Reduction of the Unique Carbonyl in $(\mu-H)_2Os_3(CO)_9(\mu_3-CCO)$ by BH₃·THF. Molecular Structure of $(\mu-H)_3Os_3(CO)_9(\mu_3-CCH_3)$

Jeanette A. Krause Bauer,[†] Jang-Hoon Chung,[†] Edwin P. Boyd,[†] Jianping Liu,[†] Debra S. Strickland,[‡] Heinz-Josef Kneuper,[‡] John R. Shapley,^{*,‡} and Sheldon G. Shore^{*,†}

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, and the School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received August 24, 1995

Introduction

Terminal carbon monoxides of metal carbonyls have been reduced by strong reducing agents such as AlH₃, LiAlH₄, and LiHBEt₃.^{1–3} While diborane in THF (BH₃•THF) is not effective for such reduction reactions, Masters⁴ found that BH₃•THF can reduce iron and ruthenium acetyl complexes quantitatively to alkyl complexes under mild conditions. The unique carbonyl of the borylidyne cluster (μ -H)₃Os₃(CO)₉(μ ₃-BCO)⁵ is also readily reduced by BH₃ in THF. In this case a methylene group is formed, giving rise to (μ -H)₃Os₃(CO)₉-(μ ₃- η ²-BCH₂),⁶ a vinylidyne cluster analogue (eq 1). This reaction appears to

$$(\mu-H)_3Os_3(CO)_9(\mu_3-BCO) + BH_3 \cdot THF \rightarrow$$

 $(\mu-H)_3Os_3(CO)_9(\mu_3-\eta^2-BCH_2) + \frac{1}{3}(HBO)_3 + THF (1)$

occur through addition of BH₃ to the oxygen of the (μ_3 -BCO) unit, the most negatively charged oxygen in the molecule.⁷ This step, followed by transfer of two hydrogen atoms to the carbon atom with subsequent elimination of HBO, would leave behind (μ -H)₃Os₃(CO)₉(μ_3 - η^2 -BCH₂). Since the ketenylidene cluster (μ -H)₂Os₃(CO)₉(μ_3 -CCO)⁸ is isoelectronic with (μ -H)₃Os₃(CO)₉-(μ_3 -BCO), it is of interest to us to determine to what extent its reaction with BH₃ parallels that of the borylidyne cluster.

Results and Discussion

Synthesis of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃). Treatment of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ -CCO) with excess BH₃·THF in CH₂Cl₂ at room temperature results in reduction of the unique carbonyl to a methyl group, giving the ethylidyne cluster $(\mu$ -H)₃Os₃(CO)₉- $(\mu_3$ -CCH₃)⁹⁻¹² in yields up to 61%. NMR spectroscopy was

[†] The Ohio State University.

- [‡] University of Illinois.
- Masters, C.; Woude, C.; Doorn, J. A. J. Am. Chem. Soc. 1979, 101, 1633.
- (2) Wong, A.; Atwood, J. D. J. Organomet. Chem. 1980, 199, C9.
- (3) Steinmetz, G. R.; Geoffroy, G. L. J. Am. Chem. Soc. 1981, 103, 1278.
- (4) Doorn, J. A.; Masters, C.; Volger, H. C. J. Organomet. Chem. 1976, 105, 245.
 (5) Shere S. C. Lee, D. Y.; Her, J. Y.; Her, W. L. J. Are, Chem. Science, Sc
- (5) Shore, S. G.; Jan, D.-Y.; Hsu, L-Y.; Hsu, W.-L. J. Am. Chem. Soc. 1983, 105, 5923.
- (6) Jan, D.-Y; Shore, S. G. Organometallics 1987, 6, 428.
- (7) Barreto, R. D.; Fehlner, T. P.; Hsu, L.-Y.; Jan, D.-Y.; Shore, S. G. Inorg. Chem. 1986, 25, 3572.
- (8) (a) Sievert, A. C.; Strickland. D. S.; Shapley, J. R.; Steinmetz, G. R.; Geoffroy, G. L. Organometallics 1982, 1, 214. (b) Shapley, J. R.; Strickland, D. S.; St. George, G. M.; Churchill, M. R.; Bueno, C. Ibid. 1983, 2, 185.
- (9) Deeming, A. J.; Underhill, M. J. Chem. Soc., Chem Comm, 1973, 277.
- (10) Yesinowski, J. P.; Bailey, D. J. Organomet Chem. 1974, 65, C27.
- (11) Evans, J.; McNulty, G. S.; J. Chem. Soc., Dalton Trans 1984, 79.
- (12) Forster, A.; Johnson, B. F. G.; Lewis, J.; Matheson. T. W. J. Organomet. Chem. 1976, 104, 225.

