values of the ob_3 -dach complex are about half those of the other two complexes at the region. The $g_{\rm em}$ values at 19×10^3 cm⁻¹ are -0.015, -0.013, and -0.0056, respectively. Further, $g_{\rm em}$ of the ob_3 -dach complex shows almost constant values over the entire band, which is different from the other two complexes. If the trigonal splitting of the ob_3 -complex is very small as reported for the ob_3 -[Co(dach)₃] complex, the small $g_{\rm em}$ value is reasonable due to cancellation of the two transitions originated from both the E and A components. To confirm the validity of the data, the spectra of the three enantiomers were also measured, and mirror images of the $g_{\rm em}$ values are obtained for the Λ -complexes. The $g_{\rm em}$ values at 19×10^3 cm⁻¹ for the en, lel_3 -dach, and ob_3 -dach complexes of Λ -configuration are +0.015, +0.010, and +0.0065, respectively. Although the absolute value for the Λ -lel_3-dach complex is somewhat smaller than that of the Δ -lel₃-dach complex, this is due to the low optical yield (88% of the Δ complex) of the complex.

As shown in the g_{em} spectra, the chiroptical property in the luminescent excited state of the en complex shows a considerable similarity with that of the lel_3 -dach complex rather than the ob_3 -dach complex. This means that the structures in the excited states—including electronic and vibrational states—of the two complexes are similar and the structure of the ob_3 -dach complex is different. The conformation of the chiral dach chelates of the rhodium(III) complexes should be unchanged in the d-d excited states, so that the ethylenediamine chelates are concluded to have essentially *lel* character even in the d-d excited states.

IC9414000

Additions and Corrections

1995, Volume 34

Ramon Vicente,* Albert Escuer, Joan Ribas, M. Salah El Fallah, Xavier Solans, and Mercé Font-Bardía: X-ray Structure Determination and Magnetic Behavior of the New Uniform S = 1 Chain [{Ni(Me₂[14]-1,3-dieneN₄)(μ -N₃)}_n]-(ClO₄)_n. Magneto-Structural Correlations.

Pages 1278-1281. In the original paper, the structure of the title compound was incorrectly refined in space group I4. According to a suggestion from W. B. Connick and L. M. Henling, California Institute of Technology, we have subsequently verified that the space group $I\bar{4}2d$ is consistent with the diffraction data. The structural parameters for both determinations are essentially the same. Results deviating from those of the original resolution are given here in Tables 1 and 2.

Table 1				
space group d_{calc} , g cm ⁻³ μ (Mo K α), cm ⁻¹		<i>I</i> 42 <i>d</i> 1.327 11.37	R R _w	0.033 0.084
Table 2	2			
atom	x	у	z	$U(\text{eq}), \text{ Å}^2 \times 10^2$
Ni	0.2500	0.4023(1)	0.8750	37(1)
Cl(1)	0	0	0.2025(1)	63(1)
N(1)	0.2448(3)	0.5471(2)	0.9121(1)	54(1)
N(2)	0.2677(2)	0.2613(3)	0.9147(1)	50(1)
N(5)	0.0491(2)	0.4036(2)	0.8797(1)	54(1)
N(6)	0	0.5000	0.8789(1)	44(1)
C(1)	0.2147(4)	0.5293(4)	0.9540(1)	71(1)
C(2)	0.2665(5)	0.4116(5)	0.9698(1)	80(1)
C(3)	0.2119(4)	0.2898(5)	0.9531(1)	71(1)
C(4)	0.2231(3)	0.1498(3)	0.8953(1)	61(1)
C(9)	0.2637(3)	0.6527(3)	0.8534(1)	64(1)
O(1)	-0.0087(5)	0.1109(4)	0.2250(1)	97 (1)
O(2)	0.1324(13)	0.0076(21)	0.1887(5)	107(5)
O(2')	0.0899(11)	0.0109(18)	0.1749(4)	89(3)