Synthesis and Crystal Structure of Organocobalt(III) Complexes with Secondary Alkyls or **Bulky Schiff Base Equatorial Ligands**

Chen Huilan,* Han Deyan,[†] Li Tian,[‡] Yan Hong, and Tang Wenxia

Department of Chemistry, Coordination Chemistry State Key Laboratory, Nanjing University, Nanjing 210093, China

Jian Chen, Peiju Zheng, and Chenggang Chen[§]

Centre of Materials Analysis, Fudan University, Shanghai 200433, China

Received May 10, 1994[⊗]

Alkylcobalt(III) Schiff base B12 model complexes with secondary alkyls or a bulky diamine in the equatorial position were synthesized and characterized. Structures have been first determined by X-ray diffraction analysis for *i*-C₄H₉Co(salen)(γ -pic) (**I**), n-C₃H₇Co(salen)(γ -pic) (**II**) and C₂H₅Co(SB) (**III**), where salen = N,N'-ethylenebis-(salicylideneamine) dianion; SB = 1,1,2,2-tetramethyl-N,N'-ethylenebis(salicylideneamine) dianion, γ -pic = γ -picoline. Crystal data for I (CoC₂₆N₃O₂H₃₀): space group P2₁/c with a = 6.661(5) Å, b = 18.612(2) Å, c = 1819.533(3) Å, $\beta = 98.93(1)^{\circ}$, V = 2392.10 Å³, $D_{calcd} = 1.320$ g·cm⁻³, Z = 4, and R = 0.048 for 4469 measured reflections. Crystal data for **II** (CoC₂₅N₃O₂H₂₈): space group $P2_1/c$, a = 9.609(6) Å, b = 19.169(8) Å, c = 10.169(8) Å, c = 10.12.995(9) Å, $\beta = 106.9(7)^{\circ}$, V = 2290.4 Å³, $D_{calcd} = 1.332$ g·cm⁻¹, Z = 4, and R = 0.048 for 4358 measured reflections. Crystal data for III (CoC₂₂N₂O₂H₂₇): space group $P2_1/c$, a = 8.318(3) Å, b = 21.579(2) Å, c =11.572(2) Å, $\beta = 93.35(1)^\circ$, V = 2073.7 Å³, $D_{calcd} = 1.314$ g·cm⁻¹, Z = 4, and R = 0.060 for 3954 measured reflections. The crystal structure data reveal that complexes I and II display six-coordinate octahedral geometry; their Co-C, Co-N bond lengths, as well as the Co-C-C angles, are very close to those in 5'-deoxyadenosylcobalamin. Complex III is one of the very few compounds having five-coordinate square pyramidal geometry and observed instability of the Co-C bond.

Introduction

Many organocobalt(III) complexes with a stable σ Co–C bond have been synthesized and investigated.¹⁻³ Their unusual physico-chemical and structural properties are of considerable interest in B12 chemistry.⁴ The alkylcobalt(III) Schiff base complexes are one of important kind of coenzyme B₁₂ models. They are "electron-rich" systems closer to cobalamins than "electron-poor" cobaloximes.⁵ Unfortunately, limited structural data have been reported, especially for the secondary alkyl complexes. Additionally, structurally stable five-coordinate organocobalt(III) complexes which are related to coenzyme B12dependent enzyme catalytic process are rarely characterized.⁶ Only CH₃Co(acacen),⁵ [CH₃Co(saloph)]·0.5H₂O,⁷ [*i*-C₃H₇Co-(saloph)]·1.5H₂O,⁷ and three alkyl Co(III) complexes with tetraaza dianionic macrocyclic tropocornand as the equatorial

- Central Laboratory of Hangzhou University.
- [®] Abstract published in Advance ACS Abstracts, February 1, 1996.
- (1) Costa, G. Pure Appl. Chem. 1972, 30, 335; Coord. Chem. Rev. 1972, 8.63.
- (2) Calligaris, M.; Nardin, C.; Randaccio, L. Coord. Chem. Rev. 1972, 7, 385.
- (3) Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Coord. Chem. Rev. 1985, 63, 1.
- (4) Dolphin, D., Ed. B₁₂; Wiley: New York, 1982; Vols. 1 and 2. (5) Randaccio, L.; Bresciani-Pahor, L.; Zangrando, E.; Marzilli, L. G.
- Chem. Soc. Rev. 1989, 18, 225 and references therein.
- (a) Pratt, J. M. Inorg. Chim. Acta 1983, 79, 27. (b) Hay, B. P.; Finke, (6)R. G. J. Am. Chem. Soc. 1987, 109, 8012 and references therein.
- Marzilli, L. G.; Summers, M. F.; Bresciani-Pahor, N.; Zangrando, E.; (7)Charland, J. P.; Randaccio, L. J. Am. Chem. Soc. 1985, 107, 6880.

ligand⁸ were previously isolated, where acacen = ethylenebis-(acetylacetone imine) dianion and saloph = o-phenylenebis-(salicylideneamine) dianion. No five-coordinate salen or substituted salen complexes were reported.

Recently, we have synthesized and characterized two types of alkylcobalt(III) Schiff base B₁₂ models. One type is salen complexes RCo(salen)L (R = CH₃, C_2H_5 , *n*- and *i*-C₄H₉, $C_6H_5C_2H_4$; L = H₂O, py, γ -pic). Within this work, two crystal structures, $i-C_4H_9Co(salen)H_2O^9$ and $i-C_4H_9Co(salen)py$,¹⁰ are reported by us. The second is substituted salen complexes RCo-(SB)L (R = CH₃, C₂H₅, n-C₃H₇, i-C₄H₉; L = py, triphenylphosphine (PPh₃), no ligand) with bulky diamine at the quatorial position. In this paper we describe the general preparation methods and the results of X-ray crystal structure analysis for three complexes, i.e., $i-C_4H_9Co(salen)(\gamma-pic)$ (I), $C_3H_7Co(salen)$ - $(\gamma$ -pic) (II) and C₂H₅Co(SB) (III). Discussions and comparisons of the structure features with those of related complexes as well as 5'-deoxyadenosylcobalamin (DBC) are presented.

Experimental Section

Materials. All chemicals were AR or CP grade. Solvents were dried over appropriate reagents and distilled prior to use.

Instruments. CHN contents of the compounds were determined with a Perkin-Elmer 240 elemental analysis instrument, and the content of Co was determined using an ICP method. ¹H NMR spectra were obtained from a Bruker AM-500 spectrometer. IR spectra were

- Chen, H. L.; Han, D. Y.; Yan, H.; Tang, W. X.; et al. Acta Crystallogr., (9)submitted for publication. Chen, H. L.; Han, D. Y.; Yan, H.; Tang, W. X.; Yang, Y.; Wang, H.
- (10)Q. Polyhedron 1993, 12, 1097.