employed to follow the reaction. When fresh BH₃·THF that was prepared in this laboratory was used, with or without 5% NaBH₄ stabilizer, no evidence was observed for the formation of intermediate species, such as the vinylidene cluster (μ -H)₂Os₃-(CO)₉(μ ₃- η ²-C=CH₂).¹³⁻¹⁵ However, when commercially available BH₃·THF was employed, trace amounts of the vinylidene cluster were detected in proton NMR spectra of solutions allowed to stand at room temperature for several days.

From boron-11 NMR spectra of samples that were obtained from freshly prepared BH₃·THF without NaBH₄ stabilizer, a signal was observed at 4.1 ppm. This material was not identified. A single-crystal X-ray structure determination verified the formation of $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CCH₃), and its NMR and IR spectra are in accord with literature reports of ¹H NMR^{9–11} and IR¹¹ spectra.

Attempted Reduction of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3 - \eta^2 - C = CH_2)$ by BH₃·THF. In view of the reduction of $(\mu$ -H)₃Os₃(CO)₉-(μ_3 -BCO) by BH₃·THF to form (μ -H)₃Os₃(CO)₉(μ_3 - η^2 -BCH₂),⁶ the possibility was considered that $(\mu-H)_2Os_3(CO)_9(\mu_3-\eta^2-\eta^2-\eta_3)$ C=CH₂) might be an intermediate in the conversion of $(\mu$ -H)₂- $Os_3(CO)_9(\mu_3$ -CCO) to $(\mu$ -H)_3Os_3(CO)_9(\mu_3-CCH₃) in the reaction with BH₃•THF. However, treatment of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -C=CH₂) with pure, freshly prepared BH₃•THF, with or without 5% NaBH₄ for 5 days in CH₂Cl₂, yielded no $(\mu$ -H)₃Os₃(CO)₉-(μ_3 -CCH₃). When commercially available BH₃·THF was employed, only trace amounts of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃) were detected by NMR spectroscopy. While it is likely that the reduction of $(\mu$ -H)₂Os₃(CO)₉(μ ₃-CCO) involves initial attachment of BH₃ to the unique carbonyl followed by transfer of hydrogen to the carbon, it is unlikely that $(\mu-H)_2Os_3(CO)_9$ - $(\mu_3 - \eta^2 - C = CH_2)$ is formed as a discrete intermediate in the conversion of $(\mu$ -H)₂Os₃(CO)₉(μ ₃-CCO) to $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CCH₃).

Synthesis of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -¹³CCH₃). The reaction of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -BCO) with BCl₃ produces an interchange of boron and carbon atom positions of the μ_3 -BCO unit in the formation of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CBCl₂).¹⁶ This result raises the possibility that the reaction of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ -CCO) with BH₃•THF might proceed through an interchange of the carbon atom positions of the μ_3 -CCO unit. To test this possibility, the reaction of selectively labeled $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ -¹³CCO)⁸ with BH₃•THF was examined. The only product observed by NMR spectroscopy⁹⁻¹² is $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ -¹³CCH₃). The ¹³C NMR spectrum of the product consists of a singlet at 154.7 ppm which is assigned to the capping carbon. Thus there is no apparent interchange of carbon atoms in the reaction.

