;¹⁵

- [‡] Analytisch Chemisch Laboratorium, Universiteit van Amsterdam.
- * Abstract published in Advance ACS Abstracts, August 1, 1995.
- (1) Kidd, R. G. Annu. Rep. NMR Spectrosc. 1980, 10A, 1.
- (2) Bonnaire, R.; Davoust, D.; Platzer, N. Org. Magn. Reson. 1984, 22,
- (3) Grüninger, K.-D.; Schwenck, A.; Mann, B. E. J. Magn. Reson. 1980, 41, 354
- (4) Brevard, C.; Schimpf, R. J. Magn. Reson. 1982, 47, 528.
- (5) Brevard, C.; van Stein, G. C.; van Koten, G. J. Am. Chem. Soc. 1981, 103. 6746.
- (6) Benn, R.; Brevard, C. J. Am. Chem. Soc. 1986, 108, 5622.
- (7) Benn, R.; Brenneke, H.; Rufinska, A. J. Organomet. Chem. 1987, 320, 115.
- (8) Benn, R.; Rufinska, A. Magn. Reson. Chem. 1988, 26, 895.
- (9) Elsevier, C. J.; Ernsting, J. M.; de Lange, W. G. J. J. Chem. Soc., Chem. Commun. 1989, 585.
- (10) Ernsting, J. M.; Elsevier, C. J.; de Lange, W. G. J.; Timmer, K. Magn. Reson. Chem. 1991, 29, 118.
- (11) Bender, B. R.; Koller, M; Nanz, D.; von Philipsborn, W. J. Am. Chem. Soc. 1993, 115, 5889.
- (12) Kidd, R. G.; Goodfellow, R. J. in: Harris, R. K., Mann, B. E. NMR and the Periodic Table; Academic Press: London, 1978.
- (13) Benn, R.; Rufinska, A. Angew. Chem. 1986, 98, 861.
 (14) von Philipsborn, W. Pure Appl. Chem. 1986, 58, 513.
- (15) Mann, B. E. in: Pregosin, P. S. Transition Metal Nuclear Magnetic Resonance; Elsevier: Amsterdam, 1991; p 177.

the Rh nucleus is deshielded in the order O > Cl \sim N > Br > $I > S \sim Se > Te > P \sim As \sim Sb \sim H \sim C^* \sim C (C^* =$ sp²-carbon) and hence follows more or less the spectrochemical series.

However, there is still a lack of systematic shift structure correlations which allow a more detailed interpretation of the data in terms of the paramagnetic shift. Von Philipsborn et al.¹⁶ investigated mononuclear Rh(0) diene complexes and found some general trends how the ¹⁰³Rh chemical shifts depend on the nature of the diene ligands. Moreover, Graham et al.¹⁷ demonstrated that the ¹⁰³Rh shift correlates with a variety of substituent parameters in ring-substituted (η^5 -cyclopentadienyl)dicarbonylrhodium complexes.

Bonnaire et al.² studied the complexes (COD)Rh(PPh_{3-x}Cy_x)Cl with 0 < x < 3 and found a correlation between the ¹⁰³Rh chemical shifts and the ${}^{1}J({}^{31}P, {}^{103}Rh)$ coupling constants as well as between $\delta(^{103}\text{Rh})$ and the basicity of the phosphine. As such a correlation would a priori not be expected and since the authors take only four closely related compounds into account and do not consider steric effects, we found it timely to study some series of complexes apt to observe how the ¹⁰³Rh shift changes upon a systematic variation of the phosphorus ligands. This procedure should also give insight in factors leading to small differences in ¹⁰³Rh shifts of only some tens of parts per million.

Results and Discussion

The ³¹P and ¹⁰³Rh NMR spectra of the following compounds were measured: (i) (COD)Rh(PR₃)Me, 1-6; (ii) (COD)Rh-(PR₃)Cl, 7-18; (iii) {(COD)Rh(PR₃)₂}Y, 19-22; (iv) {(COD)- $Rh(PPh_3)(py-X)$ }PF₆, 23-25; (v) (COD) $Rh(PR_3)_2Me$, 26-27; (vi) $\{(NBD)Rh(PPh_3)_2\}PF_6$, 28. Their ¹⁰³Rh and ³¹P NMR shifts and ${}^{1}J({}^{31}P, {}^{103}Rh)$ coupling constants have been compiled in Table 1.

