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There are a number of studies on electro-I and photochemical2 
C02 reductions affording CO and/or HCOOH by metal com- 
plexes. Recently, highly reduced products such as HCHO, CH3- 
OH, HOOCCHO, and HOOCCHZOH, together with HCOOH 
and a small amount of CO, were obtained in electrochemical 
C02 reduction catalyzed by [Ru(bpy)(trpy)(C0)l2+ (bpy = 2,2'- 
bipyridine; trpy = 2,2':6',2"-terpyridine) in EtOWH20 at -20 
"C3 In this process, [Ru(bpy)(trpy)(CHO)]+, which results from 
two-electron reduction of [Ru(bpy)(trpy)(CO)lZf, functions as 
a key intermediate for the multi-electron reduction of C02. The 
fact that [Ru(bpy)(trpy)(COz)] is immediately converted to [Ru- 
(bp~) ( t rpy ) (Co) l~~  completely through [Ru(bpy)(trpy)(C(O)- 
OH)]+ in protic media, however, has raised a question about 
the ratio of HCOOH to CO generation (1:0.015 at 100 C passed) 
in the C02 reduction catalyzed by [R~(bpy)(trpy)(CO)]~+.~ 
Taking into account the hydride donor ability of formyl 
complexes$-6 [Ru(bpy)2(C0)(CHO)lf may be a suitable model 
to elucidate the reactivity of [Ru(bpy)(trpy)(CHO)]+ as the key 
intermediate in the multi-electron reduction of C02, though [Ru- 
(bpy)2(CO)(CHO)]+ is not produced in the C02 reduction 
catalyzed by [Ru(b~y)2(CO)2]~+ due to a spontaneous Ru-CO 
bond cleavage of [Ru(bpy)~(C0)21~.~ 
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This communication reports the synthesis and reactivity of 
[Ru(bpy)2(CO)(CHO)]+ as a mechanistic model of [Ru(bpy)- 
(trpy)(cHO)l+. 

Addition of a 1.5 molar excess of Nal3b  to a colorless 
MeOWH20 (2: 1 v/v) solution of [Ru(bpy)~(CO)2l(PF~)2' at -5 
"C resulted in gradual precipitation of yellow [Ru(bpy)z(CO)- 
(CHO)](PF6) (1). The product was collected by filtration and 
washed with cold water. Yield: 75%. Anal. Found: C, 42.64; 
H, 2.85; N, 9.04. Calcd: C, 42.93; H, 2.76; N, 9.11. IR 
(KBr): v(C=O) 1608 cm-I, Y(C=O) 1950 cm-I. 'H and I3C 
NMR: 6 13.9, 265 (-CHO). The same reaction conducted in 
CH3CN/H20 (2:l v/v) in place of MeOWH20 selectively 
produced [Ru(bpy)2(Co)(CH20H)](PF6) (2) (80% yield)3 with- 
out a precipitate of 1. This result suggests smooth reduction 
of [Ru(bpy)2(CO)(CHO)]+ to [Ru(bpy)2(CO)(CH2OH)]+ in 
protic media. 

In contrast to the thermal stability of 2 in CHsOH and CH3- 
CN, 1 slowly decomposed above -20 "C in those solvents. 
Thermal decomposition of 1 in CH30H at 0 "C gave [Ru(bpy)z- 
( ~ ~ ) ( ~ ( ~ ) ~ ~ ~ ~ ) ] ( ~ ~ ~ ) 7  (80% yield) (eq 1). Concomitant H2 

