27Al and 13C NMR Relaxation Studies of Aminoalanes

Charles L. Watkins,* Larry K. Krannich, and Steven J. Schauer

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294

Received June *28. 1995*

Introduction

The chemical reactivity of organoaluminum compounds toward amines is well established,' with the chemistry of compounds containing AI-N bonds presently receiving considerable attention, primarily due to their possible use as A1N precursors in advanced materials applications.2 Recently, we reported the synthesis; characterization; and 'H, l3C, and **27Al** NMR chemical shift data for the three series $[Me₂AIR']₂$,³ $[R₂-$ AlNMe₂ $12,4$ and Me₃A1·R'H,³ where R' = NMe₂, NEt₂, NPrⁿ₂, $NPrⁱ_{2}$, $NBuⁱ_{2}$, $NC_{4}H_{8}$, $NC_{5}H_{10}$, $NC_{6}H_{12}$, $NC_{5}H_{11}N$, NPh_{2} , and NBzl₂, and $R = Me$, Et, Prⁿ, Buⁿ, and Buⁱ. The ¹H and $13C$ NMR chemical shifts for R' are comparable to those of the parent secondary amines. However, the ¹H and ¹³C NMR chemical shifts and line widths for the R resonances are influenced by the electronegativity and quadrupole moment of the 27 Al atom, particularly in the C-1 position. The 27 Al NMR chemical shifts fall in a narrow range, typical of tetracoordinate aluminum,^{5,6} for all three series. However, as discussed below, within each series the ²⁷Al NMR half-height line width, $v_{1/2}$, varies for each compound, dependent upon the R or R' group. This suggests that the steric nature or size of the R or R' group may directly affect the solution dynamic properties of the above compounds. Such a variation in 27Al NMR line width with molecular size has been established for alkylaluminum compounds. $6-10$ The solution structural and dynamic properties of trialkylaluminum compounds have, in fact, been extensively

- (a) Eisch, J. J. In *Comprehensive Organometallic Chemistry;* Wilkinson, *G.,* Stone, F. G., Abel, E. W., Eds.; Pergamon **Press:** Oxford, 1982; Vol. 1. (b) Mole, T.; Jeffery, E. *Organoaluminum Compounds;* Elsevier: Amsterdam, 1972. (c) Robinson, G. H. In *Encyclopedia of Inorganic Chemisrry;* King, R. B., Ed.; John Wiley & Sons: Chichester, 1994; p 116. (d) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. Metal and Metalloid Amides; Ellis Horwood/Wiley: New York, 1980. (e) Coates, G. E.; Green, M. L. H.; Wade, K. *Organometallic Compounds,* 3rd ed.; Methuen: London, 1967; Vol. 1. *(0* McKillop, **A.;** Smith, J. D.; Worrall, I. D. *Organometallic Compounds of Aluminum, Gallium, Indium and Thallium;* Chapman and Hall: London, 1985.
- (a) Sauls, F. C.; Interrante, L. V. *Coord. Chem. Rev.* **1993, 128,** 193. (b) Pinkas, J.; Wang, T.; Jacobson, R. **A.;** Verkade, J. G. *Inorg. Chem.* **1994,** *33,* 4202. (c) Jones, C.; Koutsantonis, G. A,; Raston, C. L. *Polyhedron* **1993,** 12, 1829. (d) Bradley, D. C. *Polyhedron* **1994,** *8,* **¹**I1 1. (e) Jones, **A.** C. *J. Cryst. Growrh* **1993, 129,** 728. *(0* Bertolet. D. C.; Liu. H.; Rogers, J. W., Jr. *J. Appl. Phys.* **1994, 75,** 5385 and references cited therein.
- Thomas, C. J.; Krannich, L. K.; Watkins, C. L. *Polyhedron* **1993,** 12, 389.
- Thomas, C. J.; Krannich, L. K.; Watkins, C. L. *Polyhedron* **1993,** 12, 89.
- Benn, R.; Rufinska, A. *Anaew. Chem., In?. Ed. End.* **1986. 25.** 861.
- Benn, R.; Janssen, E.; Lehmkuhl, H.; Rufinska, A. *J. Organomer. Chem.* **1987,** *333,* **155.**
- Petrakis, L.; Dickson. F. E. *Auul. Suectrosc. Rev.* **1970,** *4,* 1.
- Swift, H. E.; Poole, C. P., Jr.; Iizel, *j,* F., Jr. *J. Phys. Chem.* **1964,** 68, (8) 2509.
- Petrakis, L.; Swift, H. E. *J. Phys. Chem.* **1968, 72,** 546.
- Poole, C. P., Jr.; Swift, H. E.; Itzel, J. F., Jr. *J. Chem. Phys.* **1965, 42,** *2576.*

