New Routes to Synthetically Useful, Sterically Encumbered Arylaluminum Halides and Hydride Halides

Rudolf J. Wehmschulte and Philip P. Power*

Department of Chemistry, University of California, Davis, California 95616

Received December 1, 1995[⊗]

The synthesis and structural characterization of the compounds Mes*AlCl₂(THF) (1), Mes*AlCl₂ (2), Mes*Al-(H)Cl(THF) (3a), Mes*Al(H)Cl (4a), and (Mes*AlH₂)₂ (5) (Mes* = $2,4,6-t-Bu_3C_6H_2^-$) are described as well as those for two compounds 3b and 4b that are analogs of 3a and 4a but have H:Cl ratios that are less than 1:1. All compounds were characterized by ¹H, ¹³C NMR, and IR spectroscopy, and **1**, **2**, **3a**, and **4b** were additionally characterized by X-ray crystallography. Compound 1 is best synthesized by the reaction of $[(THF)_2LiH_3AlMes^*]_2$ (6) with 6 equiv of Me₃SiCl. A more conventional route involving the addition of $(THF)_2LiMes^*$ to 2 equiv of AlCl₃ in toluene usually affords a mixture of 1 and AlCl₃·THF. Recrystallization of 1 from *n*-hexane results in a species that has less than 1 equiv of THF per Mes*AlCl₂. The THF free complex 2 may be obtained in quantitative yield by heating 1 for 20 min at 90 °C under reduced pressure. Compound 3a may be obtained by treating a 1:1 mixture of Mes*Li(THF)₂ and LiAlH₄ with 2 equiv of Me₃SiCl or by the addition of slightly less than 4 equiv of Me₃SiCl to 6. The THF can be removed from 3a by sublimation to give 4a. The related compounds 3b and 4b, which display an aluminum-bound H:Cl ratio that is deficient in H, can be obtained by reactions with slightly more than 2 equiv of Me₃SiCl. Crystal data at 130 K with Cu K α (λ = 1.541 78 Å) radiation: 1, C₂₂H₃₇AlCl₂O, a = 11.889(3) Å, b = 9.992(3) Å, c = 19.704(5) Å, orthorhombic, space group $Pca2_1$, Z = 4, R = 0.068 for 1556 ($I > 2\sigma(I)$) data; **2**, C₁₈H₂₉AlCl₂, a = 12.147(5) Å, b = 18.042(6) Å, c = 17.771(7) Å, $\beta = 95.77(3)^{\circ}$, monoclinic, space group $P2_1/n$, Z = 8, R = 0.032 for 4610 ($I > 2\sigma(I)$) data; **3a**, $C_{22}H_{38}AlClO$, a = 16.887(7) Å, b = 16.333(6) Å, c = 8.739(3) Å, $\beta = 101.41(3)^{\circ}$, monoclinic, space group $P_{2_1/c}$, Z = 4, R = 0.073 for 2752 $(I > 2\sigma(I))$ data; **4b**, C₁₈H_{29.64}AlCl_{1.36}, a = 12.077(3) Å, b = 17.920(3) Å, c = 17.634(5) Å; $\beta = 95.21(2)$ Å, monoclinic, space group $P2_1/n$, Z = 8, R = 0.070 for 4261 ($I > 2\sigma(I)$) data.

Introduction

Sterically hindered, neutral organohalide derivatives of the heavier main group III elements Al, Ga, and In are key starting materials for a variety of compounds with unusual bonding and structures.^{1,2} Among the most crowded, well-characterized organohalides are the recently reported Mes^* ($Mes^* = 2,4,6$ *t*-Bu₃C₆H₂) derivatives of formula Mes*MX₂ (M/X = Al/Br,³) Ga/Cl^{3,4} Ga/Br⁴ In/Cl^{3,4} In/Br⁴) or $Mes*_2MX$ (M/X = Ga/Cl,⁵ In/Cl,⁶ In/Br⁷). A notable feature of the dihalides is that they are monomeric in the solid state whereas all previously known uncomplexed organodihalide derivatives were associated through halide bridging. In addition, it was noted³ that neither Mes*AlBr₂, Mes*GaCl₂, nor Mes*InCl₂ formed stable complexes with Et₂O even though they were synthesized in an Et₂O solvent mixture. The synthesis of all the Mes*-substituted metal halide derivatives has involved the familiar lithium halide salt elimination reaction. For the Ga and In derivatives, moderate to good yields of the product were obtained by stoichiometric reaction of LiMes* (generated from Mes*Br and Li(n-Bu)) with the metal halide.^{3,4} For the only currently known, wellcharacterized aluminum derivative Mes*AlBr2, it was reported that more than 2 equiv of LiMes* (generated from Li(n-Bu)

- (2) Brothers, P. J.; Power, P. P. *Adv. Organomet. Chem.* **1996**, *39*, 1–69.
 (3) Petrie, M. A.; Power, P. P.; Dias, H. V. R.; Ruhlandt-Senge, K.;
- Waggoner, K.M.; Wehmschulte, R. J. *Organometallics* 1993, *12*, 1086.
 (4) Schultz, S.; Pusch, S.; Pohl, E.; Dielkus, S.; Herbst-Irmer, R.; Meller,
- A.; Roesky, H. W. Inorg. Chem. **1993**, *32*, 3343.
- (5) Meller, A.; Pusch, S.; Pohl, E.; Häming, L.; Herbst-Irmer, R. Chem. Ber. 1993, 126, 2255.
- (6) Cowley, A. H.; Isom, H. S.; Decken, A. Organometallics 1995, 14, 2589.
- (7) Rahbarnoohi, H.; Heeg, M. J.; Oliver, J. P. Organometallics 1994, 13, 2123.

and relatively expensive Mes*Br) reagent was required to obtain a good (65%) yield of the product.³ Subsequent experience has shown that the use of less than this amount of LiMes* afforded mixtures of products from which it proved very difficult to obtain a pure Mes*AlX₂ sample due to contamination with aluminum halide and/or aluminate complexes. Given the key role of the Mes*AlX₂ halides as starting materials, it was a priority to develop reliable and efficient routes to such species. In addition, it was desired to examine the tendency of Mes*AlX₂ compounds to form complexes with Et₂O or THF, the two most commonly used ether donor solvents.