^{*} Author to whom correspondence should be addressed.

[†] Present address: Department of Chemistry, Hubei Normal University, Huangshi 435002, China.

[‡] Present address: Department of Chemistry and Biology, Anhui Chuzhou Normal College, Chuzhou 239012, China.

⁽⁸⁾ Jaynes, B. S.; Ren, T.; Masschelein, A.; Lippard, S. J. J. Am. Chem. Soc. 1993, 115, 5589.

Table 1. Crystallographic Data for Compounds i-C₄H₉Co(salen)(γ -pic) (**I**), n-C₃H₇Co(salen)(γ -pic) (**II**), and C₂H₅(SB) (**III**)

	Ι	II	III
formula	CoC ₂₆ N ₃ O ₂ H ₃₀	CoC ₂₅ N ₃ O ₂ H ₂₈	CoC ₂₂ N ₂ O ₂ H ₂₇
mol wt	475.48	461.45	410.41
<i>a</i> , Å	6.661(5)	9.609(6)	8.318(3)
b, Å	18.612(2)	19.169(8)	21.579(2)
<i>c</i> , Å	19.530(3)	12.995(9)	11.572(2)
β , deg	98.93(2)	106.91(7)	93.35(1)
$D_{\rm calcd}$, g·cm ⁻³	1.320	1.340	1.310
Z	4	4	4
space group	$P2_1/c$	$P2_1/c$	$P2_{1}/c$
cryst syst	monoclinic	monoclinic	monoclinic
cryst dimens, mm	$0.30 \times 0.30 \times 0.20$	$0.4 \times 0.3 \times 0.2$	$0.10 \times 0.20 \times 0.30$
$V, Å^3$	2392.1(8)	2290.4(6)	2073.7(7)
data limits	+h, +k, -l	+h, -k, -l	+h, -k, -l
F(000), e	1000	960	864
tot. no. of reflens	4469	4358	3954
no. of indep reflcns	4221	3978	3560
no. of obsd reflens $(I > 3\sigma(I))$	2767	2321	1652
$R_{\rm int}^{c}$	0.049	0.019	0.028
\mathbf{R}^{a}	0.049	0.048	0.060
$\mathbf{R}_{\mathbf{w}}^{b}$	0.052	0.054	0.066
μ , cm ⁻¹	7.401	7.707	8.417

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$. ${}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{0.5}$, where $w = 1/\sigma^{2}(F)$. ${}^{c}R_{int}$: agreement between equivalent reflections.

measured on an IR-440 spectrophotometer with KBr pellets. UV-vis spectra were performed on a Shimadzu UV-240 spectrophotometer, equipped with a thermostated cell connected to a circulating constant-temperature bath (25 ± 0.2 °C). TG and DSC were determined on a Perkin-Elmer 7-Series thermoanalysis system under N₂ flow.

Preparation. To avoid Co–C bond cleavage all manipulations were performed in the dark or under a dim red light.

Method A: (1) RCo(salen)H₂O (R = i-C₄H₉, n-C₃H₇, C₆H₅C₂H₄) complexes were prepared in accordance with the method described by Schrauzer.¹¹ Recrystallization was performed in methanol/H₂O with slowly evaporating solvent to obtain the appropriate crystals.

(2) RCo(salen)L (R = *i*-C₄H₉, *n*-C₃H₇; L = γ -pic) complexes were prepared by dissolving 60 mg of RCo(salen)H₂O in 10 mL of picoline. After adding 5 mL of light petroleum ether and then allowing the solvents to evaporate slowly at room temperature, we obtained brown or purple crystals in 10 days.

Method B: RCo(SB)L and RCo(SB)($R = CH_3$, C_2H_5 , $n-C_3H_7$, $i-C_4H_5$; L = py, no ligand) complexes were prepared according to the following procedures.

(1) A 2 g sample of SB (6.17 mmol) and 1.5 g (6.31 mmol) of $CoCl_2$ ·H₂O in methanol (80 mL) were stirred for 30 min, and then pyridine was added dropwise (2 mL in 10 mL CH₃OH); the resulting solution was continually stirred for 4 h and then filtered. The solvent was removed by using a rotatory evaporator at room temperature; the residue was washed repeatedly with diethyl ether and dried under vacuum over P₂O₅. The elemental analysis and conductivity measurement prove that the product has the formula [Co(SB)(py)₂]Cl.

(2) A 1 g sample of $[Co(SB)(py)_2]Cl$ was dissolved in 60 mL of methanol. Under purging nitrogen, 0.5 g NaOH (in 3 mL of H₂O) and 0.3 g NaBH₄ (in 2 mL of H₂O) were added, then 1 mL of 2% PdCl₂/ ethanol and 1 mL of alkyl halide were injected. After this was stirred for 2 h, 20 mL of acetone was added to destroy excess NaBH₄. The solution was filtered and the filtrate reduced in volume. The product was precipitated by adding distilled water. Yield 50–75%. Recrystallization was performed in CH₃OH/H₂O, but in most cases pyridine was lost; only one six-coordinate complex, CH₃Co(SB)py, was obtained.

The $CH_3Co(SB)PPh_3$ complex was prepared by using the above procedure.

Crystallographic Data. Data were collected and refined at room temperature (20 °C) on an Enraf Nonius CAD4 four-circle diffractometer by the $\omega/2\theta$ scan mode. Unit cell parameters were determined on the basis of 25 reflections with 9.8 < θ < 14.2°. Intensity measurements employed graphite-monochromated Mo K α (λ = 0.710 73 Å) radiation and ω -2 θ scan mode in the range 0 < 2 θ < 50°. During data collection, the intensities of three standard reflections monitored at every 3600 s of X-ray exposure time show no significant decay except for crystal **III**. For crystal **III**, the intensity decreased

linearly by 6.1%, but the intensities of the data set were later corrected for this decay. Estimates of agreements between equivalent reflections for I, II, and III are 2.9%, 2.3% and 2.8%, respectively. Corrections for the presence of extinction for I are 3.04×10^{-7} and no corrections for II and III. After taking into account Lorentz and polarization effects, an empirical absorption correction with minimum 95.67% and maximum 99.89% transmission was applied, based on seven ψ scans. Structure solution by Patterson method revealed the metal atom coordinates, and subsequent difference Fourier methods yielded the positions of all remaining non-H atoms and most of hydrogen atoms. High thermal motion was noted for methyl carbon atoms, C202 and C402 of crystal III. A disordered model was applied to C202* and C404*, two alternate positions, each with 50% occupancy, were refined isotropically. Other non-H atoms were refined anisotropically by unitweighted, full-matrix least-squares techniques. The calculated hydrogen atom positions were allowed to vary with the related carbon atoms; the C-H distance was fixed at 0.95 Å and the isotropic thermal parameters at 4.0 Å. All computations were performed on a Micro VAX-II computer with SDP and ORTEP programs.12a,b Atomic scattering factors for neutral atoms were taken from ref 12c. Crystallographic data for I-III are given in Table 1.