investigated by a variety of NMR techniques,¹¹ primarily to determine the extent of dimerization of R_3 A1.¹² In addition, $NQR¹³$ and solid-state NMR relaxation studies¹⁴ have been reported. However, to our knowledge, no such studies have been reported for aminoalanes other than an NQR measurement for $[Me₂AlNMe₂]$ ₂.¹³

In the present report, 27 Al and 13 C NMR relaxation studies were conducted to determine the role of the R or R' group in each series in goveming the dynamic properties of these compounds in solution. The results obtained are compared with available data for ²⁷Al and ¹³C NMR relaxation in alkylaluminum compounds.

Experimental Section

All compounds used in this study were synthesized and characterized as previously reported.^{3,4} A Vacuum Atmospheres Model HE-43 Dri-Lab equipped with a Model HE-493 Dri-Train was used for the storage and handling of all reagents and for solution preparation. **All** NMR studies were conducted in NMR tubes (Wilmad, 10 mm, Pyrex) equipped with screw tops containing a PTFE insert to exclude moisture and air. The ¹³C and ²⁷Al NMR spectra were obtained on a Nicolet *300* MHz FT NMR spectrometer operating at **75.4** and *78.2* MHz, respectively. NMR measurements at 22 °C were conducted on 0.40 M solutions of $Me₃Al·R'H$ and $[Me₂AlR']₂$ in benzene- $d₆$, while variable temperature measurements on $[R_2AINMe_2]_2$ employed toluene- d_8 as a solvent. The **27Al** NMR spectral acquisition parameters were optimized to prevent distortion of the base line and to allow proper phasing of the signal for accurate half-height line width measurement. In each case, an 27Al NMR background signal was obtained and subtracted from the compound signal. The 27 Al NMR resonances were best represented by a Lorentzian line shape, and $v_{1/2}$ was obtained from a nonlinear least squares iterative calculation. The 27Al NMR chemical shifts were externally referenced to $[A1(H_2O)_6]^{3+}$. The ¹³C NMR T_1 measurements were performed using the standard inversion recovery method with three-parameter fitting of the data.¹⁵ Ten delay times were used in the determination of each T_1 value. The ¹³C NOE measurements utilized standard ¹³C decoupling techniques.¹⁶

Results and Discussion

The 27Al NMR chemical shifts for all three series occur in the range 150-180 ppm, indicative of tetracoordinate aluminum.^{5,6} However, there is a large variation in the half-height line width, $v_{1/2}$, within each series. In general, $v_{1/2}$ increases in each series as the R or R' groups become larger or more sterically demanding. Similarly, for the alkylaluminum compounds, R_6Al_2 , in toluene-d₈ solution, $v_{1/2}$ (Hz) varies as R = Me (850); Et (2550); **Pr"** (6300); **Pr'** (5900); Bun (7800); and Buⁱ (6300).⁶ Complexation of Et₆A1₂ with several types of Lewis base donors has been shown to cause an increase in the ²⁷Al line width.⁷⁻⁹ The line width of the aluminum NMR resonance was found in general to increase as the size of the donor molecule increased. This may be due to an increase in