In this paper, the synthesis of Mes*AlCl₂(THF) (1) in good yield by two separate routes and its X-ray crystal structure are described. It is also shown that 1 readily desolvates under mild conditions to give the hitherto uncharacterized species Mes*AlCl₂ (2). The previously unreported hydride halide compounds Mes*Al(H)Cl(THF), **3a**, and its desolvated analogue, **4a**, as well as the related species **3b** and **4b**, involving ratios of aluminumbound H:Cl that are less than 1:1, are now reported.

Experimental Section

General Procedures. All reactions were performed under N₂ by using either modified Schlenk techniques or a Vacuum Atmospheres HE43-2 drybox. Solvents were freshly distilled from sodium potassium alloy and degassed twice before use. Mes*Br⁸ and [(THF)₂-LiH₃AlMes*]₂⁹ were prepared by literature procedures. AlCl₃ and Me₃SiCl were purchased from Aldrich and used as received. Infrared spectra were recorded in the range 4000–200 cm⁻¹ as a Nujol mull between CsI plates using a Perkin-Elmer PE-1430 spectrometer, and NMR spectra were recorded on a General Electric GE-300 spectrometer.

[®] Abstract published in Advance ACS Abstracts, May 1, 1996.

⁽¹⁾ Uhl, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1386.

⁽⁸⁾ Pearson, D. E.; Frazer, M. G.; Frazer, V. S.; Washburn, L. C. Synthesis 1976, 621.

⁽⁹⁾ Wehmschulte, R. J.; Ellison, J. J.; Ruhlandt-Senge, K.; Power, P. P. Inorg. Chem. 1994, 33, 6300.

Mes*Li(THF)₂. Mes*Li(THF)₂ was synthesized by a slightly modified literature procedure.¹⁰ A solution of 12.93 g (39.7 mmol) of Mes*Br in 20 mL of THF/80 mL *n*-pentane was treated at *ca*. -78 °C with 30 mL (48.0 mmol) of a 1.6 M *n*-BuLi solution in hexanes and stirred for 4 h at this temperature. The colorless precipitate was washed twice with *n*-pentane (2 × 50 mL) at -78 °C, collected on a sintered-glass frit, and dried under reduced pressure. The ¹H NMR spectrum shows the presence of two THF molecules per Mes* unit. Yield: 68%. ¹H NMR (C₆D₆): 7.59 (s, *m*-H, 2H), 3.38 (m, OCH₂, 8H), 1.64 (s, *o*-CH₃, 18H), 1.57 (s, *p*-CH₃, 9H), 1.24 ppm (m, CH₂, 8H).

Mes*AlCl₂·THF (1). Method A. A slurry of 0.48 g (0.55 mmol) of [(THF)₂LiH₃AlMes*]₂ in THF/hexane (30 mL of a 1:2 mixture) was treated with 0.42 mL (3.3 mmol, 0.36 g) of Me₃SiCl at -78 °C. The resulting clear colorless solution was warmed to room temperature and stirred overnight. After removal of volatile materials, the colorless solid was extracted with *n*-hexane (40 mL). Concentration to *ca.* 20 mL followed by crystallization at -20 °C overnight gave 0.28 g of small colorless crystals of **1**. Yield: 61%. Mp: 99–100 °C. ¹H NMR (C₆D₆): 7.45 (s, *m*-H, 2H), 3.58 (m, OCH₂, 4H), 1.59 (s, *o*-CH₃, 18H), 1.33 (s, *p*-CH₃, 9H), 1.02 ppm (m, CH₂, 4H). ¹³C{¹H} NMR (C₆D₆): 161.1 (*o* -C), 150.4 (*p*-C), 121.3 (*m*-C), 72.6 (OCH₂), 39.3 (*o*-C(CH₃)₃), 34.7 (*p*-C(CH₃)₃), 33.5 (*o*-CH₃), 31.5 (*p*-CH₃), 24.7 ppm (CH₂). ²⁷Al NMR: 108 ppm (s, broad, $\Delta \nu_{1/2} = ca.$ 6300 Hz).