Results and Discussion

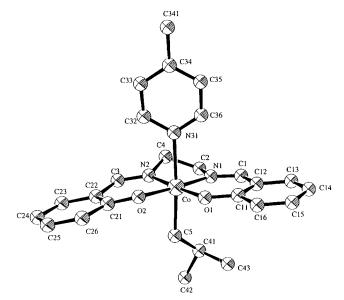
Synthesis and Characterization. Alkylcobalt(III) Schiff base complexes are difficult to prepare and purify. Since 1970 only a few six-coordinate alkylcobalt(III) salen and saloph complexes have been structurally characterized.⁵ Neither secondary alkylcobalt(III) complexes nor bulky diamine Schiff base B_{12} models have been reported.

In our laboratory, three isobutyl salen derivatives with different axial groups (H₂O, py, γ -pic), one phenylethyl salen complex with H₂O and one propyl salen complex with γ -pic as the axial bases were prepared and their crystal structures were determined. Also, a series of alkylcobalt complexes with bulky 2,3-dimethyl-2,3-butanediimine at the equatorial positions were synthesized. In this paper, the detailed procedures of two general synthetic routes are reported. Method A was used to

⁽¹¹⁾ Schrauzer, G. N.; Sibert, J. W.; Windgassen, R. J. J. Am. Chem. Soc. 1968, 1, 6681.

^{(12) (}a) B. A. Frenz et al., Inc. SDP Structure Determination Package. College Station, TX, and Enraf-Nonius, Delft, the Netherlands, 1985.
(b) Johnson, C. K. ORTEP II; Oak Ridge National Laboratory: Oak Ridge, TN, 1976. (c) International Table for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.

Table 2. Analytical and Physical Measurement Data for RCo(salen)L and RCo(SB)L


		anal	., ^a %						
formula	С	H N		Co		UV-vis λ , nm (log ϵ)			
$i-C_4H_9Co(salen)(\gamma-pic)$ (I)	65.71	6.26	8.91	12.12	2	334 (4.05)	383 sh (3.80)		
	65.68	6.36	8.84	12.39)	441 sh (3.37)	526 sh (3.06)		
$n-C_3H_7Co(salen)(\gamma-pic)$ (II)	65.34	6.18	9.26	12.93	3	334 (3.86)	387 sh (3.64)		
	65.07	6.12	9.11	12.77	7	439 sh (3.32)	519 sh (2.97)		
C ₆ H ₅ C ₂ H ₄ Co(salen)H ₂ O	63.77	5.17	6.53	13.50)	334 (3.96)	386 sh (3.77)		
	64.27	5.62	6.25	13.14	ļ	435 sh (3.46)	526 sh (3.06)		
$C_2H_5Co(SB)$ (III)	63.12	6.59	6.92	13.92	2	335 (4.28)	393 sh (3.83)		
	64.37	6.63	6.82	14.36	5	462 sh (3.39)	662 (3.19)		
CH ₃ Co(SB)py	63.08	5.99	8.72	11.94	ļ	333 (4.21)	384 (3.85)		
	65.68	6.36	8.84	12.39)	437 sh (3.48)	650 (3.18)		
$n-C_3H_7Co(SB)$	64.35	6.04	8.58	13.39)				
	65.07	6.89	6.60	13.88	8				
i-C ₄ H ₉ Co(SB)	65.18	7.11	6.37	13.67	7				
	65.73	7.12	6.39	13.44	ļ				
CH ₃ Co(SB)PPh ₃	72.86	6.64	4.79	8.81					
	71.23	5.98	4.26	8.96	5				
		heating	y	lost wt, %		lost	DSC peak		
formula	MW	temp range		found	calcd	substance	temp, °C		
<i>i</i> -C ₄ H ₉ Co(salen)(γ-pic) (I)	475.48	100-14	ŀ9	18.9	19.59	γ-pic	142		
		149-17	4	10.1	12.01	i-C ₄ H ₉	167		
$n-C_3H_7Co(salen)(\gamma-pic)$ (II)	461.45	100 - 14	19	18.9	20.18	γ-pic	136		
		149-19	9	10.1	9.34	n-C ₃ H ₇	194		
$C_2H_5Co(SB)$ (III)	410.50	120-20	00	6.9	7.07	C_2H_5	157		

^a First value for each compound in each column is the found value; the second value is the calculated value.

prepare salen analogues, in which RCo(salen)H₂O was first prepared, and then the axial H₂O was replaced by picoline in methanol/petroleum ether. Method B for RCo(SB) required the preparation of pyridine precursors, which was similar to the preparation of $RCo(DH)_2PPh_2$ (DH = monoanion of dimethylglyoxime).¹³ By using method B we succeeded in preparing CH₃Co(SB)py, but in the case of $R = C_2H_5$, *n*-C₃H₇, and *i*-C₄H₉, axial pyridine was lost during recrystallization to give rise to corresponding base-free five-coordinated complexes RCo(SB) as alkylcobalt(III) saloph complexes.¹⁴ Among these only brown C₂H₅Co(SB) was suitable for X-ray structure analysis. Attempts to prepare RCo(SB)pph₃ were successful only for R = CH₃. Unfortunately, no high-quality crystals of CH₃Co(SB)-PPh₃ suitable for X-ray determination were obtained. All RCo-(salen)L and RCo(SB)L complexes were characterized by elemental analysis, ¹H NMR, UV-vis, IR, and TG-DSC. Part of analytical data and physical measurements are listed in Table 2. It can be seen from the DSC data that $C_2H_5Co(SB)$ has the lowest temperature for Co-C bond cleavage. The observed instability of the Co-C bond in **III** may be related to the steric interaction between equatorial and axial ligands, i.e., the bulky diamine with the alkyls.

Structure of Complexes. The positional parameters and equivalent isotropic temperature parameters of non-hydrogen atoms are collected in Table 3. Structures of the complexes are shown in Figures 1-3, which includes the atom labelling scheme.