- (13) Dewar, M. J. **S.;** Patterson, D. B.; Simpson, W. I. *J. Chem.* Soc, *Dalton Trans.* **1973,** 2381.
- (14) Albert, *S.;* Ripmeester, J. **A.** *J. Chem. Phys.* **1979, 70,** 722.
- (15) Kowalewski, J.; **Levy,** G. C.; Johnson, L. F.; Palmer, L. *J. Magn. Reson.* **1977,** 26, 533.
- (16) Levy, *G.* C.; Peat, I. R. *J. Magn. Reson.* **1975,** 18, *500.*

⁽¹ 1) Vestin, U.; Kowalewski, J.; Henriksson, U. *Org. Magn. Reson.* **1981,** 16, 119 and references cited therein.

^{(12) (}a) Muller, **N.;** Pritchard, D. E. *J. Am. Chem. Soc.* **1960,** 82, 248. (b) Ramey, K. C.; O'Brien, J. F.; Hasegawa, I.; Borchert, **A.** E. *J. Phys. Chem.* 1%5,69,3418. (c) Yamamoto, 0.; Hayamizu, K.; Yanagisawa, M. *J. Organomer. Chem.* **1974, 73,** 17. (d) Olah, *G.* **A,;** Prakash, *G.* K. *S.;* Liang, G.; Henold, K. L.; Haigh, *G.* B. *Proc. Natl. Acad. Sci. U.S.A.* **1977, 74,** 12. (e) Cemy, Z.; Hermanek, S.; Fusek, J.; **Kriz,** *0.;* Casensky, B. *J. Organomet. Chem* 1988, 345, 1. (f) Cerny, Z.; Fusek. J.; Kriz, O.; Hermanek, S.; Solc, M.; Casensky, B. *J. Organomet. Chem.* **1990,** 386, 157.

the rotational correlation time of the molecule or possibly due to steric effects on the symmetry of the molecular electric-field gradient about the aluminum nucleus. The ²⁷Al $v_{1/2}$ values (Hz) for the series Me3Al-R'H increase in the following order at **22** $^{\circ}$ C: Me₂N (990) < Et₂N (1610) < C₄H₈N (1700) < Pr¹₂N $Bu^i_2N (2690) < NC_5H_{11}N (2850) < Bu^n (3300)$. Molar volumes for the adducts were determined by density measurements for the liquid adducts and estimated from the densities of $Me₆Al₂$ and R'H for the solid adducts. A plot of $v_{1/2}$ versus molar volume shows a linear dependence with $r = 0.82$. However, the line width values for the branched-chain amines $Pr₂NH$ and Bu¹₂NH seem anomalous. As seen from the above $v_{1/2}$ values, $v_{1/2}$ for the ²⁷Al NMR resonance of Me₃Al·NPr¹₂H is significantly less than that of Me₃Al^{\cdot}NPrⁿ₂H, although from density measurements the two adducts have almost the same molar volume. The same observation also holds for the $Me₃Al-$ NBu¹₂H and Me₃Al¹NBuⁿ₂H adducts. *r* increases to 0.93 with exclusion of the Me₃Al⁺NPr¹₂H and Me₃Al⁺NBu¹₂H data points. Recent correlations of ${}^{13}C$ NMR chemical shift data with amine cone angle data for the $Me₃Al·R'H$ adducts indicate that there may be significant conformational changes occurring upon adduct formation for the sterically demanding secondary amines.¹⁷ A more linear variation of $v_{1/2}$ with molar volume occurs for the $[Me₂AlR']₂$ series, where $\nu_{1/2}$ values (Hz) for the **27Al** NMR resonances at **22** "C increase in the order Me2N (640) (1760) < C₅H₁₀N (2190) < C₆H₁₂N (2280) < Prⁿ₂N (2560) < $\leq C_4H_8N$ (1280) $\leq Et_2N$ (1370) $\leq C_5H_{10}N$ (1560) $\leq Pr^i_2N$ (1590) < C₆H₁₂N (2500) < NC₅H₁₁N (2550) < Prⁿ₂N (3500) \leq Bu¹₂N (4500) \leq Buⁿ₂ (5000). ($r = 0.987$, excluding the Pr¹₂N derivative.)