Structure of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃). Light yellow crystals of $(\mu$ -H)₃Os(CO)₉ $(\mu_3$ -CCH₃) suitable for a single-crystal X-ray analysis were grown by slow evaporation from CHCl₃ at room temperature, and its molecular structure was determined (Figure 1). Selected bond distances and bond angles are given in Table 1.

The $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃) molecule is isostructural with $(\mu$ -H)₃(CO)₉Ru₃ $(\mu_3$ -CCH₃)¹⁷ and $(\mu$ -H)₃Fe₃(CO)₉ $(\mu_3$ -CCH₃).¹⁸ The structure consists of an Os₃ triangle with three terminal

- (13) Deeming, A. J.; Underhill, M. J. Chem. Soc., Dalton Trans, 1974, 1415.
- (14) Deeming, A. J.; Underhill, M. J. Organomet. Chem. 1972, 42, C60.
- (15) Evans, J.; McNulty, G. S. J. Chem. Soc., Dalton Trans, 1983, 639.
- (16) (a) Jan, D.-Y.; Hsu, L.-Y.; Workman, D. P.; Shore, S. G. Organometallics **1987**, 6, 1984. (b) Workman, D. P., Jan, D.-Y.; Shore, S. G. Inorg. Chem. **1990**, 29, 3518.
- (17) Sheldrick, G. M.; Yesinowki, J. P. J Chem Soc, Dalton Trans, 1975, 873.
- (18) Wong, K. S.; Haller, K. J.; Dutta, T. K.; Chipman, D. M. Fehlner, T. P. *Inorg. Chem.* **1982**, *21*, 3197.

0020-1669/96/1335-1405\$12.00/0 © 1996 American Chemical Society

Figure 1. ORTEP plot of the molecular structure of $(\mu$ -H)₃Os₃(CO)₉- $(\mu_3$ -CCH₃) with 50% probability ellipsoids.

Table 1. Selected Bond Distances (Å) and Angles (deg) for $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CCH₃)

D 101							
Bond Distances							
Os1-Os1'	2.878(1)	Os2-C21	1.91(3)				
Os1-Os2	2.875(1)	Os2-C22	1.89(2)				
Os1'-Os2	2.875(1)	C1-C2	1.48(3)				
Os1-C1	2.08(2)	C11-O11	1.11(2)				
Os1-C11	1.93(2)	C12-O12	1.15(2)				
Os1-C12	1.96(2)	C13-O13	1.12(2)				
Os1-C13	1.91(2)	C21-O21	1.20(3)				
Os2-C1	2.07(2)	C22-O22	1.11(2)				
Angles							
0s1' - 0s1 - 0s2	59.97(1)	0.1 - 0.2 - C1	464(5)				
0s1 - 0s1' - 0s2	59.97(1)	0s1 - 0s2 - C21	118.2(5)				
0s1' - 0s2 - 0s1	60.07(3)	$O_{s1} = O_{s2} = C_{22}'$	142.8(5)				
$O_{s1}' - O_{s1} - C_{1}$	46.3(5)	0s1 - 0s2 - C22	95.2(5)				
0s1' - 0s1 - C11	95 7(5)	C1 - 0s2 - C21	160.2(9)				
$O_{s1}' - O_{s1} - C_{12}$	116 8(5)	C1 - 0s2 - C22	965(7)				
0s1' - 0s1 - C12	144.7(5)	$C_{1}^{2} = 0.52 - C_{22}^{2}$	97.6(6)				
$0s_{1}^{2} - 0s_{1}^{2} - C_{1}^{2}$	46 0(6)	$C_{22}^{-0} = C_{22}^{-0}$	90(1)				
$O_{s2} = O_{s1} = C_{11}$	142.0(5)	$O_{1} = C_{1} = O_{1}'$	90(1) 87(1)				
$O_{s2} = O_{s1} = C_{12}$	142.9(5) 120.7(5)	$O_{s1} - C_{1} - O_{s2}$	87 6(8)				
$O_{s2} = O_{s1} = C_{12}$	05.2(5)	$O_{s1} - C_{1} - C_{2}$	128(1)				
$C_{1} = C_{1} = C_{11}$	95.2(3)	$O_{82} - C_{1} - C_{2}$	126(1) 126(2)				
C1 = 0.81 = C12	90.9(0)	0.82 - C1 - C2	120.(2) 176.(2)				
C1 = 0.81 = C12	100.4(7)	$O_{21} = C_{11} = O_{11}$	170.(2)				
C1 = 0.81 = C13	98.3(7)	$O_{1} = C_{12} = O_{12}$	1/9.(2)				
CII = OsI = CI2	94.7(7)	0.1 - 0.13 - 0.13	1/1.(2)				
CII-OsI-CI3	90.9(7)	Us2-C21-O21	1/9.(2)				
C12-Os1-C13	97.1(7)	Os2-C22-O22	178.(2)				