In the six-coordinate *i*-C₄H₉Co(salen)(γ -pic) (**I**) and *n*-C₃H₇-Co(salen)(γ -pic) (**II**), cobalt atom exhibits a distorted octahedral stereochemistry, the salen ligand has the N₂O₂ coordinated in the equatorial plane. The R (*i*-C₄H₉ or *n*-C₃H₇) and L (γ -pic) groups occupy the two opposite axial positions. The orientation of the pyridine plane is almost perpendicular to the equatorial salen and parallel to the direction of N₁-N₂, which is the same as CH₂CNCo(saloph)py and different from C₂H₅Co(saloph)-

Figure 1. Crystal structure of i-C₄H₉Co(salen)(γ -pic)(CoC₂₆N₃O₂H₃₀) (**I**).

py; in the latter the py plane is only slightly rotated with respect to the N₂-O₁ direction.¹⁴ In contrast, the five-coordinate C₂H₅-Co(SB) complex assumes a distorted square pyramidal stereochemistry with the SB ligand at the basal plane and the C₂H₅ group at the apex. Although only a few five-coordinate organocobalt complexes have been reported, their common feasures are a square-pyramidal geometry with a short Co–C bond distance and Co atom displacement out of the coordination plane toward the alkyl group.

Selected bond distances and bond angles are given in Tables 4–6. Complete data are given in the Supporting Information. Comparisons of bond distances and bond angles around the cobalt between **I**, **II**, **III**, and other organocobalt complexes are listed in Table 7. It can be seen from Table 7 that the axial $\angle C_5$ -Co-N for **I** and II are 175.5(2)° and 177.0(2)° respectively, which are similar to those in other six-coordinate cobalt(III) saloph, salen, and DH complexes. The $\angle C_0$ -C₅-C

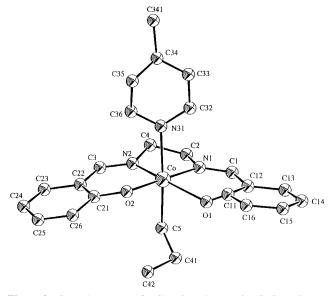
⁽¹³⁾ Trogler, W. C.; Marzilli, L. G. Inorg. Chem. 1975, 14, 2942.

⁽¹⁴⁾ Summers, M. F.; Marzilli, L. G.; Bresciani-Pahor, N.; Randaccio, L. J. Am. Chem. Soc. 1984, 106, 4478.

Table 3. Positional Parameters and Equvialent Isotropic Temperature Parameters with Their Estimated Standard Deviations of Non-Hydrogen Atoms for Compounds *i*-C₄H₉Co(salen)(γ -pic) (**I**), *n*-C₃H₇Co(salen)(γ -pic) (**II**), and C₂H₅Co(SB) (**III**)^{*a*-*c*}

atom	x	y	z	$B(eq), Å^2$	atom	<i>x</i>	у	z	<i>B</i> (eq), Å ²
				-C ₄ H ₉ Co(sale	n)(γ-pic) (I)				*
Co	0.20321(9)	0.20346(4)	0.28221(3)	2.67(1)	C(16)	0.4395(8)	0.0326(3)	0.1832(3)	3.7(1)
O(1)	0.3603(5)	0.1300(2)	0.2492(2)	3.31(7)	C(21)	0.4564(7)	0.2724(3)	0.3950(2)	2.9(1)
O(2)	0.4466(4)	0.2319(2)	0.3402(2)	2.96(7)	C(22)	0.2946(7)	0.3160(3)	0.4108(2)	3.0(1)
N(1)	0.0360(6)	0.1784(2)	0.2233(2)	3.31(9)	C(23)	0.3226(8)	0.3603(3)	0.4701(3)	3.9(1)
N(2)	0.0533(5)	0.2787(2)	0.3123(2)	3.21	C(24)	0.505(1)	0.3616(3)	0.5135(3)	4.6(1)
N(31)	0.2840(6)	0.2772(2)	0.2007(2)	3.12(8)	C(25)	0.6642(9)	0.3198(3)	0.4985(3)	4.5(1)
C(1)	-0.0570(7)	0.1293(3)	0.1767(2)	3.6(1)	C(26)	0.6421(8)	0.2758(3)	0.4413(3)	3.7(1)
C(2)	-0.2139(8)	0.2224(3)	0.2345(3)	4.5(1)	C(32)	0.3670(7)	0.3419(3)	0.2176(3)	3.4(1)
C(3)	0.1039(7)	0.3204(3)	0.3653(2)	3.4(1)	C(33)	0.4387(9)	0.3867(3)	0.1710(3)	4.2(1)
C(4)	-0.1386(7)	0.2932(3)	0.2654(3)	4.5(1)	C(34)	0.4291(9)	0.3656(3)	0.1029(3)	4.8(1)
C(5)	0.1497(9)	0.1394(3)	0.3613(3)	4.7(1)	C(35)	0.341(1)	0.3000(4)	0.0849(3)	5.0(1)
C(11)	0.2982(7)	0.0838(3)	0.2004(2)	3.1(1)	C(36)	0.2730(8)	0.2575(3)	0.1345(3)	3.9(1)
C(12)	0.0986(7)	0.0822(3)	0.1622(2)	3.3(1)	C(41)	0.022(1)	0.0871(4)	0.3562(4)	7.3(2)
C(13)	0.0503(9)	0.0319(3)	0.1083(3)	4.4(1)	C(42)	0.084(1)	0.0752(6)	0.4255(5)	17.1(3)
C(1')	0.190(1)	0.0155(3)	0.0921(3)	4.8(1)	C(43)	0.025(2)	0.0169(5)	0.3307(5)	13.1(4)
C(15)	0.3860(9)	-0.0157(3)	0.1302(3)	4.5(1)	C(341)	0.509(1)	0.4124(4)	0.0496(3)	8.1(2)
				-C ₃ H ₇ Co(sale	n)(γ-pic) (II)				
Co	0.07067(8)	0.18743(4)	0.41753(6)	3.08(1)	C(22)	0.3036(6)	0.2994(3)	0.5550(5)	3.9(1)
O(1)	0.0349(4)	0.1481(2)	0.2774(3)	3.58(9)	C(23)	0.4129(8)	0.3444(4)	0.6210(6)	5.4(2)
O(2)	0.2098(4)	0.2451(2)	0.3819(3)	3.69(9)	C(24)	0.5239(8)	0.3685(4)	0.5834(6)	6.2(2)
N(1)	-0.0651(5)	0.1298(3)	0.4552(4)	4.3(1)	C(25)	0.5326(7)	0.3488(4)	0.4861(6)	5.8(2)
N(2)	0.0949(5)	0.2301(3)	0.5508(4)	3.9(1)	C(26)	0.4288(6)	0.3069(4)	0.4188(5)	4.5(1)
N(31)	-0.0935(5)	0.2660(3)	0.3473(4)	3.4(1)	C(32)	-0.2283(6)	0.2492(3)	0.2854(5)	4.1(1)
C(1)	-0.1330(6)	0.0776(3)	0.4007(5)	4.5(1)	C(33)	-0.3322(6)	0.2996(4)	0.2428(5)	4.9(2)
C(2)	-0.0780(9)	0.1435(5)	0.5620(6)	8.0(2)	C(34)	-0.3034(7)	0.3687(4)	0.2646(5)	4.6(2)
C(3)	0.1941(7)	0.2743(4)	0.6001(5)	4.3(1)	C(35)	-0.1623(7)	0.3856(4)	0.3247(5)	4.5(2)
C(4)	-0.0152(7)	0.2095(5)	0.6030(5)	6.9(2)	C(36)	-0.0643(6)	0.3328(3)	0.3634(5)	4.0(1)
C(11)	-0.0447(6)	0.0938(3)	0.2399(5)	3.3(1)	C(5)	0.2298(7)	0.1191(4)	0.4856(6)	5.7(2)
C(12)	-0.1265(6)	0.0565(3)	0.2969(5)	3.6(1)	C(41)	0.295(1)	0.0716(7)	0.430(1)	4.4(3)*
C(13)	-0.2090(7)	-0.0018(3)	0.2467(6)	4.8(2)	C(41)*	0.318(2)	0.0997(8)	0.388(1)	5.9(3)*
C(14)	-0.2137(7)	-0.0230(4)	0.1478(6)	5.6(2)	C(42)	0.416(2)	0.112(1)	0.395(2)	9.4(6)*
C(15)	-0.1370(7)	0.0138(4)	0.0898(6)	5.3(2)	C(42)*	0.470(2)	0.0972(9)	0.434(1)	7.0(4)*
C(16)	-0.0535(7)	0.0708(3)	0.1365(5)	4.2(1)	C(341)	-0.4161(8)	0.4258(4)	0.2267(8)	8.4(3)
C(21)	0.3093(6)	0.2825(3)	0.4516(5)	3.4(1)					
				C ₂ H ₅ Co(S	B) (III)				
Co	0.0224(1)	0.16171(4)	0.44726(8)	2.97(2)	C(16)	-0.077(1)	0.0787(5)	0.1290(8)	5.0(2)
O(1)	0.0005(7)	0.1383(3)	0.2918(4)	3.9(1)	C(21)	0.2589(9)	0.2577(4)	0.4566(7)	3.0(2)
O(2)	0.1808(6)	0.2153(3)	0.3964(4)	3.7(1)	C(22)	0.2330(9)	0.2713(4)	0.5742(7)	3.1(2)
N(1)	-0.1618(8)	0.1181(3)	0.4876(6)	3.6(2)	C(23)	0.320(1)	0.3182(4)	0.6313(8)	4.0(2)
N(2)	0.0177(8)	0.1981(3)	0.5951(5)	3.4(1)	C(24)	0.437(1)	0.3516(4)	0.5784(8)	4.6(2)
C(1)	-0.237(1)	0.0779(4)	0.4239(8)	4.1(2)	C(25)	0.462(1)	0.3386(5)	0.4615(7)	4.4(2)
C(2)	-0.2266(1)	0.1405(5)	0.5980(7)	7.4(3)	C(26)	0.377(1)	0.2932(4)	0.4027(7)	3.8(2)
C(3)	0.109(1)	0.2418(3)	0.6336(7)	3.4(2)	C(51)	0.295(1)	0.0801(4)	0.4020(8)	6.3(3)
C(4)	-0.106(1)	0.1698(5)	0.6682(7)	7.4(3)	C(201)	-0.356(1)	0.1027(4)	0.644(9)	9.8(4)*
C(5)	0.178(1)	0.0947(5)	0.4926(9)	5.8(2)	C(202)	-0.334(1)	0.2064(6)	0.7708(8)	6.2(3)*
C(11)	-0.092(1)	0.0949(4)	0.2465(8)	3.9(2)	C(202)*	-0.3750	0.193	0.5292	5.7(3)*
C(12)	-0.2060(1)	0.0623(4)	0.3087(7)	3.8(2)	C(401)	-0.143(1)	0.2081(5)	0.7708(8)	6.2(3)*
C(13)	-0.300(1)	0.0164(5)	0.2500(9)	4.7(2)	C(402)	-0.044	0.100	0.718	8.2(7)*
C(14)	-0.285(1)	0.0017(5)	0.139(1)	5.9(3)	C(402)*	-0.007	0.110	0.745	6.6(5)*
C(15)	-0.173(1)	0.0338(5)	0.0771(9)	5.8(3)					