Method B. Mes*Li(THF)₂ (3.00 g, 7.5 mmol) was added to a slurry of AlCl₃ (2.00 g, 15.0 mmol) in PhMe (40 mL) at -78 °C via a solidsaddition funnel in several portions (ca. 30 min). The colorless slurry was kept at ca. -78 °C for an additional 1 h, slowly warmed to room temperature, and stirred for a further 16 h. The volatile materials were removed from the slightly cloudy solution under reduced pressure, after which the remaining colorless sticky solid was warmed to ca. 40 °C for 1 h under reduced pressure. The colorless solid was then extracted twice with 80 and 40 mL of n-hexane, respectively. The combined hexane extracts were concentrated to ca. 50 mL and slowly cooled to -20 °C for 24 h to yield 1 as large (>1 mm) colorless plates of sufficient quality for X-ray diffraction studies. The sample also contains ca. 0.3 equiv of AlCl₃·THF (by ¹H, ²⁷Al NMR). This contaminant can be removed by sublimation to afford 2 (vide infra), and pure 1 may be reconstituted by adding THF. Yield of the mixture of 1 and AlCl₃•THF: 2.29 g, 73.4% (or 56% crude Mes*AlCl₂•THF). Mp: softens at 60 °C, melts at 85-90 °C. ¹H NMR (C₆D₆): 7.45 (s, m-H, 2H), 3.63 (m, OCH₂, 5.3H), 1.58 (s, o-CH₃, 18H), 1.32 (s, p-CH₃), 1.00 ppm (m, CH₂, 5.3H). ¹³C{¹H} NMR (C₆D₆): 160.9 (o-C), 150.6 (p-C), 121.3 (m-C), 72.7 (OCH₂), 39.1 (o-C(CH₃)₃), 34.7 (p-C(CH₃)₃), 33.5 (o-CH₃), 31.5 (p-CH₃), 24.6 ppm (CH₂). ²⁷Al NMR (C₆D₆, $\nu_0 =$ 78.340 477 MHz): 87.4 ppm (s, $v_{1/2} = ca.$ 430 Hz, AlCl₃·THF). Concentration of the supernatant liquid to ca. 4-5 mL, followed by cooling in a -20 °C freezer overnight, gave 0.18 g of a mixture of 1 and 2 in the form of large (>1.5 mm) colorless plates with the average composition (by ¹H NMR) of Mes*AlCl₂•0.35THF. The crystal used for the structure determination of 2 was taken from this batch.

Removal of Excess AlCl₃·THF. Method A. A mixture of 1 equiv of Mes*AlCl₂·THF and *ca*. 0.4 equiv of AlCl₃·THF (1.83 g containing *ca*. 1.5 mmol of AlCl₃·THF) in *n*-pentane (50 mL) was reacted with 0.59 g (1.5 mmol) of Mes*Li(THF)₂ at -78 °C. The resultant mixture was warmed to room temperature and stirred overnight. The colorless precipitate (LiCl) was removed, and the colorless solution was concentrated to *ca*. 30 mL to yield 0.59 g of colorless pyramid-shaped (*ca*. 1 mm) crystals after 20 h at room temperature. Cooling of the mother liquor to -20 °C for 4 days gave another 0.68 g of **1**. Yield: 59%. AlCl₃·THF content: <5% according to ¹H and ²⁷Al NMR.

Method B. A crystalline mixture of Mes*AlCl₂·THF and AlCl₃· THF (approximate ratio 1:0.4; 1.09 g) was heated for 3 h to 80 °C under reduced pressure (0.02 mmHg). A colorless microcrystalline solid (AlCl₃·THF) sublimed. The remaining off-white powder was pure Mes*AlCl₂ (**2**). Yield: 0.64 g, 85%.

Mes*AlCl₂ (2). Compound **1** (0.31 g, 0.75 mmol) was heated under reduced pressure (*ca*. 0.02 mmHg) to 90 °C for 20 min. The colorless solid, which is essentially pure Mes*AlCl₂, was dissolved in *n*-hexane (30 mL), the solution was filtered, and the filtrate was concentrated to *ca*. 10 mL and cooled in a -20 °C freezer. After 3 days, 0.15 g of

large (>1 mm) colorless crystals (parallelepipeds) formed. Yield: 58.2%. Mp: turns opaque at 100 °C, melts at 146–150 °C. ¹H NMR (C₆D₆): 7.37 (s, *m*-H, 2H), 1.45 (s, *o*-CH₃, 18H), 1.27 ppm (s, *p*-CH₃, 9H). ¹³C{¹H} NMR: 158.6 (*o*-C), 152.7 (*p*-C), 121.2 (*m*-C), 37.5 (*o*-*C*(CH₃)₃), 35.0 (*p*-*C*(CH₃)₃), 32.9 (*o*-CH₃), 31.3 ppm (*p*-CH₃). ²⁷Al NMR (C₆D₆, 80 °C): 130 ppm (s, broad, $\nu_{1/2} = ca$. 4700 Hz).

Mes*Al(H)Cl·THF (3a). Method A. A ca. -78 °C slurry of Mes*Li(THF)₂ in 1:1 *n*-pentane/Et₂O (80 mL) (generated in situ from 6.08 g (18.7 mmol) of Mes*Br and 12.2 mL of 1.6 M n-BuLi in hexane) was transferred via a cannula to a slurry of LiAlH₄ (0.64 g, 17.0 mmol) in Et₂O (30 mL) at -78 °C, the mixture was warmed to room temperature and stirred for a further 16 h. After cooling to -78 °C, the colorless, cloudy (LiH) solution was treated dropwise with Me₃-SiCl (4.5 mL, 35 mmol, 3.80 g). The mixture was then warmed to room temperature and stirred for an additional 1 h. The clear, colorless supernatant was decanted, and the volatile materials were removed under reduced pressure. The colorless solid was then extracted with n-hexane (80 mL), the extract was filtered, and the filtrate was concentrated to ca. 50 mL and cooled in a -20 °C freezer for 24 h to yield 1.4 g of **3a** as large colorless crystals. Yield: 21.6%. The crystal used for the structure determination was taken from this batch. ¹H NMR (C₆D₆): 7.47 (s, m-H, 2H), 4.8 (s, broad, $v_{1/2} = ca.$ 60 Hz, Al-H, 1H), 3.43 (m, OCH₂, 4H), 1.60 (s, o-CH₃, 18H), 1.36 (s, p-CH₃, 9H), 1.04 ppm (m, CH₂). ¹³C{¹H} NMR (C₆D₆): 160.2 (o-C), 149.8 (p-C), 121.0 (m-C), 70.6 (OCH₂), 39.0 (o-C(CH₃)₃), 34.8 (p-C(CH₃)₃), 33.5 (o-CH₃), 31.6 (p-CH₃), 24.8 ppm (CH₂). IR: v_{Al-H} 1880 (sh), 1832 (st), 1785 (m), 1757 cm^{-1} (m). Concentration of the mother liquor to ca. 30 mL and crystallization at -20 °C afforded 2.04 g of a ca. 1:1 mixture (by NMR) of 3a and Mes*AlH₂.¹¹