[R~(bpy)~(C0)(CH0)]' + CH30H - 
evolution (10% in 30 min) indicates that [Ru(bpy)2(CO)(C(O)- 
OCH3)lf is formed by the reaction of [Ru(bpy)~(CO)2]~+ with 
CH30-. On the other hand, a mixture of [Ru(bpy)?;(CO)(CH3- 
cN)](pF6)~,~ [Ru(bpy)2(c0)2](PF&, and 2 was obtained upon 
warming a CH3CN solution of 1 to ambient temperature. The 
formation of the last two, though the yield of 2 was 5%, implies 
hydride migration between two formyl complexes, presumably 
in the presence of contaminated water. Similar thermolysis of 
1 in CO2-saturated CH3CN at 0 "C gave HCOO- (60% yield) 
with generation of [R~(bpy)2(CO)2]~+ and a small amount of 
[Ru(bpy)2(C0)(CH3CN)l2+ (eq 2). It is worthy of note that 

[R~(bpy)~(CO) , l~+ + HCOO- (2) 

HCOOH formation in photo- and electrochemical C02 reduc- 
tions catalyzed by [Ru(bpy)2(CO)H]+ proceeds via [Ru(bpy)2- 
(CO)(OC(0)H)l0, which is formed by C02 insertion into the 
Ru-H bond of one-electron-reduced form of the hydride, and 
subsequently HCOO- is dissociated upon further one-electron 
reduction of [RU(~~~)~(CO)(OC(O)H)]~.~ Thus [Ru(bpy)z- 
(CO)H]+, in contrast to 1, does not react with C02 at room 
temperature without the electrochemical activation. 

As a key intermediate in the first multi-electron reduction of 
co2 by [Ru(bp~)(trpy)(CO)l~+, [Ru(bPY)(trpY)(CHO)](PF6) (3) 
was also obtained by a stoichiometric addition of LiBEt3H to a 
yellow CD3CN solution of [Ru(bpy)(trpy)(CO)](PF6)2 at -40 
"C. The 'H NMR spectra of the resulting violet solution 
revealed almost quantitative formation of 3 from a comparison 
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Scheme 1 
H+ H+ H*, 2e- 2H+, 2e- 

[ R u - C O ~ ~ [ R U - C O O H ~ * - L  [ R u - C 0 I 2 * ~  [Ru-CHO]+- [Ru-CH~OH]+ 

of the signal intensities of the formyl proton at 6 13.8 and of 
the aromatic protons. An introduction of C02 into the violet 
solution by bubbling at that temperature resulted in a regenera- 
tion of a yellow [Ru(bpy)(trpy)(C0)l2+ solution and HCOO- 
was generated in a 60% yield (eq 3). Thus, HCOO- is smoothly 

[Ru(bPY)(trpY)(CHo>l+ + eo, - 
[R~(bPY)(trpY)(Co)l2+ + HCOO- (3) 

formed in the reaction of CO2 with 1 and 3 without a redox 
reaction even at low temperature (eqs 2 and 3). Although only 
either formato (M-OC(0)H) or hydroxycarbonyl (M-C(0)- 
OH) species have been proposed as precursors for HCOO- 
formation in electro- and photochemical COZ reductions so 

the above results strongly indicate that formyl complexes 
are also possible intermediates for HCOO- formation. 

Scheme 1 represents a proposed pathway for multi-electron 
reduction of C02 via formyl and hydroxycarbonyl intermediates 

in protic media. Conversion from C02 to CO on metals can 
be explained by an acid-base equilibrium of metal-C02 
adducts,' with CO evolution resulting from reduction of metal- 
carbonyl species. Formyl complexes are produced competitively 
by a two-electron reduction and protonation under similar 
conditions. Further reduction and protonation of the formyl 
complex produce a hydroxymethyl species which is a precursor 
to CH30H. In addition to undergoing further reduction, the 
formyl complex can react with C02, producing HCOO- with 
regeneration of metal carbonyl complexes, which are precursors 
for CO evolution. The presence of formyl intermediates 
(Scheme 1) as the branch point for two- and multi-electron 
reductions of C02 may, therefore, explain why most of the 
reduction products have been limited to CO andor HCOOH in 
electro- and photochemical CO2 reductions catalyzed by metal 
complexes reported so far. 
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