Graham, P. B.; Rausch, M. D.; Täschler, K.; von Philipsborn, W. Organometallics 1991, 10, 3049.

[†] J. H. van't Hoff Research Institute, Universiteit van Amsterdam.

⁽¹⁶⁾ Maurer, E.; Rieker, S.; Schollbach, M.; Schwenk, A.; Egolf, T.; von Philipsborn, W. Helv. Chim. Acta 1982, 65, 26.

Table 1. ¹⁰³Rh and ³¹P NMR Data for Complexes 1-28^{a,b}

		$\delta(^{103}\text{Rh})^c$	$\delta(^{31}P)$	$^{1}J(^{31}P,^{103}Rh)$
no.	compound	(ppm)	(ppm)	(Hz)
1	(COD)Rh(P(OMe) ₃)Me	-129	139.8	307
2	(COD)Rh(PMe ₃)Me	23	-13.8	175
3	(COD)Rh(PEt ₃)Me	57	18.4	174
4	(COD)Rh(P ⁿ Pr ₃)Me	73	8.9	174
5	$(COD)Rh(P^{n}Bu_{3})Me$	73	10.9	175
6	$(COD)Rh(P(NMe_2)_3)Me$	165	126.7	245
7	$(COD)Rh(P(OMe)_3)Cl$	253	123.0	249
8	(COD)Rh(PEt ₃)Cl	385	22.4	148
9	$(COD)Rh(P^{n}Pr_{3})Cl$	401	13.0	147
10	$(COD)Rh(P^{n}Bu_{3})Cl$	402	13.9	146
11	$(COD)Rh(P^{i}Pr_{3})Cl$	519	38.6	144
12	(COD)Rh(PCy ₃)Cl	527	27.0	142
13	(COD)Rh(PBz ₃)Cl	417	24.1	151
14	(COD)Rh(PMe ₂ Ph)Cl	358	2.4	148
15	(COD)Rh(PMePh ₂)Cl	348	18.6	151
16	(COD)Rh(PPh ₃)Cl	393	31.4	152
17	(COD)Rh(PpTol ₃)Cl	402	29.5	151
18	$(COD)Rh(P(NMe_2)_3)Cl$	557	110.4	199
19	$\{(COD)Rh(PPh_3)_2\}BPh_4$	-145	27.1	147
20	$\{(COD)Rh(PPh_2Me)_2\}ClO_4$	-267	11.8	145
21	$\{(COD)Rh(P^nBu_3)_2\}BPh_4$	-94	4.8	140
22	${(COD)Rh(PEt_3)_2}BPh_4$	-132	12.5	140
23	$\{(COD)Rh(PPh_3)(py)\}PF_6$	415	26.0	151
24	$\{(COD)Rh(PPh_3)(p-Me-py)\}PF_6$	419	26.0	152
25	$\{(COD)Rh(PPh_3)(p-Me_2N-py)PF_6\}$	436	26.1	152
26ª	$(COD)Rh(PMe_3)_2Me$	-332	-18.1	123
27 ^e	$(COD)Rh(PMe_2Ph)_2Me$	-278	-4.0	125
28	$\{(NBD)Rh(PPh_3)_2\}PF_6$	4	29.8	155

^{*a*} T = 298 K unless otherwise specified. ^{*b*} Cationic complexes in CDCl₃, all other complexes in C₆D₆ unless otherwise specified. ^{*c*} Relative to $\Xi = 3.16$ MHz; ± 1.5 ppm. ^{*d*} In C₇D₈ at 253 K. ^{*e*} In CD₂Cl₂ at 255 K.