For the $[R_2AlNMe_2]_2$ series, where $R = Me$, Et, Pr^n , Buⁿ, and Buⁱ, the half-height line widths (Hz) for the ²⁷Al NMR resonances at **22** "C in toluene-dg solution increase in the order Me **(730)** Et **(1240)** Prn **(2380)** Bu' **(2900)** Bun **(3620).** A plot of $v_{1/2}$ versus the molar volume of the aminoalane indicates no linear correlation, but suggests that substitution of the alkyl group on the aluminum atom has an additional effect on the 27Al NMR relaxation rate. Larger R groups would be expected to lower the electric-field symmetry about the aluminum atom, thus increasing quadrupolar relaxation. 7 To determine the principal contributions to the 27 Al quadrupolar relaxation, variable temperature 27Al NMR line width and 13C NMR T_1 and NOE data for the NMe₂ group were obtained for the $[R_2AINMe_2]_2$ series.

By assuming that the relaxation of the **27Al** nucleus is due to quadrupolar interaction modulated by molecular reorientation, 7.11 then for extreme narrowing conditions where the molecular reorientation is defined by a single correlation time, τ_c , the quadrupolar relaxation rate¹⁸ is given by

$$
\frac{1}{T_{1Q}} = \frac{1}{T_{2Q}} = \left(\frac{3\pi^2}{10}\right) \left[\frac{2I+3}{I^2(2I-1)}\right] \left(1 + \frac{n^2}{3}\right) \left(\frac{e^2qQ}{h}\right)^2 \tau_c
$$

Because the NOR data have been reported for $[Me₂AlNMe₂]_2$,¹³ and a Lorentzian lineshape was found for the 27Al NMR resonances, then the relationship between $v_{1/2}$ and τ_c for [Me₂-AlNMe₂]₂ becomes

$$
\frac{1}{T_{2Q}} = \pi \nu_{1/2} = 3.143 \times 10^{14} \tau_c
$$

 $\tau_c = 7.3$ ps for [Me₂AlNMe₂]₂ in toluene- d_8 solution at 22 °C.

Figure 1. In τ_c as a function of temperature for $[\text{Me}_2\text{AlNMe}_2]_2$.

This value compares favorably with $\tau_c = 16.3$ ps for Et₆Al₂ in toluene- d_8 solution at 25 °C.¹¹ The $v_{1/2}$ values for [Me₂-AlNMe₂]₂ were obtained from -80 to +80 °C, and τ_c was calculated as a function of temperature. A plot of $\ln \tau_c$ versus **1000/T** (Figure 1) indicates excellent Arrhenius behavior *(r* = **0.999).** *An* **E,** value of **10.0** kT/mol was obtained. **This** value is in good agreement with $E_a = 12.5$ kJ/mol obtained for Et_6 -Al₂ from ¹³C T_1 measurements.¹¹ For the other members of the series, Arrhenius behavior for the variation of $1/T_2$ with temperature was also observed: for $R = Et$, $Prⁿ$, $Buⁿ$, and $Buⁱ$, $E_a = 9.5, 10.1, 9.8,$ and 10.1 kJ/mol, respectively. In contrast, only non-Arrhenius behavior for the temperature dependence of 27Al relaxation has been observed previously for alkylaluminum compounds, $7-11$ possibly due to chemical exchange processes at higher temperatures.

