Ruthenium Formyl Complexes as the Branch Point in Two- and Multi-Electron Reductions of CO₂

Kiyotsuna Toyohara, Hirotaka Nagao, Tetsunori Mizukawa, and Koji Tanaka*

Institute for Molecular Science, Myodaiji Okazaki 444, Japan

Received April 21, 1995

There are a number of studies on electro-¹ and photochemical² CO₂ reductions affording CO and/or HCOOH by metal complexes. Recently, highly reduced products such as HCHO, CH₃-OH, HOOCCHO, and HOOCCH₂OH, together with HCOOH and a small amount of CO, were obtained in electrochemical CO_2 reduction catalyzed by $[Ru(bpy)(trpy)(CO)]^{2+}$ (bpy = 2,2'bipyridine; trpy = 2,2':6',2''-terpyridine) in EtOH/H₂O at -20°C.³ In this process, [Ru(bpy)(trpy)(CHO)]⁺, which results from two-electron reduction of $[Ru(bpy)(trpy)(CO)]^{2+}$, functions as a key intermediate for the multi-electron reduction of CO₂. The fact that $[Ru(bpy)(trpy)(CO_2)]$ is immediately converted to [Ru- $(bpy)(trpy)(CO)]^{2+}$ completely through [Ru(bpy)(trpy)(C(O)-OH]⁺ in protic media, however, has raised a question about the ratio of HCOOH to CO generation (1:0.015 at 100 C passed) in the CO₂ reduction catalyzed by $[Ru(bpy)(trpy)(CO)]^{2+.3}$ Taking into account the hydride donor ability of formyl complexes,⁴⁻⁶ [Ru(bpy)₂(CO)(CHO)]⁺ may be a suitable model to elucidate the reactivity of [Ru(bpy)(trpy)(CHO)]⁺ as the key intermediate in the multi-electron reduction of CO₂, though [Ru- $(bpy)_2(CO)(CHO)]^+$ is not produced in the CO₂ reduction catalyzed by $[Ru(bpy)_2(CO)_2]^{2+}$ due to a spontaneous Ru-CO bond cleavage of $[Ru(bpy)_2(CO)_2]^{0.7}$

- (a) Steffey, B. D.; Miedaner, A.; Maciejewski-Farmer, M. L.; Bernatis, P. R.; Herring, A. M.; Allured, V. S.; Carperos, V.; DuBois, D. L. Organometallics 1994, 13, 4844. (b) Fujita, E.; Haff, J.; Sanzenbacher, R.; Elias, H. Inorg. Chem. 1994, 33, 4627. (c) Chardon-Noblat, S.; Collomb-Dunand-Sauthier, M.-N.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Inorg. Chem. 1994, 33, 4410. (d) Kimura, E.; Wada, S.; Shionoya, M.; Okazaki, Y. Inorg. Chem. 1994, 33, 770. (e) Collomb-Dunand-Sauthier, M. N.; Deronzier, A.; Ziessel, R. J. Chem. Soc., Chem. Commun. 1994, 189. (f) Haines, R. J.; Wittrig, R. E.; Kubiak, C. P. Inorg. Chem. 1994, 33, 4723. (g) Collomb-Dunand-Sauthier, M.-N.; Deronzier, A.; Ziessel, R. Inorg. Chem. 1994, 33, 2961. (h) Halmann, M. M.; Ed. Chemical Fixation of Carbon Dioxide; CRC Press: London, 199; pp 67. (i) Sullivan, B. P., Ed. Electrochemical and Electrocatalytic Reduction of Carbon Dioxide; Elsevier: Amsterdam, 1993; see also references therein.
- (2) (a) Ishitani, O.; George, M. W.; Ibusuki, T.; Johnson, F. P. A.; Koike, K.; Nozaki, K.; Pac, C.; Turner, J. J.; Westwell, J. R. Inorg. Chem. 1994, 33, 4712. (b) Matsuoka, S.; Yamamoto, K.; Ogata, T.; Kusaba, M.; Nakashima, N.; Fujita, E.; Yanagida, S. J. Am. Chem. Soc. 1993, 115, 601. (c) Calzaferri, G.; Haedener, K.; Li, J. J. Photochem. Photobiol., A 1992, 64, 259. (d) Kimura, E.; Bu, X.; Shinomihya, M.; Wada, S.; Maruyama, S. Inorg. Chem. 1992, 31, 4542 and references therein.
- (3) Nagao, H.; Mizukawa, T.; Tanaka, K. Inorg. Chem. 1994, 33, 3415.
- (4) (a) Gladysz, J. A. Adv. Organomet. Chem. 1982, 20, 1. (b) Wong, W.-K.; Tam, W.; Strouse, C. E.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1979, 530. (c) Casey, C. P.; Andrews, M. A.; Rinz, J. E. J. Am. Chem. Soc. 1979, 101, 741. (d) Casey, C. P.; Andrews, M. A.; McAlister, D. R. J. Am. Chem. Soc. 1979, 101, 3371. (e) Tam, W.; Wong, W.-K.; Gladysz, J. A. J. Am. Chem. Soc. 1979, 101, 1589.
- (5) (a) Tam, W.; Lin, G. Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141. (b) Casey, C. P.; Andrew, M. A.; McAlister, D. R.; Rinz, J. E. J. Am. Chem. Soc. 1980, 102, 1927. (c) Casey, C. P.; Newmann, S. M. J. Am. Chem. Soc. 1978, 100, 2544 and references therein.
- (6) (a) Gladysz, J. A.; Tam, W. J. Am. Chem. Soc. 1978, 100, 2545. (b) Tam, W.; Marsi, M.; Gladysz, J. A. Inorg. Chem. 1983, 22, 1413.
- (7) (a) Ishida, H.; Tanaka, K.; Morimoto, M.; Tanaka, T. Organometallics 1986, 5, 724. (b) Tanaka, H.; Tzeng, B.-C.; Nagao, H.; Peng, S.-M.; Tanaka, K. Inorg. Chem. 1993, 32, 1508. (c) Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics 1987, 6, 181-186.