Nuclear magnetic shielding of transition metal nuclei is composed of a diamagnetic and a paramagnetic term. It is widely accepted that the former has almost no influence on the nuclear magnetic shielding of transition metals,^{18–19} so only the paramagnetic term σ_p given by the Ramsey equation²⁰ later developed by Griffith and Orgel²¹ has to be taken into account:

$$|\sigma_{\rm p}| = \text{const.}(\Delta E)^{-1} \langle r_{\rm d}^{-3} \rangle \sum Q_{\rm N}$$
(1)

In this equation, ΔE is the average excitation energy, r_d is the expectation value of the d-orbital radius and $\sum Q_N$ is the angular imbalance of charge.

Changes in ΣQ_N generally bear a large influence on σ_p , but as the d-electron configuration, the symmetry and the nature of the ligands are kept constant within the investigated series (with the exception of compounds 26–28), a discussion of the observed ¹⁰³Rh NMR shifts can be focussed on ΔE and r_d alone.²²

The total chemical shift range of the ¹⁰³Rh nucleus is about 12.000 ppm.¹⁵ For the square-planar d⁸-complexes of this study, the obtained values extend from -267 ppm for {(COD)Rh-(PPh₂Me)₂}ClO₄ to +557 ppm for (COD)Rh(P(NMe₂)₃)Cl and thus lie at the low frequency end of the whole range. This can be explained by the fact that ΔE assumes large absolute values for square-planar complexes which leads to low values of the paramagnetic shifts.

Replacing COD for NBD in the cation $\{(COD)Rh(PPh_3)_2\}$ results in a high-frequency shift from -145 ppm in compound

- (21) Griffith, J. S.; Orgel, L. E. Trans. Faraday Soc. 1957, 53, 601.
- (22) Mason, J. Chem. Rev. 1987, 87, 1299.

Figure 1. Rh shifts of Me complexes 1-6 and Cl complexes 7-10 and 18.

19 to -4 ppm in compound **28**. This is in qualitative and quantitative agreement with earlier obtained results^{2.10} and thus justifies the idea of sticking to one series of diene complexes, *i.e.* the COD complexes in this investigation.

Influence of the Ligands in the First Coordination Sphere. The dependence of $\delta(^{103}$ Rh) on the substituents in the first coordination sphere parallels the above mentioned series given by Mann.¹⁵ As for the neutral complexes 1–18, the methyl compounds appear approximately 350–400 ppm shifted to low frequencies when compared to the chlorides. This can be explained by taking into account that the lone pair of the methyl anion has a higher energy level than that of the chloride anion. In a simple MO consideration, it therefore matches better with the d-orbitals of the metal center which leads to a larger energy splitting ΔE and a smaller paramagnetic shift and thus to a low-frequency shift.

A comparison of the 103 Rh chemical shift of the cationic complexes {(COD)Rh(PPh₃)₂}BPh₄, **19**, and {(COD)Rh(PPh₃)-(py)}PF₆, **23**, reveals that substitution of PPh₃ for pyridine causes a high-frequency shift of 560 ppm. As above, this effect may again be explained by the relative energies of the corresponding lone pairs which are generally higher for phosphines than for amines. Moreover, phosphines have a larger π -acceptor ability than pyridine and the effective π -interaction causes an additional increase in ΔE , which accounts for the relatively large low-frequency shift of the bis(phosphine) complexes.

Influence of the Substituents on the Coordinating Atom. For various first row transition metal PR₃ complexes, i.e. of V, Mn, Co, and Ni,²³ shielding differences caused by variation of steric and electronic properties of R have been investigated. It has been shown that the metal shift parallels the bulk and the basicity of the ligand. However, for the ¹⁰³Rh nucleus, analogous investigations have so far not been carried out in a systematic way. From Table 1 it can be seen that, in going from P(OMe)₃ to the homologous trialkylphosphines and finally to P(NMe₂)₃, the same trend of increasing δ (¹⁰³Rh) is observed for the methyl compounds (COD)Rh(PR₃)Me and for the chlorides (COD)Rh(PR₃)Cl (cf. Figure 1). In the cationic complexes {(COD)Rh(PR₃)₂}Y, a substitution of PEt₃ for PⁿBu₃ leads to a high frequency shift of 38 ppm (cf. 21 and 22), which is slightly more than double the value of 17 ppm found for the corresponding pair of (COD)Rh(PR₃)Cl complexes (cf. 8 and 10), matching the replacement of two ligands instead

⁽¹⁸⁾ Schmidt, H.; Rehder, D. Transition Met. Chem. 1980, 5, 214.