To investigate more fully the concept of simple correlation time effects dominating ²⁷Al NMR relaxation in $[Me₂AlNMe₂]$ ₂, the ¹³C T_1 and NOE values for the methyl carbon in the NMe₂ group were determined as a function of temperature from **-60** to 60 °C. The NOE values vary from -1.96 at -60 °C, indicating full dipolar relaxation, to **1.28** at **60** "C. By assuming that the dipolar relaxtion rate of the ¹³C methyl in the $NMe₂$ group is due only to directly bound protons and that extreme narrowing conditions apply with a single effective correlation time τ_c , then

$$
\frac{1}{T_1^{\rm DD}} = \left(\frac{\mu_{\rm o}}{4\pi}\right)^2 \frac{n_{\rm H} \gamma_{\rm H}^2 \gamma_{\rm C}^2 \hbar^2}{r_{\rm CH}^6} \tau_{\rm c}
$$

where μ_0 is the vacuum permeability, n_H is the number of protons directly bonded to the carbon atom, and r_{CH} is the bond length (109 pm) .¹¹ $1/T_1$ ^{DD} is calculated from

$$
\frac{1}{T_1^{\rm DD}} = \frac{1}{T_1^{\rm obs}} \left(\frac{\rm NOE(obs)}{1.99} \right)
$$

A plot of the natural log of the dipolar contribution to the spinlattice relaxation rate for the methyl carbon in the NMe₂ group versus $1000/T$ is linear for $[Me₂AlNMe₂]$ ₂, as shown in Figure 2. $(r = 0.998.)$ E_a is calculated to be 12.2 kJ/mol, in good agreement with the 27Al *NMR* results. Using the above equation for ¹³C dipolar relaxation, $\tau_c = 4.0$ ps at 22 °C. This τ_c value is slightly smaller than that obtained from the 27Al **NMR** results $(\tau_c = 7.3 \text{ ps})$ probably because of an additional relaxation

⁽¹⁷⁾ Schauer, *S.* J.; **Watkins, C. L.; Krannich, L. K.; Gala, R. B.; Gundy, E. M.; Lagrone, C. B.** *Polyhedron,* **accepted for publication.**

⁽¹⁸⁾ **Abragam, A.** *The Principles* of *Nuclear Magnetism;* **Oxford University** Press: **Oxford, 1961.**

Figure 2. In $1/T_1^{DD}$ as a function of temperature for the ¹³C NMR resonance of NMe₂ in [Me₂AlNMe₂]₂.

contribution to the **I3C** nucleus due to the rapid intemal motion of the methyl groups.^{11,14} For $R = Me$, Et, $Prⁿ$, Buⁿ, and Buⁱ, the ¹³C T_1 values for the methyl carbon in the NMe₂ group are **3.49,** 2.10, 1.05, 0.80, and 0.86 **s,** respectively, at **22 OC.** The corresponding NOE values for the methyl carbon are 1-80, 1.85, 1.80, 1.94, and 1.82, respectively. Thus, for the $[R_2AlNMe_2]_2$ series both the 27Al and **I3C** relaxation rates increase in the order $Me \leq Et \leq Pr^{n} \leq Bu^{i} \leq Bu^{n}$. There is a linear correlation between the ¹³C(T_1 ^{DD})⁻¹ for the NMe₂ group and the ²⁷Al(T_2)⁻¹ $(r = 0.997)$, indicating a single effective correlation time for molecular motion and relaxation for each member in the $[R_2-$ AlNMe₂]₂ aminoalane series.

In summary, **27Al** NMR relaxation data for the three series $Me₃Al·R'H$, $[Me₂AlR']₂$, and $[R₂AlNMe₂]₂$ indicate that for each series the ²⁷Al NMR half-height line width, $v_{1/2}$, varies for each compound, dependent upon the R or R' group. The data suggest a linear correlation of $v_{1/2}$ with molar volume for the Me₃Al·R'H and $[Me₂AIR']₂$ series. For the $[R₂AINMe₂]$ ₂ series, substitution of R seems to have a complicated effect on the ²⁷Al NMR relaxation rate. However, the results of variable temperature ²⁷Al NMR relaxation and ¹³C NMR T_1 and NOE studies suggest that there is a single effective molecular correlation time for each member in the $[R_2AlNMe_2]_2$ series.

IC9507979