This communication reports the synthesis and reactivity of $[Ru(bpy)_2(CO)(CHO)]^+$ as a mechanistic model of $[Ru(bpy)_-(trpy)(CHO)]^+$.

Addition of a 1.5 molar excess of NaBH₄ to a colorless MeOH/H₂O (2:1 v/v) solution of [Ru(bpy)₂(CO)₂](PF₆)₂⁷ at -5 °C resulted in gradual precipitation of yellow [Ru(bpy)₂(CO)-(CHO)](PF₆) (1). The product was collected by filtration and washed with cold water. Yield: 75%. Anal. Found: C, 42.64; H, 2.85; N, 9.04. Calcd: C, 42.93; H, 2.76; N, 9.11. IR (KBr): ν (C=O) 1608 cm⁻¹, ν (C=O) 1950 cm⁻¹. ¹H and ¹³C NMR: δ 13.9, 265 (-CHO). The same reaction conducted in CH₃CN/H₂O (2:1 v/v) in place of MeOH/H₂O selectively produced [Ru(bpy)₂(CO)(CH₂OH)](PF₆) (2) (80% yield)³ without a precipitate of 1. This result suggests smooth reduction of [Ru(bpy)₂(CO)(CHO)]⁺ to [Ru(bpy)₂(CO)(CH₂OH)]⁺ in protic media.

In contrast to the thermal stability of **2** in CH₃OH and CH₃-CN, **1** slowly decomposed above -20 °C in those solvents. Thermal decomposition of **1** in CH₃OH at 0 °C gave [Ru(bpy)₂-(CO)(C(O)OCH₃)](PF₆)⁷ (80% yield) (eq 1). Concomitant H₂

$$[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{CO})(\operatorname{CHO})]^+ + \operatorname{CH}_3\operatorname{OH} \rightarrow$$
$$[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{CO})(\operatorname{C(O)OCH}_3)]^+ + \operatorname{H}_2 (1)$$