⁽¹⁹⁾ Nakano, T. Bull. Chem. Soc. Jpn. 1977, 50, 661.

⁽²⁰⁾ Ramsey, N. F. Phys. Rev. 1950, 77, 567; 1950, 78, 699; 1951, 83, 540; 1952, 86, 243.

⁽²³⁾ Rehder, D. Magn. Reson. Rev. 1984, 9, 125.

Table 2. $\delta^{(103}$ Rh) NMR Data for (COD)Rh(PR₃)Cl Complexes 7–18 and Parameters of the Corresponding Phosphorus Ligands

no.	PR ₃	$\delta(^{103}\text{Rh})$	θ (deg) ^a	$\nu (\mathrm{cm}^{-1})^b$
7	P(OMe) ₃	253	107	2079.5
8	PEt ₃	385	132	2061.7
9	P^nPr_3	401	132	2061.0 ^c
10	P ⁿ Bu ₃	402	132	2060.3
11	$P^{i}Pr_{3}$	519	160	2059.2
12	PCy ₃	527	170	2056.4
13	PBz ₃	417	165	2066.4
14	PMe ₂ Ph	358	122	2065.3
15	$PMePh_2$	348	136	2067.0
16	PPh_3	393	145	2068.9
17	Pp-Tol ₃	402	145	2066.7
18	$P(NMe_2)_3$	557	157	2061.9

 a Tolman's cone angle.²⁴ b Tolman's electronic parameter.²⁴ c Mean value of entry 8 and 10.

of one phosphine ligand in 21/22 as compared to 8/10. Replacing PPh₂Me by PPh₃ causes a high-frequency shift of 122 ppm in case of the cations (cf. 19 and 20) and of 45 ppm in case of the chlorides (cf. 15 and 16). It can be concluded that the trend observed for the neutral complexes (COD)Rh-(PR₃)Cl and (COD)Rh(PR₃)Me is even amplified in case of the cationic compounds {(COD)Rh(PR₃)₂}Y where substitution of two phosphine ligands is considered. These observations show that an interpretation of the Rh shift is possible by focussing on the properties of the phosphorus ligands. A priori, factors like the cone angle and the basicity of the phosphine would seem to be crucial parameters.

The steric properties of the phosphines are best characterized by Tolman's cone angle θ , and the basicity is taken into account by using Tolman's electronic parameter ν .²⁴ The latter is the IR frequency of the A₁ carbonyl mode of Ni(CO)₃L which can also be considered to be a measure of the combined σ -donor and π -acceptor ability of the ligands L. For the chloride compounds 7–18, the Rh shifts and the corresponding cone angles and electronic parameters have been collected in Table 2.

In order to seperate the steric and electronic parameters, pairs of compounds with similar cone angles, but fairly large differences in basicity and vice versa are considered. On the one hand, $\delta(^{103}$ Rh) of the compounds 8 and 10, 8 and 15, 11 and 13, and 16 and 17, shows that an increase in basicity (i.e. increase in energy of the lone pair) leads to an increase of the paramagnetic shielding of the Rh nucleus and hence shift towards higher frequency. On the other hand, $\delta(^{103}$ Rh) of pairs of compounds 9 and 11, 8 and 18, and 15 and 17 indicates that larger cone angles also cause an increase of paramagnetic shielding. Within the series of the PMe_{3-x}Ph_x complexes (x =1-3) the steric and electronic effects are opposed. For this reason no linear dependence of $\delta(^{103}$ Rh) on the number of methyl groups is observed within that series.

In order to get an idea about the relationship between the Rh shift and the variables cone angle and basicity, linear regression has been applied to the data set of the chloride compounds 7 to 17. Model selection based on R^2 as well as stepwise regression support the selection of the equation:²⁵

$$\delta(^{103}\text{Rh}) = 395.3 + 2.24(\theta - \theta_{av}) - 7.1(\nu - \nu_{av}) - 0.08(\theta - \theta_{av})(\nu - \nu_{av})$$

102

By doing so, 95% of the variability of the Rh shift can be explained by this equation. Compared to the remaining variability of 5% the terms ν^2 and θ^2 do not significantly contribute and can be neglected. When substituting numerical values into this equation, it appears that the terms involving θ and ν contribute almost equally to the shift and the product term only to a small extent.