Method B. A slurry of [(THF)₂LiH₃AlMes*]₂ (3.8 mmol) in PhMe (50 mL) was treated dropwise with Me₃SiCl (1.93 mL, 1.65 g, 15.2 mmol) at -78 °C. The mixture was warmed to room temperature and stirred overnight (16 h). After removal of the volatile materials under reduced pressure the colorless, slightly sticky solid was extracted with n-hexane (60 mL). The supernatant was decanted, concentrated to 20 mL, and cooled to -20 °C for 4 days. As no crystals had formed, THF (1 mL) was added and the solution was concentrated to ca. 5 mL and cooled in -20 °C freezer. After 2 days, large, colorless crystals of 3b (Mes*Al(H)_{0.64}Cl_{1.36}·THF) had formed. Yield: 1.78 g. Mp: 77-95 °C. ¹H NMR (C₆D₆): 7.48, 7.46 (2s *m*-H, 2H), 4.8 (s, broad, $\nu_{1/2}$ = ca. 60 Hz, Al-H, 0.66H), 3.43 (m, OCH₂, 4H), 1.60 (s, o-CH₃, 18H), 1.36 (s, *p*-CH₃, 9H), 1.04 ppm (m, CH₂, 4H). IR: *v*_{Al-H} 1885 (sh), 1836 (st), 1810 (sh), 1770 cm $^{-1}$ (w). The reaction of 2.07 g (2.4 mmol) of [(THF)₂LiH₃AlMes*]₂ with 3.4 equiv (1.05 mL, 8.2 mmol, 0.90 g) of Me₃SiCl affords Mes*Al(H)_{0.9}Cl_{1.1}·THF in 49% yield. ²⁷Al NMR: 121 ppm (s, br, $\Delta v_{1/2} = ca. 8300$ Hz). IR: $v_{Al-H} = 1832$ cm⁻¹ (st).

Mes*Al(H)Cl (4a). A 0.23 g (0.6 mmol) sample of Mes*Al(H)-Cl·THF (**3a**) was sublimed at *ca*. 110−120 °C under reduced pressure, and 0.13 g of colorless microcrystalline Mes*Al(H)Cl (**4a**) was recovered. ¹H NMR (C₆D₆): 7.38 (s, *m*-H, 2H), 5.25 (s, broad, $\nu_{1/2} \approx$ 40 Hz, Al−H, 1H), 1.44 (s, *o*-CH₃, 18H), and 1.30 (s, *p*-CH₃, 9H). ¹³C{¹H} NMR (C₆D₆): 158.5 (*o*,C), 121.0 (*m*-C), 38.3 (*o*-C(CH₃)₃), 34.9 (*p*-C(CH₃)₃), 32.9 (*o*-CH₃), 31.4 ppm (*p*-CH₃). IR: ν_{Al-H} 1882 (st), 1813 cm⁻¹ (w). Mp: softens at 85 °C, melts from 100−110 °C.

Mes*AlH_{0.64}**Cl**_{1.36} (**4b**). A 0.92 g (2.4 mmol) sample of Mes*Al(H)_{0.64}-Cl_{1.36} THF (**3b**) was sublimed at *ca*. 110–120 °C under reduced pressure. The colorless microcrystalline sublimate (0.63 g) was crystallized from *n*-hexane by cooling at *ca*. –20 °C for 3 days. Yield: 0.28 g. ¹H NMR (C₆D₆): 7.38 (s, *m*-H, 2H), 5.25 (s, broad, $\nu_{1/2} = ca$. 60 Hz, Al–H, 0.6H), 1.44 (s, *o*-CH₃), 1.30 ppm (s, *p*-CH₃). ¹³C{¹H</sup> } NMR (C₆D₆): 158.4 (*o*-C), 151.8 (*p*-C), 121.0 (*m*-C), 38.2 (*o*-C(CH₃)₃), 34.9 (*p*-C(CH₃)₃), 32.9 (*o*-CH₃), 31.4 ppm (*p*-CH₃). IR: ν_{Al-H} 1877 (st), 1849 (sh), 1805 cm⁻¹ (w). Mp: 110–121 °C.

X-ray Crystallographic Studies. The crystals were removed from the Schlenk tube under a stream of N_2 and immediately covered with a layer of hydrocarbon oil. A suitable crystal was selected, attached to a glass fiber, and immediately placed in the low-temperature nitrogen

Table 1. Crystallographic E	Data ^a for 1	L. 2.	3a.	and	4b
------------------------------------	-------------------------	-------	-----	-----	----