evolution (10% in 30 min) indicates that $[Ru(bpy)_2(CO)(C(O)-OCH_3)]^+$ is formed by the reaction of $[Ru(bpy)_2(CO)_2]^{2+}$ with CH₃O⁻. On the other hand, a mixture of $[Ru(bpy)_2(CO)(CH_3-CN)](PF_6)_2$, ⁸ $[Ru(bpy)_2(CO)_2](PF_6)_2$, and **2** was obtained upon warming a CH₃CN solution of **1** to ambient temperature. The formation of the last two, though the yield of **2** was 5%, implies hydride migration between two formyl complexes, presumably in the presence of contaminated water. Similar thermolysis of **1** in CO₂-saturated CH₃CN at 0 °C gave HCOO⁻ (60% yield) with generation of $[Ru(bpy)_2(CO)_2]^{2+}$ and a small amount of $[Ru(bpy)_2(CO)(CH_3CN)]^{2+}$ (eq 2). It is worthy of note that

$$[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{CO})(\operatorname{CHO})]^+ + \operatorname{CO}_2 \rightarrow$$
$$[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{CO})_2]^{2+} + \operatorname{HCOO}^- (2)$$

HCOOH formation in photo- and electrochemical CO₂ reductions catalyzed by $[Ru(bpy)_2(CO)H]^+$ proceeds via $[Ru(bpy)_2(CO)(OC(O)H)]^0$, which is formed by CO₂ insertion into the Ru-H bond of one-electron-reduced form of the hydride, and subsequently HCOO⁻ is dissociated upon further one-electron reduction of $[Ru(bpy)_2(CO)(OC(O)H)]^{0.8}$ Thus $[Ru(bpy)_2(CO)(OC(O)H)]^{0.8}$ Thus $[Ru(bpy)_2(CO)H]^+$, in contrast to 1, does not react with CO₂ at room temperature without the electrochemical activation.

As a key intermediate in the first multi-electron reduction of CO_2 by $[Ru(bpy)(trpy)(CO)]^{2+}$, $[Ru(bpy)(trpy)(CHO)](PF_6)$ (3) was also obtained by a stoichiometric addition of LiBEt₃H to a yellow CD₃CN solution of $[Ru(bpy)(trpy)(CO)](PF_6)_2$ at -40 °C. The ¹H NMR spectra of the resulting violet solution revealed almost quantitative formation of 3 from a comparison

⁽⁸⁾ Pugh, J. R.; Bruce, M. R.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1991, 30, 86.

Scheme 1

of the signal intensities of the formyl proton at δ 13.8 and of the aromatic protons. An introduction of CO₂ into the violet solution by bubbling at that temperature resulted in a regeneration of a yellow [Ru(bpy)(trpy)(CO)]²⁺ solution and HCOO⁻ was generated in a 60% yield (eq 3). Thus, HCOO⁻ is smoothly

$$[Ru(bpy)(trpy)(CHO)]^{+} + CO_{2} \rightarrow$$
$$[Ru(bpy)(trpy)(CO)]^{2+} + HCOO^{-} (3)$$

formed in the reaction of CO_2 with 1 and 3 without a redox reaction even at low temperature (eqs 2 and 3). Although only either formato (M-OC(O)H) or hydroxycarbonyl (M-C(O)-OH) species have been proposed as precursors for HCOO⁻ formation in electro- and photochemical CO₂ reductions so far,^{11.7} the above results strongly indicate that formyl complexes are also possible intermediates for HCOO⁻ formation.

Scheme 1 represents a proposed pathway for multi-electron reduction of CO₂ via formyl and hydroxycarbonyl intermediates

in protic media. Conversion from CO₂ to CO on metals can be explained by an acid-base equilibrium of metal-CO₂ adducts,⁷ with CO evolution resulting from reduction of metalcarbonyl species. Formyl complexes are produced competitively by a two-electron reduction and protonation under similar conditions. Further reduction and protonation of the formyl complex produce a hydroxymethyl species which is a precursor to CH₃OH. In addition to undergoing further reduction, the formyl complex can react with CO2, producing HCOO- with regeneration of metal carbonyl complexes, which are precursors for CO evolution. The presence of formyl intermediates (Scheme 1) as the branch point for two- and multi-electron reductions of CO₂ may, therefore, explain why most of the reduction products have been limited to CO and/or HCOOH in electro- and photochemical CO2 reductions catalyzed by metal complexes reported so far.

IC950488I