For an interpretation of the steric and electronic influences, these parameters must be brought into connection with the parameters ΔE and r_d in eq 1. The bulkier the phosphorus ligands in (COD)Rh(PR₃)Cl are, the larger is the deviation from 90° geometry and the weaker is the Rh–P bond. Weak interaction between metal and ligands gives rise to smaller ΔE and thus a high-frequency shift. Furthermore, the bond is less covalent and the d-electrons are closer to the metal nucleus; following eq 1, smaller values of r_d reinforce the effect of deshielding the rhodium nucleus. A comparable effect has been observed for bis(diphenylphosphine)methane complexes of the types {(COD)Rh(L₂)}⁺ and {Rh(L₂)₂⁺, respectively:¹⁰ a strong deviation from the ideal geometry of square-planar d⁸-complexes leads to a considerable high-frequency shift.

Electronic effects related to the relative donor character of the phosphines are less important. More basic ligands will increase the electron density on Rh and hence reinforce local paramagnetic effects, leading to high-frequency shifts. Apparently, this effect is stronger than the expected (slight) increase of ΔE , which should lead to an opposite shift. Increase of π -acceptor character (as in the aryl phosphines) will lead to larger values of ΔE and cannot explain the observed highfrequency shift of the Rh nucleus in those cases.

In the pyridine complexes $\{(COD)Rh(PPh_3)(py)\}PF_6, 23-25$, introduction of electron-donating groups (Me, NMe₂) at the para-position leads to a slight increase of electron density on rhodium which, by the line of argumentation used above, produces a larger paramagnetic shift.

Comparison of the Rh Shifts of Chelate Compounds with Those of Open-Chain Analogues. Ring size effects in chelate complexes are reflected by the chemical shift of various transition metals like vanadium,²⁶ platinum,²⁷ and rhodium.¹⁰ In all cases strong deviations from ideal geometry which are found in the four-membered chelate rings of dppm-complexes lead to an appreciable high-frequency shift as compared to systems with bond angles of 90° such as five-membered chelates.

In the series {(diene)Rh(R₂P(CH₂)_nPR₂)}Y¹⁰ as well as in chelate complexes of other metals^{26,27} an appreciable lowfrequency shift is observed for the four-, six-, and eightmembered metallacycles. In the rhodium complexes, the lowest δ (¹⁰³Rh) values are found for the five-membered rings; upon increase or decrease of the ring size, the Rh shift increases steadily. In order to seperate the chelate effect from other parameters, we substituted the bidentate ligand R₂P(CH₂)_nPR₂ by two monodentate ligands R₂PMe or R₂PEt (cf. compounds **20** and **22**), which should hardly influence the basicity of the phosphorus ligands. Thus $\Delta\delta$ of corresponding pairs of complexes expresses the influence of the chelate effect on the Rh NMR shift:

⁽²⁴⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽²⁵⁾ Where θ_{av} and ν_{av} represent the average Tolman cone angle (140.5°) and Tolman electronic parameter (2064.8 cm⁻¹), respectively, within the series. The standard deviation in the constant is 6.5; s.d.'s in the coefficients are 0.40, 1.3, and 0.04.

⁽²⁶⁾ Rehder, D. J. Magn. Reson. 1980, 38, 419.

⁽²⁷⁾ Hietkamp, S.; Stufkens, D. J.; Vrieze, K. J. Organomet. Chem. 1979, 169, 107.

107

$$\Delta \delta = \delta({}^{103}\text{Rh})\{(\text{COD})\text{Rh}(\text{R}_2\text{P}(\text{CH}_2)_n\text{PR}_2)\}\text{Y} - \delta({}^{103}\text{Rh})\{(\text{COD})\text{Rh}(\text{R}_2\text{PR'})_2\}\text{Y}$$

In the case of R = Ph, R' = Me, $\Delta\delta$ is 238 ppm for n = 2and 4 ppm for n = 4; in the case R = R' = Et, $\Delta\delta$ is 401 ppm for n = 2 and 6 ppm for n = 5. These data clearly imply that the chelate effect does not influence the Rh shift of seven- and eight-membered diphospharhodacycles, whereas a large chelate effect operates in small rings.