	1	2	3 a	4b
formula	C22H37AlCl2O	C ₁₈ H ₂₉ AlCl ₂	C ₂₂ H ₃₈ AlClO	C ₁₈ H _{29.64} AlCl _{1.36}
fw	415.40	343.29	380.95	321.34
color and habit	colorless plate	colorless plate	colorless plate	colorless prism shaped fragment
cryst system	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$Pca2_1$	$P2_1/n$	$P2_{1}/c$	$P2_{1}/n$
a, Å	11.889(3)	12.147(5)	16.887(7)	12.077(3)
b, Å	9.992(3)	18.042(6)	16.333(6)	17.920(3)
<i>c</i> , Å	19.704(5)	17.771(7)	8.739(3)	17.634(5)
β , deg		95.77(3)	101.41(3)	95.21(2)
<i>V</i> , Å ³	2341(1)	3875(2)	2363(2)	3801(2)
Ζ	4	8	4	8
cryst dimens, mm	$0.61 \times 0.60 \times 0.10$	$0.58 \times 0.46 \times 0.40$	$0.56 \times 0.55 \times 0.22$	$0.90 \times 0.52 \times 0.28$
d_{calc} , g cm ⁻³	1.179	1.177	1.071	1.123
μ , mm ⁻¹	2.906	3.373	1.823	2.602
no. of obsd rflens	$1556 (I > 2\sigma(I))$	$4610 (I > 2\sigma(I))$	$2752 (I > 2\sigma(I))$	$4261 (I > 2\sigma(I))$
R, wR_2	0.068, 0.174	0.032, 0.079	0.073, 0.189	0.070, 0.187

^{*a*}Data were collected at 130 K with a Syntex P2₁ diffractometer (1, 3a, 4b) or a Siemens P4/RA diffractometer (2) using Cu K α (λ = 1.541 78 Å) radiation.

stream as described in ref 12. All data were collected near 130 K with either a Syntex P2₁ (graphite monochromator) in the cases of **1**, **3a**, and **4b** or a Siemens P4/RA diffractometer (nickel foil monochromator) in the case of **2** using Cu K α ($\lambda = 1.54178$ Å) radiation. Both diffractometers were equipped with a locally modified Enraf-Nonius universal low-temperature device for low-temperature work.

Crystallographic programs used for the structure solutions were those of the SHELXTL Version 5.03 (1994) program package installed on an IBM-compatible 486 computer. Scattering factors were obtained from ref 13. An absorption correction was applied by using the method described in ref 14. Some details of the data collection and refinement are given in Table 1. Coordinates for selected atoms are given in Table 2, and selected bond distances and angles are given in Table 3. Further details are provided in the Supporting Information. The crystal structures were solved by direct methods, and they were refined by full-matrix least-squares procedures. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to the carbons were included in the refinement at calculated positions using a riding model with C-H = 0.96 Å and $U_H = 1.2U_C$ and $1.5U_C$ for methyl hydrogens. Hydrogen atoms bound to aluminum were located on Fourier difference maps and, with the exception of those in 4b, were allowed to refine freely with fixed isotropic parameters.

Discussion

The main objectives of this work were the development of a more practical route to a Mes*AlX₂ (X = halide) starting material and the study of some of its properties. The work may be summarized by Scheme 1, which presents an overall view of the relationships among the compounds under discussion.

The original preparation of Mes*AlBr₂ required the use of 2.5 equiv of the expensive Mes*Br precursor.³ Attempts to react Mes*Li (generated by treatment of Mes*Br with *n*-BuLi in a THF/*n*-pentane 1:4 mixture at *ca.* -78 °C, followed by two washings with *n*-pentane) with 1 equiv of AlBr₃ in either *n*-hexane or toluene led to impure oils from which Mes*AlBr₂ could eventually be isolated (after several crystallizations and sublimation) in yields that were often less than 20%.¹⁵ Interestingly, the reaction of Mes*Li with 1 equiv of GaCl₃ under the same conditions led to a mixture of Mes*₂GaCl and Mes*GaCl₂.¹⁵

A different approach using the Grignard reagent Mes*MgBr and the addition of 1 equiv of AlBr₃ does not lead to Mes*AlBr₂ but to the isolation of Mes*₂Mg¹⁶ in *ca*. 50% yield. Mes*GaCl₂ can be conveniently synthesized by the reaction of Mes*Li-(THF)₂ with 2 equiv of GaCl₃ in *n*-pentane.¹⁵

It seems that in the 1:1 reactions with the MX_3 (M = Al, Ga) salt the LiCl, LiBr, and MgBr₂ byproducts form insoluble or relatively inert complexes such as LiMCl₄, LiMBr₄, and MgBrMBr₄ with unreacted MX₃. In contrast to its gallium and indium congeners, Mes_2AlX (X = Cl, Br) has not yet been reported. Bearing the probable formation of aluminate salts in mind, it was decided to react Mes*Li, which was isolated as Mes*Li(THF)₂, with 2 equiv of AlCl₃ in toluene. This resulted in a milky solution. Removal of the volatile materials and extraction with *n*-hexane, followed by crystallization at -20°C, gives large (ca. 1-2 mm) colorless crystals, which are Mes*AlCl₂•THF (1) according to the X-ray structure determination. NMR spectroscopic examinations nevertheless reveal a THF:Mes* ratio that is greater than 1:1, and the ²⁷Al NMR spectrum displays a narrow line in the 80-90 ppm range, consistent with the presence of some AlCl3 THF contamination of the product in the crystals.¹⁷ The excess (cocrystallized) AlCl₃. THF can be removed either (a) by reaction of this mixture with the appropriate amount of Mes*Li(THF)₂ in *n*-pentane or (b) by sublimation at 80 °C under reduced pressure, which leaves pure 2 as a powder. Pure 1 can then be obtained by the addition of THF.

The solvent-free Mes*AlCl₂ (2) can be isolated in the form of large (*ca.* 2 mm) colorless plates either by repeated crystallization of 1 from *n*-hexane or by heating of 1 to 90 °C under reduced pressure.