carbonyls bound to each Os atom. It has apparent $C_{3\nu}$ symmetry. The triosmium framework is symmetrically capped by a methylidyne carbon bearing a methyl group. The ethylidyne C–C bond is perpendicular to the Os₃ plane with a tilt angle of 0.6° from perpendicularity. For the methylidyne clusters (μ -H)₃Os(CO)₉(μ_3 -CR) (R = Cl, Br, C₆H₅) tilt angles of 0.1, 0.2, and 3.0, respectively, have been observed.¹⁹ Positions of the hydrogen atoms were not directly located; however, they are inferred as bridging hydrogens across the basal osmium–osmium bonds based on the ¹H-NMR chemical shift (-18.68 ppm)^{8a} and comparison of the Os–Os distances.^{8b} The present structure is consistent with an approximate structure of (μ -H)₃Os(CO)₉(μ_3 -CCH₃) that was deduced from an X-ray powder diffraction analysis.²⁰

Experimental Section

Materials. Prepurified H_2 gas (AGA Inc.) was used as received. BH₃·THF (1.0 M in THF) and Diazald (99% ¹³C) (Aldrich Chemical

- (19) Jan, D.-Y.; Workman, D. P.; Hsu, L.-Y.; Krause, J. A.; Shore, S. G. Inorg. Chem. 1992, 31, 5123.
- (20) Orpen, A. G.; Koetzle, T. F. Acta Crystallogr. 1984, B40, 606.

Table 2. Crystallographic Data for $(\mu$ -H)₃Os(CO)₉ $(\mu_3$ -CCH₃)

Tuble 1 . et journographic Bata for (<i>μ</i> 11)305(00)9(μ3 00113)
formula	$C_{11}H_6O_9Os_3$
fw	852.77
space group	Pnma (No. 62)
a, Å	17.532(3)
b, Å	14.573(6)
c, Å	6.670(2)
vol, Å ³	1704.1
Z	4
ρ (calcd), g cm ⁻³	3.324
radiation	Mo K α ($\lambda = 0.710~73$ Å)
μ (Mo K α), cm ⁻¹	223.9
max transm, %	99.98
min transm, %	46.05
T, ℃	25
scan mode	$\omega - 2\theta$
2θ limits	4-45°
$\pm h$	-18, 18
$\pm k$	-15, 15
$\pm l$	0,7
no. of reflens colled	4922
no. of unique reflcns $[I \ge 3.0\sigma(I)]$	806
no. of variables	113
$R_{ m F}{}^{ m a}$	0.025
R_{wF}^{b}	0.032
k ^c	0.04
	(Σ_{1}) (Σ_{1}) ($\Sigma_{$

 ${}^{a}R_{F} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{wF} = \{\sum w[|F_{o}| - |F_{c}|]^{2} / \sum w|F_{o}|^{2}\}^{1/2}.$ ${}^{c}w = (\sigma(l)^{2} + (kl)^{2})^{-1}.$