^{*a*} The form of the anisotropic displacement parameter defined as $exp[-0.25 (h^2a^2B(1,1) + k^2b^2B(2,2) + l^2c^2B(3,3) + 2hkabB(1,2) + 2hlacB(1,3) + 2klbcB(2,3)]$ where *a*, *b*, and *c* are reciprocal lattice constants. ^{*b*} Starred values denote atoms that were refined isotropically. ^{*c*} Starred atoms are disordered.


for all complexes deviate significantly from the tetrahedral values. The larger deviations are found in *i*-C₄H₉Co(salen)-H₂O (126.9(8)°), *n*-C₃H₇Co(salen)(γ -pic) (126.1(6)°), and *i*-C₄H₉-Co(salen)(γ -pic) (123.7(9)°). The steric interaction of the *i*-C₄H₉ or *n*-C₃H₇ group with the equatorial moiety provokes a noticeable increase in the Co-C₅-C angle. This has also been observed for analogous cobaloxime complexes CH₂CF₃Co-(DH)₂PPh₃ (125.7(9)°) and 5'-deoxyadenosylcobalamin (124.0-(5)°).^{15,16} Also, the \angle C₅-Co-N(O)(eq) are significantly distorted from 90° (see Supporting Information). The sum of

four angles around the cobalt(Σ Co) for all six- and fivecoordinate complexes is around 360° as shown in Table 7.

Inspection of Table 7 shows that, for complexes **I**, **II**, **III**, and those six- or five-coordinate alkylcobalt saloph and cobaloxime B₁₂ models, relatively little differences are found in the Co–C bond distances, which are all in the range of 1.9– 2.0 Å, whereas the Co–C bond distance for C₆H₅C₂H₄Co-(salen)H₂O appears significantly shorter than those reported for six-coordinate saloph complexes (1.99–2.042 Å) and our salen complexes (1.992–2.027 Å). This is probably due to some π component caused by a conjugate effect with benzene ring in the carbon atom which is directly linked to the cobalt(III). A similar example has been found for CH₂=CHCo(salen)py,¹⁷ in which the Co–C(sp²) bond length is 1.93(2) Å. It is worthwhile

⁽¹⁵⁾ Bresciani-Pahor, N.; Calligaris, M.; Randaccio, L.; Marzilli, L. G.; Summers, M. F.; Toscano, P. J.; Grossman, J.; Liotta, D. Organometallics **1985**, *4*, 630.