The alternative (and higher yielding) method for the synthesis of **1** arose from parallel work involving the synthesis of $(Mes*AlH_2)_2$ (**5**).¹¹ This molecule was originally synthesized by the reaction of MeI with [(THF)₂LiH₃AlMes*]₂ as described by eq 1. It was later found that Me₃SiCl could be used instead

$$[(THF)_{2}LiH_{3}AlMes^{*}]_{2} + 2MeI \rightarrow$$

$$6$$

$$2LiI + 2MeH + (H_{2}AlMes^{*})_{2} (1)$$

 $12LII + 2MeH + (H_2Alives)_2 (1)$

⁽¹²⁾ This method is described by: Hope, H. A Practicum in Synthesis and Characterization. In *Experimental Organometallic Chemistry*; Wayda, A. L., Darensbourg, M. Y., Eds.; ACS Symposium Series 357; American Chemical Society: Washington, DC, 1987; Chapter 10.

⁽¹³⁾ International Tables for Crystallography; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1993; Vol. C.

⁽¹⁴⁾ Parkin, S. R.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53.

⁽¹⁵⁾ Brothers, P. J.; Wehmschulte, R. J.; Power, P. P. Unpublished results, 1993, 1994.

^{(16) (}a) Wehmschulte, R. J.; Power, P. P. *Organometallics* 1995, *14*, 3264.
(b) Wehmschulte, R. J.; Power, P. P. Unpublished results, 1995.

⁽¹⁷⁾ Nöth, H.; Rurländer, R.; Wolfgardt, P. Z. Naturforsch. 1982, 87B, 29.

Table 2. Atom Coordinates $(\times 10^4)$ for Important Atoms in 1, 2, 3a, and 4b

	Compo	und 1	
Al(1)	8360(2)	-1614(2)	523(1)
Cl(1)	8857(2)	479(2)	557(1)
Cl(2)	7024(2)	-1769(2)	-194(1)
O(1)	9630(4)	-2099(5)	-10(2)
C(1)	8485(6)	-2585(7)	1392(4)
C(2)	9102(6)	-3809(7)	1454(4)
C(3)	9719(6)	-4069(7)	2043(4)
C(4)	9713(6)	-3216(7)	2595(4)
C(5)	8981(6)	-2142(7)	2580(4)
C(6)	8325(6)	-1854(7)	2005(4)
	Compo	und 2	
Al(1)	7577(1)	1718(1)	1374(1)
Cl(1)	7334(1)	872(1)	547(1)
Cl(2)	9268(1)	2051(1)	1488(1)
C(1)	6597(2)	2203(1)	2019(1)
C(2)	6492(2)	1945(1)	2760(1)
C(3)	5932(2)	2371(1)	3256(1)
C(4)	5468(2)	3055(1)	3058(1)
C(5)	5547(2)	3295(1)	2321(1)
C(6)	6090(2)	2892(1)	1803(1)
Al(2)	2657(1)	5657(1)	1653(1)
Cl(3)	1878(1)	6532(1)	1001(1)
Cl(4)	4362(1)	5576(1)	1492(1)
C(19)	1779(2)	5017(1)	2231(1)
C(20)	1238(2)	4373(1)	1921(1)
C(21)	566(2)	3964(1)	2350(1)
C(22)	377(2)	4162(1)	3085(1)
C(23)	892(2)	4796(1)	3380(1)
C(24)	1591(2)	5222(1)	2978(1)
	Compor	und 3a	
Al(1)	8749(1)	9666(1)	2485(2)
Cl(1)	9581(1)	8897(1)	1523(2)
H(1)	8856(31)	9606(32)	4491(62)
O(1)	9183(2)	10740(2)	2407(4)
C(1)	7576(3)	9830(3)	1684(5)
C(2)	7082(3)	9532(3)	2698(5)
C(3)	6395(3)	9983(3)	2894(5)
C(4)	6158(3)	10690(3)	2083(5)
C(5)	6583(3)	10909(3)	926(5)
C(6)	7261(3)	10491(3)	691(5)
	Compou	und 4b	
Al(1)	2674(1)	673(1)	1553(1)
Cl(1)	4449(1)	429(1)	1562(1)
Cl(2)	1845(8)	1574(5)	1031(5)
H(1)	2482(58)	1300(37)	903(36)
C(1)	1742(3)	62(2)	2147(3)
C(2)	1567(3)	272(2)	2900(2)
C(3)	926(4)	-172(2)	3338(2)
C(4)	437(4)	-837(2)	3063(2)
C(5)	605(4)	-1031(2)	2321(2)
C(6)	1228(3)	-608(2)	1859(2)
Al(2)	7316(1)	1662(1)	3654(1)
Cl(3)	5565(1)	1951(1)	3522(1)
Cl(4)	7557(2)	808(1)	4492(1)
H(2)	7915(94)	1053(67)	4047(73)
C(19)	8300(3)	2173(2)	3009(2)
C(20)	8814(3)	2867(2)	3231(2)
C(21)	9411(4)	3258(2)	2723(2)
C(22)	9547(4)	3004(2)	1995(2)
C(23)	9064(3)	2322(2)	1787(2)
C(24)	8453(3)	1906(2)	2275(2)

of MeI to afford elimination of Me₃SiH instead of methane. The addition of further Me₃SiCl leads to the substitution of further hydrogens on the aluminum by chlorine. Thus, the addition to **6** of 4 instead of 2 equiv of Me₃SiCl gives **3a** in the presence of THF whereas 6 equiv of Me₃SiCl affords compound **1** in which all the hydrogens are replaced by chlorine (eqs 2 and 3). Care has to be exercised in adding exactly the correct number of equiv of Me₃SiCl in the case of eq 2 since the addition of more than 4 equiv will result in a species which