Co.) for the preparation of diazomethane were used as received. NaBH₄ (Aldrich Chemical Co.), was heated over night to 45 °C under dynamic vacuum before use. Diazomethane was prepared according to the method described in ref 21. B₂H₆ was prepared according to a method in the literature²² and stored at -196 °C in a Pyrex glass tube equipped with a ground glass stopcock prior to use. Os₃(CO)₁₂ (Strem Chemical Co.) was used as received. Os₃(¹³CO)₁₂ was prepared according to a previously described procedure.²³ (μ -H)₂Os₃(CO)₉(μ ₃-CCO) and (μ -H)₂Os₃(CO)₉(μ ₃-l³CCO),⁸ (μ -H)₂Os₃(CO)₉(μ ₃-QCC) (CO)₁₁(MeCN)²⁴ were prepared and isolated by methods described in the literature.

X-ray Crystal Structure Determination. Crystallographic data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated Mo K α radiation. All the crystallographic computations were carried out on a DEC Vax Station 3100 computer using MolEN.²⁵ Unit cell parameters were obtained by a least-squares refinement of the angular settings from 25 reflections, well distributed in reciprocal space and lying in a 2θ range of $24-30^{\circ}$. All reflection data were corrected for Lorentz and polarization effects. An empirical absorption correction was applied based on measured ψ scans. Crystallographic data are summarized in Table 2.

The structure was solved by the direct method MULTAN 11/82 and difference Fourier synthesis with analytical atomic scattering factors used throughout the structure refinement with both the real and imaginary components of the anomalous dispersion included for all non-hydrogen atoms. Full-matrix least square refinements were employed. After Os atoms were located and refined, all non hydrogen atoms were located from the difference Fourier maps. One Os atom, one oxygen atom, and three carbon atoms are on a mirror plane at $y = \frac{1}{4}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions on the methyl group were calculated. Positional and isotropic displacement parameters of these hydrogen atoms were fixed during the refinement. Final atomic positional parameters are listed in Table 3.

Reaction of $(\mu$ -H)₂Os₃(CO)₉ $(\mu$ ₃-CCO) with BH₃·THF. An NMR tube joined to an adaptor and attached to the vacuum line was charged

- (21) Black, T. H. Aldrichim. Acta 1983, 16 (1), 3.
- (22) Toft, M. A.; Leach, J. B.; Himpsl, F. L; Shore, S. G. *Inorg Chem.* **1982**, *21*, 1952.
 (23) Bricker, J. C.; Payne, M. W.; Shore, S. G. *Organometallics* **1987**, *6*,
- 2545.
- (24) Shapley. J. R.; Sievert, A. C.; Churchill, M. R.; Wasserman. H. J. J. Am. Chem. Soc. 1981, 103, 6975.
- (25) MolEN Crystal Structure Analysis Program, Enraf-Nonius, 1990.

Table 3. Positional Parameters and Their Esd's for $(\mu$ -H)₃Os(CO)₉ $(\mu$ ₃-CCH₃)

atom	x	у	z	$B,^a \text{\AA}^2$
Os1	0.11179(3)	0.34874(3)	0.70275(9)	2.77(1)
Os2	0.25373(5)	0.250	0.6957(1)	2.63(2)
C1	0.161(1)	0.250	0.888(3)	3.3(4)
C2	0.165(2)	0.250	1.110(4)	5.7(7)
C11	0.0178(9)	0.362(1)	0.851(2)	3.8(4)
011	-0.0340(7)	0.3674(9)	0.946(2)	6.2(3)
C12	0.073(1)	0.409(1)	0.461(2)	4.1(4)
012	0.0509(9)	0.4435(8)	0.318(2)	7.4(4)
C13	0.1527(9)	0.456(1)	0.828(2)	4.1(4)
013	0.1802(9)	0.5162(8)	0.902(2)	8.1(4)
C21	0.312(1)	0.250	0.452(3)	3.3(5)
O21	0.349(1)	0.250	0.302(3)	6.2(5)
C22	0.3100(9)	0.159(1)	0.832(2)	3.7(3)
O22	0.3434(8)	0.1066(9)	0.918(2)	6.9(3)