⁽¹⁶⁾ Savage, H. F. J.; Lindley, P. F.; Finney, J. L.; Timmins, P. A. Acta Crystallogr., Sect. B 1987, 43, 280.

Figure 2. Crystal structure of n-C₃H₇Co(salen)(γ -pic)(CoC₂₅N₃O₂H₂₈) (II).

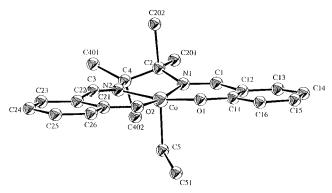


Figure 3. Crystal structure of $C_2H_5Co(SB)$ ($CoC_{22}N_2O_2H_{27}$) (III).

to note that results from our CNDO/2 calculations¹⁸ show that the Co-C bond order (or overlap population) for salen and SB complexes have the following order: $C_6H_5C_2H_4Co(salen)(H_2O)$ $> i-C_4H_9Co(salen)(H_2O) > C_3H_7Co(salen)(\gamma-pic) > i-C_4H_9 Co(salen)py > i-C_4H_9Co(salen)(\gamma-pic) > C_2H_5Co(SB)$. These calculations are consistent with the experimental bond lengths and the DSC data for Co-C bond cleavage listed on Table 2. Comparison of the Co-C bond distance of compound III (1.992(7) Å) with those of five-coordinate analogs, CH₃Co-(saloph) (1.960(10) Å) and *i*-C₃H₇Co(saloph) (2.031(8) Å),⁷ suggests that the trend in Co-C lengths is to increase with the order of $CH_3 < C_2H_5 < i-C_3H_7$, it seems likely that the bulkier and the stronger σ donor properties are the R groups, the longer are the Co-C bond distances in above five-coordinated complexes, although they have different equatorial ligands. Thus, it can be considered that the Co-C bond distance is insensitive to the nature of the equatorial ligand, but sensitive to both the bulk and electron donor properties of R groups as previously observed.7

Unlike the Co-C bond, the Co-L bond distance has a strong dependence on the natures of both the equatorial ligand and the R group. Previous data for octahedral salen complexes

Table 4. Selected Bond Distances (Å) and Bond Angles (deg) for $i-C_4H_9Co(salen)(\gamma-pic)$ (I)

i earryeo(suren)(7 pre	·) (•)		
Co-O(1)	1.896(3)	Co-N(1)	1.873(4)
Co-O(2)	1.903(3)	Co-N(2)	1.867(5)
O1 - C(11)	1.302(5)	C(5) - C(41)	1.496(9)
O2-C(21)	1.303(5)	N(1) - C(1)	1.283(6)
N2-C(3)	1.296(7)	N(2) - C(4)	1.477(6)
C34-C(341)	1.51(1)	N(31)-C(32)	1.344(6)
N31-C(36)	1.334(6)	C(41) - C(42)	1.50(1)
C(1) - C(12)	1.419(7)	C(41) - C(43)	1.46(1)
C(2) - C(4)	1.502(8)	C(3)-C(22)	1.435(6)
Co-N(31)	2.230(4)	Co-C(5)	2.027(6)
O(1)-Co-O(2)	86.6(1)	O(1) - Co - N(1)	94.2(2)
O(1) - Co - N(2)	177.5(2)	O(1) - Co - N(31)	89.7(1)
O(1) - Co - C(5)	90.4(2)	O(2) - Co - N(1)	178.0(2)
O(2) - Co - N(2)	93.0(1)	O(2) - Co - N(31)	88.6(1)
O(2) - Co - C(5)	86.8(2)	N(1) - Co - N(2)	86.2(2)
N(1) - Co - N(31)	89.5(2)	N(1) - Co - C(5)	95.1(3)
N(2)-Co-N(31	87.9(2)	N(2) - Co - C(5)	92.1(2)
N(31) - Co - C(5)	175.5(2)	C(1) - N1 - C(2)	119.7(4)
C(3) - N(2) - C(4)	118.6(4)	C(32)-N(31)-C(36)	116.2(4)
N(1)-C(1)-C(12)	125.3(4)	N(1)-C(2)-C(4)	108.6(4)
N(2)-C(3)-C(22)	123.7(4)	N(2)-C(3)-C(22)	123.7(4)
N(2) - C(4) - C(2)	107.0(4)	O(1) - C(11) - C(12)	124.2(4)
O(1) - C(11) - C(16)	118.1(5)	C(1)-C(12)-C(13)	118.0(4)
C(1)-C(12)-C(11)	122.4(4)	O(2) - C(21) - C(22)	124.4(4)
O(2) - C(21) - C(26)	118.5(4)	C(3) - C(22) - C(21)	121.9(5)
C(3) - C(22) - C(23)	117.8(4)	N(31)-C(32)-C(33)	123.6(5)
C(35)-C(34)-C(341		N(31)-C(36)-C(35)	123.3(5)
C(5)-C(41)-C(42)	110.6(7)	C(5)-C(41)-C(43)	113.7(8)

Table 5. Selected Bond Distances (Å) and Bond Angles (deg) for $n-C_3H_7Co(salen)(\gamma-pic)$ (II)^{*a*}

893(3)
868(4)
012(5)
322(6)
453(7)
467(7)
436(9)
76(1)
40(2)
94.0(2)
88.0(1)
179.1(2)
88.3(1)
85.8(2)
90.0(2)
90.2(2)
119.7(5)
116.8(4)
111.9(6)
110.3(5)
118.6(4)
122.2(4)
117.5(4)
117.1(5)
120.0(6)
108(1)
1

^a Starred atoms are disordered.

showed that the Co–N(py) bond distances ranged from 2.031 (R = CH₃O) to 2.184 Å (R = *i*-C₄H₉),^{5,9} for saloph complexes from 2.098 (R = CH₂CN) to 2.215 Å (R = C₂H₅), and for cobaloxime, from 2.028 to 2.099 Å.^{5,10,14,19,20} Therefore, the Co–N bonds are much longer in Schiff base complexes than

⁽¹⁷⁾ Calligaris, M.; Nardin, G.; Randaccio, L. J. Chem. Soc. Dalton Trans. 1972, 1433.

⁽¹⁸⁾ Han, D. Y.; Qing, M.; Yu, M. H.; Ni, H.; Chen, H. L.; Tang, W. X. *Chin. Sci. Bull.* **1994**, *39*, 515 (Co-C bond order, Co-C bond population: 0.9423, 0.7709 (I); 0.9732, 0.8006 (II); 0.9334, 0.8177 (III); 1.0309, 0.8569 [C₆H₃C₂H₄Co(salen)H₂O]; 1.0017, 0.8177 [*i*-C₄H₉Co(salen)H₂O]; 0.9559, 0.7908 [*i*-C₄H₉Co(salen)H₂O].