 Table 3.
 Selected Bond Distances (Å) and Angles (deg) for Compounds 1, 2, 3a, and 4b

1			
	Comp	ound 1	
Al(1)-Cl(1)	2.173(3)	Al(1)-C(1)	1.975(7)
AI(1)-CI(2)	2.131(3)	AI(1) = O(1)	1.902(5)
Cl(1)-Al(1)-Cl(2)	107.1(1)	C(1) - Al(1) - O(1)	107.1(3)
C(1) - AI(1) - CI(1)	115.2(2) 126.5(2)	CI(1) - AI(1) - O(1) CI(2) - AI(1) - O(1)	92.7(2)
C(1) = AI(1) = CI(2)	120.3(2)	CI(2) = AI(1) = O(1)	102.0(2)
	Comp	ound 2	
Al(1) - Cl(1)	2.120(1)	Al(2)-Cl(3)	2.123(1)
AI(1) = CI(2) AI(1) = C(1)	2.129(1) 1.042(2)	AI(2) = CI(4) AI(2) = C(19)	2.123(1) 1.036(2)
	1.942(2)	$\operatorname{Al}(2) \operatorname{C}(1)$	1.950(2)
Cl(1) - Al(1) - Cl(2)	109.6(1) 122.1(1)	Cl(3) - Al(2) - Cl(4) Cl(2) - Al(2) - C(10)	111.4(1)
Cl(1) = Al(1) = C(1) Cl(2) = Al(1) = C(1)	133.1(1) 117.4(1)	Cl(3) = Al(2) = C(19) Cl(4) = Al(2) = C(19)	119.0(1) 128.8(1)
	-		120.0(1)
$A_{1}(1) = C_{1}(1)$	Compo	bund $3a$	1 72(5)
AI(1) = CI(1) AI(1) = C(1)	2.1/4(2) 1.083(5)	AI(1) = H(1) AI(1) = O(1)	1./3(5) 1.008(3)
	1.965(5)		1.900(3)
CI(1) - AI(1) - C(1)	128.2(2) 103 6(1)	C(1) = AI(1) = O(1) C(1) = AI(1) = H(1)	103.2(2) 105(2)
Cl(1) - Al(1) - O(1) Cl(1) - Al(1) - H(1)	103.0(1) 114(2)	O(1) - AI(1) - H(1) O(1) - AI(1) - H(1)	97(2)
(-)	(_)	• (-) • • • • • • • • • • • • • • • • • • •	× · (=)
$A_{1}(1) = C_{1}(1)$	Compo	bund $4b$	2.160(2)
AI(1) - CI(1) AI(1) - CI(2)	2.180(2) 2.070(10)	AI(2) - CI(3) AI(2) - CI(4)	2.169(2) 2.130(2)
Al(1) - H(1)	1.61(6)	Al(2) - H(2)	1.45(12)
Al(1) - C(1)	1.944(4)	Al(2) - C(19)	1.947(4)
Cl(1) - Al(1) - C(1)	119.88(14)	Cl(3) - Al(2) - C(19)	117.78(14)
Cl(1) - Al(1) - H(1)	103(3)	Cl(3) - Al(2) - Cl(4)	108.41(9)
Cl(1) - Al(1) - Cl(2)	126.4(3)	Cl(3)-Al(2)-H(2)	132.(5)
Cl(2) - Al(1) - C(1)	113.5(3)	Cl(4) - Al(2) - C(19)	133.8(2)
U(1) = AI(1) = H(1)	137(3)	C(19) = AI(2) = H(2)	109(3)

has less than one aluminum hydrogen per chlorine, i.e. a species such as **3b**. The synthesis of **3a** may also be accomplished in

$$[(THF)_{2}LiH_{3}AlMes^{*}]_{2} + 4Me_{3}SiCl \rightarrow$$

2LiCl + 4Me_{3}SiH + 2Mes^{*}Al(H)Cl(THF) (2)
3a

$$[(THF)_{2}LiH_{3}AlMes^{*}]_{2} + 6Me_{3}SiCl \rightarrow$$

$$2LiCl + 6Me_{3}SiH + 2Mes^{*}AlCl_{2}(THF) (3)$$
1

reduced yield by the one-pot reaction of $Mes*Li(THF)_2$ with LiAlH₄, followed by treatment with Me₃SiCl. The route to (H₂-AlMes*)₂ described by eq 4 was investigated in order to avoid

$$2\text{Mes*Li(THF)}_{2} + 2\text{LiAlH}_{4} \rightarrow [(\text{THF})_{2}\text{LiH}_{3}\text{AlMes*}]_{2} + 2\text{LiH} \xrightarrow{4\text{Me}_{3}\text{SiCl}} 6 \\ (\text{Mes*AlH}_{2})_{2} + 4\text{LiCl} + 4\text{Me}_{3}\text{SiH} + 4\text{THF} (4) \\ 5$$

the necessity of isolating [(THF)₂LiH₃AlMes*]₂, **6**. Apparently, (Mes*AlH₂)₂, **5**, reacts with Me₃SiCl at a rate competitive with that of LiH, thereby giving some **3** as product. Attempts to synthesize **3a** by exchange reactions involving **1** and **5** led to mixtures of products which according to ¹H NMR consisted mainly of Mes*AlH_nCl_{2-n}·THF species.