^{*a*} Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)]$.

with a THF- d_8 solution of $(\mu$ -H)₂Os₃(CO)₉(μ_3 -CCO) (0.0095 mmol) and cooled to -196 °C. While at this temperature, B₂H₆ (0.0095 mmol) was condensed onto the solution and the NMR tube sealed under vacuum. The NMR sample was warmed to room temperature and the progress of the reaction was followed at room temperature by ¹H and ¹¹B NMR over a period of 16 h. Conversion from (μ -H)₂Os₃(CO)₉(μ_3 -CCO) to (μ -H)₃Os₃(CO)₉(μ_3 -CCH₃) was 50–55%. The ¹¹B NMR spectrum indicated formation of a boron oxide species¹² (4.1 ppm) which was not identified.

 $(\mu$ -H)₃Os₃(CO)₉(μ ₃-CCH₃) was isolated in 61% yield (55 mg) from a solution of $(\mu$ -H)₂Os₃(CO)₉(μ ₃-CCO) (90 mg, 0.104 mmol) and B₂H₆ (1.0 mmol in 5 mL THF) in 30 mL CH₂Cl₂ that was stirred for 1 h at room temperature. Volatile components were removed and the resulting yellow residue was purified by TLC (2 mm silica gel, 1:4 toluene: hexane). ¹H NMR (CDCl₃, 30 °C): δ 4.43 (s, 3H), -18.68 (s, 3H) ppm. IR (CHCl₃): ν_{CO} 2077 m, 2068 m, sh, 2056 m, 2033 s, sh, 2021 s cm⁻¹. These spectra are in accord with earlier reports for (μ -H)₃-Os₃(CO)₉(μ_3 -CCH₃).⁹⁻¹¹ The mass spectrum contains a parent ion peak that corresponds to the molecular formula ${}^{12}C_{11}$ ¹H₆ ${}^{16}O_{9}$ ¹⁹²Os₃: m/z (obsd) 858; m/z(calcd) 858. The sequential loss of each of the nine carbonyls from the molecular ion is visible in the mass spectrum.

Similar yields of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃) were obtained when the BH₃·THF contained 5% NaBH₄ and when commercial BH₃·THF was employed. On occasion, however, trace amounts of the vinylidene cluster $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -C=CH₂) were detected in the proton NMR spectrum when commercial BH₃·THF was employed and the reaction mixture was allowed to remain at room temperature for several days.

Attempted Reduction of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -C=CH₂) by BH₃· THF. An excess of B₂H₆ (0.2758 mmol) was condensed into a THF solution of $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -C=CH₂) (0.0208 mmol). The solution was then stirred at room temperature for 12 h. Volatile components were removed and the residue dissolved in CDCl₃. ¹H NMR showed no formation of $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃) or other cluster species, only the starting vinylidene cluster, $(\mu$ -H)₂Os₃(CO)₉ $(\mu_3$ - η^2 -C=CH₂). Similar results were observed when the BH₃·THF contained 5% NaBH₄ and when commercial BH₃·THF was employed and the solutions were allowed to stand at room temperature up to 10 days. On occasion, trace amounts of the ethylidyne cluster, $(\mu$ -H)₃Os₃(CO)₉ $(\mu_3$ -CCH₃), were detected in the proton NMR spectrum when commercial BH₃·THF was employed.

Acknowledgment. This work was supported by the National Science Foundation. H.-J.K. thanks the Deutsche Forschungsgemeinschaft (Bonn) for a fellowship.

Supporting Information Available: Tables of crystal data, atomic coordinates, bond distances, and angles, and anisotropic displacement parameters (4 pages). Ordering information is given on any current masthead page.

IC951118X