⁽¹⁹⁾ Cesari, M.; Neri, C.; Percgo, G.; Perrotti, E.; Zazzetta, A. Chem. Commun. 1970, 276.

⁽²⁰⁾ Marzilli, L. G.; Toscano, P. J.; Randaccio, L.; Bresciani-Pahor, N.; Calligaris, M. J. Am. Chem. Soc. 1979, 101, 6754. Randaccio, L.; Randaccio, L.; Bresciani-Pahor, N.; Toscano, P. J.; Marzilli, L. G. Inorg. Chem. 1981, 20, 2722.

Table 6. Selected Bond Distances (Å) and Bond Angles (deg) for $C_2H_5Co(SB)$ (III)^{*a*}

Co-O(1)	1.869(4)	Co-O(2)	1.874(4)
Co-N(1)	1.880(5)	Co-N(2)	1.884(5)
Co-C(5)	1.992(7)	O(1) - C(11)	1.305(7)
O(2) - C(21)	1.299(6)	N(1) - C(1)	1.279(7)
N(1) - C(2)	1.492(8)	N(2) - C(3)	1.276(7)
N(2) - C(4)	1.499(7)	C(1) - C(12)	1.414(8)
C(2) - C(4)	1.399(9)	C(2)-C(201)	1.480(8)
C(2)-C(202)	1.754(8)	C(3)-C(22)	1.423(8)
C(2)-C(202)*	1.835(9)	C(4) - C(401)	1.494(9)
C(4)-C(402)	1.678(8)	C(5)-C(51)	1.500(9)
C(4)-C(402)*	1.748		
O(1) - Co - O(2)	84.0(2)	O(1) - Co - N(1)	93.9(2)
O(1) - Co - N(2)	168.9(3)	O(1)-Co-C(5)	94.7(3)
O(2)-Co-N(1)	170.1(2)	O(2)-Co-N(2)	94.6(2)
O(2) - Co - C(5)	94.2(3)	N(1)-Co-N(2)	85.6(2)
$N(1) - C_0 - C(5)$	95.7(3)	N(2) - Co - C(5)	96.4(3)
C(1) - N(1) - C(2)	121.8(8)	C(3) - N(2) - C(4)	121.2(5)
N(1)-C(1)-C(12)	126.5(6)	N(1)-C(2)-C(4)	111.5(5)
N(1) - C(2) - C(201)	115.8(5)	N(1)-C(2)-C(202)	100.1(5)
$N(1) - C(2) - C(202)^*$	95.5(6)	C(4) - C(2) - C(201)	123.6(7)
C(4) - C(2) - C(202)	99.4(5)	$C(4) - C(2) - C(202)^*$	114.3(7)
C(201)-C(2)-C(202)*	⁶ 90.4(6)	C(201)-C(2)-C(202)	101.0(5)
N(2) - C(3) - C(22)	126.7(5)	N(2)-C(4)-C(2)	110.2(5)
N(2)-C(4)-C(401)	113.9(5)	C(2)-C(4)-C(402)*	104.9(5)
C(2)-C(4)-C(402)	89.3(6)	C(401)-C(4)-C(402)*	* 96.9(5)
C(401)-C(4)-C(402)	107.1(5)	O(1) - C(11) - C(12)	123.5(5)
O(1) - C(11) - C(16)	118.5(6)	C(1)-C(12)-C(11)	121.9(6)
C(1)-C(12)-C(13)	119.6(6)	O(2) - C(21) - C(22)	124.1(6)
O(2)-C(21)-C(26)	118.7(6)	C(3)-C(22)-C(21)	121.6(5)
C(3)-C(22)-C(23)	118.0(5)		

^a Starred atoms are disordered.

in cobaloximes. At present, the largest Co–N bond distance of known B₁₂ models is found in our complex *i*-C₄H₉Co(salen)-(γ -pic) (2.230(4) Å); the value reported here is the closest to that in coenzyme B₁₂ (2.24(1) Å).¹⁶ Likewise, the other bond distances, for example, Co–O(eq), Co–N(eq), C–C, C–O, and C–N, are in good agreement with those reported previously for a wide variety of B₁₂ models^{2,5} (see Tables 4–6 as well as Supporting Information). Lastly, the unusual bond distances of C–C₂₀₂ and C–C₄₀₂ in **III** are due to the high thermal motion of C₂₀₂ and C₄₀₂ atoms.

Conformational data for six crystals made by us are summarized on Table 8. Information about the extent of coplane of the four coordination atoms, bending angles and torsion angles, the shape of the equatorial ligand and some other parameters was given.

It is interesting to note that the extent of coplane of four coordination atoms N1N2O1O2 is quite good for all six complexes, which was indicated by the values of their mean deviation from the equatorial plane and by the torsion angle NOON as shown in the first two columns of Table 8. However, from d(Co) values of the third column of Table 8, it can seen that in the five-coordinate SB complex the cobalt atom is more displaced from the basal plane toward the apical ligand than it is from the equatorial plane in the six-coordinate salen complexes. Furthermore, the halves of the ethylenebis(salicylideneaminate) moiety are bent toward or away from the axial alkyl group for the salen or substitute salen complexes and assume an umbrella shape ($\gamma = \alpha + \beta$) or a stepped shape ($\beta = \alpha + \beta$) γ) and a planar shape ($\alpha = \beta = \gamma = 0$).² α or β is described by the angle between the $N_1N_2O_1O_2$ coordination plane and the salicylideneamine plane $(O_1C_{11}C_{12}C_{13}C_{14}C_{15}C_{16}C_1N_1$ and $O_2C_{21}C_{22}C_{23}C_{24}C_{25}C_{26}C_3N_2$, respectively). γ is described by the angle between the two salicylideneamine planes. It can be seen from Table 8 that $i-C_4H_9Co(salen)py$ and $n-C_3H_7Co-$ (salen) γ -pic adopt unsymmetrical umbrella-shapes ($\gamma = \alpha + \beta$ and $\alpha \neq \beta$), two *i*-C₄H₉Co(salen)L (L = H₂O and γ -pic) complexes assume unsymmetrical stepped-shapes ($\beta = \alpha + \gamma$ and $\alpha \neq \gamma$), and C₆H₅C₂H₅Co(salen)H₂O and C₂H₅Co(SB) are