In five- to seven-membered diphosphametallacycles a similar trend for the metal shift is not always found: as in {(COD)-Rh(R₂P(CH₂)_nPR₂)}Y, the metal shift increases steadily in the vanadium complexes *cis*-[Et₄N][V(CO)₄(Ph₂P(CH₂)_nPPh₂)] and HV(CO)₄(Ph₂P(CH₂)_nPPh₂) upon increase of the ring size from five to seven atoms and approaches the values observed for the open-chain compounds.²⁶ However, irregularities are observed in the series (Ph₂P(CH₂)_nPPh₂)PtMe₂²⁷ and cis-[(η^{5} -C₅H₅) V(CO)₂(Ph₂P-(CH₂)_nPPh₂)];²⁶ in the latter, the vanadium nucleus in the Ph₂P(CH₂)₄PPh₂ complex is much more shielded than in the Ph₂P(CH₂)₂PPh₂ complex and the shift value of the former deviates strongly from that in the corresponding Ph₂PMe complex.

In the trigonal-bipyramidal, 18-electron complexes (COD)-Rh(PR₃)₂Me, **26** and **27**, the charge imbalance factor is probably very different from that in the square-planar d⁸-complexes (COD)Rh(PR₃)Me, **1**-6; hence direct comparison with known compounds or **1**-**25** is not warranted. It is striking, however, that the shift of **27** does not differ much from that of **20**, so one could argue that the effect of the fifth (alkyl) ligand is not very large. The data for **26** and **27** represent, together with those of compounds **1**-**6**, a significant contribution to the very few known shifts of *alkylr*hodium(I) complexes.

Lack of Correlation between the Rh Shift and the P, Rh Coupling Constant. ${}^{1}J({}^{31}P,{}^{103}Rh)$ is a measure of the σ -bond order of the P–Rh bond and therefore reflects the strength of the metal–phosphorus bond. The degree of metal–ligand interaction bears a strong influence on ΔE and r_d and involves mainly d-orbital energies and radii. Therefor, an attempt to correlate $\delta({}^{103}Rh)$ and ${}^{1}J(P,Rh)$ seems to be a priori unwarranted.

Nevertheless, Bonnaire et al.,² who studied the chlorides (COD)Rh(L)Cl with $L = PPh_{3-x}Cy_x$ (x = 0 -3) have correlated the observed linear increase of the Rh shift with increase of the number of cyclohexyl groups to ¹J(P,Rh) for these compounds. The observed correlation is not surprising because the basicity and cone angle within this limited series of phosphines change into the same direction upon substitution of phenyl for cyclohexyl. Our results given in Table 1 clearly show that, as expected, such a correlation does not exist when the extended series **7**-1**8** is taken into account.

The trend in the series of the PPh_{3-x}Cy_x complexes can be explained as follows: ${}^{1}J({}^{31}P,{}^{103}Rh)$ is an indicator for the strength of the P,Rh bond. As bulky ligands weaken the metal phosphorus bond, slightly lower J values for the PⁱPr₃ and PCy₃ complexes of 144 and 142 Hz, respectively, result (entries **11** and **12**). Thus, the correlation between $\delta({}^{103}Rh)$ and ${}^{1}J({}^{31}P,{}^{103}Rh)$ in the series of the phenylcyclohexylphosphine complexes is accidental and is due to changes in the same direction of s-orbital and d-orbital overlap due to steric effects; i.e., upon successive introduction of cyclohexyl groups there is a steady decrease in overlap between the metal and lone pair on phosphorus, resulting in smaller ΔE and higher Rh frequency, which at the same time (but due to less s-overlap) also results in a steady decrease in ${}^{1}J({}^{31}\text{P},{}^{103}\text{Rh})$.