Table 7. Comparisons of Bond Distances (Å) and Bond Angles (deg) around the Cobalt between i-C₄H₉Co(salen)(γ -pic) (**I**), n-C₃H₇Co(salen)(γ -pic) (**II**), C₂H₅(SB) (**III**), and Other Organocobalt Complexes

compounds	Co-C	Co-L	∠Co-C5-C	$\angle C_5$ -Co-N ₃₁ (O)	$\sum Co^k$
$i-C_4H_9Co(salen)(\gamma-pic)$ (I)	2.027(6)	2.230(4)	123.7(9)	175.5(2)	360.4
$n-C_3H_7Co(salen)(\gamma-pic)$ (II)	2.012(5)	2.180(4)	126.1(6)	177.0(2)	360.2
$C_6H_5C_2H_4Co(salen)H_2O^a$	1.962(14)	2.209(9)	119.1	176.6(5)	359.6
$i-C_4H_9Co(salen)H_2O^b$	1.991(9)	2.218(6)	126.9	175.9(4)	359.7
$i-C_4H_9Co(salen)py^c$	2.003(4)	2.184(3)	115.2	175.3(2)	360.1
$C_2H_5Co(saloph)py^d$	2.042(6)	2.215(4)	117.3	176.5(2)	
CH ₂ CNCo(saloph)py ^e	2.000(5)	2.098(4)	114.2	177.4(2)	
CH ₂ CF ₃ Co(DH) ₂ PPh ₃ ^f	1.990(10)	2.216(9)	125.7(9)	175.7	363.5
$CH(CN)_2Co(salpn)py^g$	2.02(1)	2.060(9)		174.9(4)	
DBC^{h}	2.00(1)	2.24(1)	124.0(5)	173.0(5)	
$C_2H_5Co(SB)$ (III)	1.992(7)		113.9		358.1
$CH_3Co(acacen)^i$	1.952(18)				
$CH_3Co(saloph)^j$	1.960(10)				360.0
$i-C_3H_7Co(saloph)^j$	2.031(8)				358.4

^{*a*} Reference 21. ^{*b*} Reference 9. ^{*c*} Reference 10. ^{*d*} Reference 14. ^{*e*} Reference 14. ^{*f*} Reference 15. ^{*s*} Bailey, N. A.; Higson, B. M.; Mckenzie, E. D. *J. Chem. Soc., Dalton Trans.* **1975**, 1105. ^{*b*} Reference 16. ^{*i*} Bruckner, S.; Calligaris, M.; Nardin, G.; Randaccio, L. *Inorg. Chim. Acta* **1969**, *3*, 308. ^{*j*} Reference 7. ^{*k*} ∑Co is the sum of the angles around cobalt.

Table 8. Conformational Data

compound	$N_1N_2O_1O_2$, ^{<i>a</i>} Å	NOON, ^b deg	<i>d</i> (Co), ^{<i>c</i>} Å	shape	α , ^d deg	β , ^{<i>e</i>} deg	γ , f deg	φ , g deg
<i>i</i> -C ₄ H ₉ Co(salen)H ₂ O ⁹	0.014	1.1	0.078	stepped	13.2	15.5	2.4	68.7
<i>i</i> -C ₄ H ₉ Co(salen)py ¹⁰	0.040	3.2	0.029	umbrella	4.1	12.1	16.1	20.4
$i-C_4H_9Co(salen)(\gamma-pic)$ (I)	0.005	3.8	0.036	stepped	4.6	13.7	9.1	22.1
$n-C_3H_7Co(salen)(\gamma-pic)$ (II)	0.040	3.2	0.026	umbrella	5.8	12.2	18.0	13.9
C ₆ H ₅ C ₂ H ₄ Co(salen)H ₂ O ²¹	0.010	0.4	0.063	nearly planar	0.9	3.2	3.7	1.7
$C_2H_5Co(SB)$ (III)	0.010		0.172	nearly planar	3.6	4.0	1.0	22.3

^{*a*} Mean deviation from the equatorial plane of four donor atoms $N_1N_2O_1O_2$. ^{*b*} Torsion angles for $N_1N_2O_1O_2$. ^{*c*} Displacements of Co atoms from the $N_1N_2O_1O_2$ plane. ^{*d*} Angle between one salicylideneamine residue $O_1C_{11}C_{12}C_{13}C_{14}C_{15}C_{16}C_1N_1$ with the $N_1N_2O_2O_2$ plane. ^{*e*} Angle between another salicylideneamine residue $O_2C_{21}C_{22}C_{23}C_{24}C_{25}C_{26}C_3N_2$ with the $N_1N_2O_1O_2$ plane. ^{*f*} Angle between the two salicylideneamine residues. ^{*g*} Torsion angles for $N_1C_1C_2N_2$.

nearly planar-shaped ($\alpha \approx \beta \approx \gamma \approx 0$). Finally, the bridging ethylene bends away from the ethylenebis(salicylideneaminate) moiety to preserve the approximately gauche conformation, and the ethylene carbon atoms are asymmetrically displaced from the coordination plane (unsymmetrical half-chair conformation).² The torsion angles φ around the CH₂-CH₂ bond are listed in Table 8 too. It is worthwhile to note that the best planarity of C₂N₂ was found in C₆H₅C₂H₄Co(salen)H₂O, and different deviations were displayed in other complexes.

Conclusion. A series of alkylcobalt(III)–salen or SB coenzyme B_{12} models have been synthesized and characterized. Three crystal and molecular structures have been determined, which are reported here. The interesting features in structure are summarized as follows.

(a) The Co–C bond lengths of three complexes are independent of the nature of the equatorial ligand. However, a slight increase of Co–C bond lengths with the bulk of R group is observed ($C_2H_5 < n-C_3H_7 < i-C_4H_9$).

(b) The axial Co-N bond lengths for salen complexes are quite different, which depend on the trans effect of the R groups. It seems likely that the longest Co-N bond distance among

Schiff base B_{12} models is found in *i*-C₄H₉Co(salen)(γ -pic), which is the closest to the corresponding distance in DBC.

(c) The values of $\angle Co-C_5-C$ in all three compounds are larger than ideal tetrahedral value. Such increase seems to be resulted from the steric hindrance of the axial R group. However, the angle in compound I is the most similar to that in DBC.

(d) It is worthwhile to note that in the five-coordinate SB complexes weaker Co–C bond may be due to the bulky diamine at equatorial position. Therefore, the structural properties of the complexes are very useful for interpreting the Co–C bond homolysis, the first step in B_{12} -dependent inner-molecular rearrangement reactions.

Acknowledgment. This research was supported by grants from the Natural Science Foundation of China. The authors thank Prof. L. G. Marzilli for helpful discussion and comments on the draft of the manuscript.

Supporting Information Available: Unit cell and pack diagrams of **I**, **II**, and **III** and tables of positional parameters, extensive bond distances and bond angles, least-squares planes, and anisotropic thermal parameters (15 pages). Ordering information is given on any current masthead page.

IC940516H

⁽²¹⁾ Han, D. Y.; Chen, Y.; Chen, H. L.; Tang, W. X. Chin. J. Inorg. Chem. 1995, 11 (2), 185.