Experimental Section

The complexes were prepared following literature procedures: 1-6,²⁸ 7-18,²⁹ 19-20,³⁰ 21-22,³¹ 23-25,³² 26,²⁸ 27,³³ 28.³⁰

Routine ¹H NMR spectra to check purity and to obtain ²J(¹H,¹⁰³Rh) and routine ³¹P NMR spectra to obtain ¹J(³¹P,¹⁰³Rh) were recorded on a Bruker AMX 300 spectrometer (300.13 and 121.15 MHz, respectively). All ¹⁰³Rh NMR measurements were carried out under temperature control at 298 K in 10-mm tubes under nitrogen unless otherwise stated, solutions were about 0.1 M in concentration.

Compounds 1-6 and 26-27 were measured by inverse 2D ¹H, ¹⁰³Rh NMR taking advantage of the relatively large value of ${}^{2}J({}^{1}\text{H},$ ¹⁰³Rh) of the methyl protons (ca. 1.5 Hz). For all the other compounds, inverse 2D ${}^{31}\text{P},{}^{103}\text{Rh}{}^{1}\text{H}$ NMR spectra⁹ were acquired.

Inverse two-dimensional ¹H,¹⁰³Rh NMR and ³¹P,¹⁰³Rh{¹H} NMR spectra were recorded on a Bruker AC 100 NMR spectrometer with inverse modification, a 10-mm ¹⁰³Rh/³¹P/¹H probe, a second PTS 160 frequency synthesizer with 90° phase shift capability and a BSV-3 heteronucleus decoupler provided with an 80 W selective ¹⁰³Rh amplifier. The pulse sequence given by Bax et al.³⁴ was used with either ¹H or ³¹P as the sensitive nucleus; ¹H, ³¹P, and ¹⁰³Rh pulses {90° (¹H) 27 μ s, 90° (³¹P) 38 μ s, 90° (¹⁰³Rh) 18 μ s) were applied. In case of ³¹P,¹⁰³Rh{¹H} NMR continuous BB decoupling (2 W) of ¹H was carried out throughout the experiment.

The spectral width was 1500 Hz for ¹H and 400–500 Hz for ³¹P. In the first measurement, the spectral width for ¹⁰³Rh was 6000 Hz (ca. 2000 ppm) which was covered by 128 t_1 increments, the preparation time was 2 s for ¹H,¹⁰³Rh correlation and 8 s for ³¹P,¹⁰³Rh{¹H} correlation, two dummy scans were used. To exclude folding and improve resolution, a second and sometimes third measurement with modified $\nu_0(Rh)$ values and smaller spectral widths (at most 300 Hz in F_1 using 128 increments) were carried out. The digital resolution of $\delta(^{103}Rh)$ was at least 1.5 ppm. After zero filling in F_1 , the 256 × 256 matrix was transformed applying a sine-bell weighting function. The ¹⁰³Rh spectrum is obtained in F_1 , and the ¹H or ³¹P spectrum, respectively, in F_2 . The absolute ¹⁰³Rh frequency was determined by relating it to the reference frequency $\Xi = 3.16$ MHz, scaled for the operating field (¹H 100, 131, 316 Hz) to $\nu_{ref} = 3.16415$ MHz. Signals at higher frequencies are taken as positive.

Acknowledgment. We thank J. M. Ernsting for his assistance and the European Community for financial support in the Human Capital and Mobility Project No. ERBCHBGCT-920139.

IC941136Z

- (28) Kulzick, M. A., Price, R. T.; Anderson, R. A.; Muetterties, E. L. J. Organomet. Chem. 1987, 333, 105.
- (29) Chatt, J.; Venanzi, L. M. J. Chem. Soc. 1957, 4735.
- (30) Schrock, R. R; Osborn, J. A. J. Am. Chem. Soc. 1971, 93, 2397.
- (31) Haines, L. M. Inorg. Chem. 1970, 9, 1517.
- (32) Crabtree, R. H.; Gautier, A.; Giordano, G.; Khan, T. J. Organomet. Chem. 1977, 141, 113.
- (33) Rice, D. P.; Osborn, J. A. J. Organomet. Chem. 1971, 30, C84.
- (34) Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Magn. Reson. 1983, 55, 301.