The THF from **3** can be easily removed by sublimation at 110-120 °C under reduced pressure without affecting the H:Cl ratio. It is notable, however, that the synthesis of Mes*Al(H)-Cl⁻THF (H:Cl ratio 1:1) according to eq 2 can be further complicated by an equilibrium involving (Mes*AlH₂)₂, Mes*Al-(H)Cl⁻THF, and Mes*AlCl₂•THF. It should be noted that Mes*Al(H)_nCl_{2-n}•THF ($n \ge 1$) is less soluble than (Mes*AlH₂)₂

Figure 1. Thermal ellipsoidal plot (30%) of 1. H atoms are omitted for clarity.

Figure 2. Thermal ellipsoidal plot (30%) of one of the independent molecules of 2. H atoms are omitted for clarity.

in hexane or pentane solutions which contain small amounts (*ca.* 5–10 equiv) of THF. Thus, a synthesis following the exact stoichiometry given by eq 2 can lead to Mes*Al(H)_n Cl_{2–n}•THF with n < 1 in the isolated crystals. The employment of less than 4 equiv of Me₃SiCl per [(THF)₂LiH₃AlMes*]₂ increases the H:Cl ratio to 0.9:1.1.

Scheme 1. Summary of Relationships among Compounds 1-6

Structures. The structures of compounds 5^{11} and 6^9 have been described elsewhere. The structure of 1, which is illustrated in Figure 1, bears a resemblance to the structure of the less sterically encumbered MesAlCl₂(THF).³ There are important differences in structural detail, however, that may be attributed to the greater size of the Mes* group in comparison to Mes. The Al-C and Al-O distances in 1 are ca. 0.05 Å longer than the corresponding lengths in MesAlCl₂(THF). The Cl-Al-Cl angle is ca. 3° narrower in 1 and the C-Al-Cl angles in 1 can be up to 11° wider than the same feature in MesAlCl₂(THF). The higher steric crowding in 1 is also manifested in the distortion of the C(1)-C(6) phenyl ring. The C(1)-C(4) vector deviates by 30.5° from the Al-C(1) vector. Furthermore, the ring itself is also distorted toward a boat conformation so that the planes defined by C(1)-C(2)-C(6)and C(3)-C(4)-C(5) are folded toward the plane C(2)-C(3)-C(5)-C(6) by angles of 13.2 and 4.8°, respectively. Removal of THF from 1 under mild conditions results in the threecoordinate species 2. The lowering of the aluminum coordination number from 4 to 3 results in slightly shorter metal-carbon and metal-halide bonds as well as wider interligand angles. The crystals of 2 are not isomorphous with their Ga or In analogues, nor are they isomorphous with the Al species Mes*AlBr₂ although all the compounds bear a close structural resemblance. They are, however, isomorphous with 4b (vide infra). The two crystallographically independent molecules in 2 have almost identical structures; the only significant differences relate to slight changes in the orientation of the t-Bu groups. There are also close approaches (2.1 Å) of two H atoms from ortho t-Bu groups to the Al center which are similar to those observed in Mes*AlBr₂. The positioning of the aromatic ring plane approximately perpendicular to the metal coordination plane thus appears to take place for two reasons: to minimize steric congestion and to permit agostic interactions between the t-Bu hydrogens and the metal.

The structure of 3a resembles that of 1 except the two formulas differ by the substitution of a hydrogen instead of a chlorine at the aluminum; however, the crystals of 1 and 3aare not isomorphous. Nonetheless, the Al–Cl and Al–C bond lengths are very similar in the two compounds. The Al–H

Figure 3. Thermal ellipsoidal plot (30%) of 3a. H atoms are omitted for clarity.

Figure 4. Thermal ellipsoidal plot (30%) of one of the independent molecules of 4b. H atoms are omitted for clarity.

distance is 1.73(5) Å which is *ca*. 0.2 Å longer than the terminal Al–H bond in (Mes*AlH₂)₂¹¹ or Mes*₂AlH.⁶ The high standard deviations, however, makes such comparisons of limited value. The Al–O distance 1.908(3) Å is essentially identical to the value observed in **1**.

Desolvation of **3b** by heating under reduced pressure invariably afforded species of formula Mes*Al(H)_{0.64}(Cl)_{1.36} (**4b**) upon recrystallization. The amount of Cl always exceeded that of the aluminum hydrogen in several preparations. The ratio of Al–H to Mes* can be determined approximately by integration of the ¹H NMR signals. Different ratios of H:Cl are also

observed in the X-ray crystal structure where the two crystallographically independent molecules have H-Cl compositions of H_{0.85}Cl_{1.15} and H_{0.43}Cl_{1.57}. The positions of the partially occupied H(1)/Cl(2) and H(2)/Cl(4) are exchanged with respect to each other. The hydrogen atoms H(1) and H(2) deviate slightly from the averaged Cl₂AlC plane, and the Al-H distances are 1.45(12) and 1.61(6) Å in good agreement with the values in (Mes*AlH₂)₂¹¹ and Mes₂AlH.⁶ There is a 90° torsion angle between the aluminum coordination plane and the plane of the aromatic ring. In addition, there are short contacts (ca. 2.1 Å) between hydrogens from the ortho t-Bu groups and the Al centers. It is interesting to note that the structure of 4b closely resembles those of 2 and Mes*AlBr₂ and is in sharp contrast to the dimeric arrangement of (Mes*AlH₂)₂. A dimeric structure of the type Mes*(Cl)Al(*µ*-H)₂Al(Cl)Mes* might have been expected for 4 especially in view of the relative strength of the Al-H-Al bridge in $(Mes*AlH_2)_2$ (6) which is apparently not cleaved by nucleophiles like THF. It is also notable that 2 and 4b are essentially isomorphous with very similar cell constants. In effect, the structure of 4b may be most simply described as consisting of Mes*Al(H)Cl contaminated with some Mes*AlCl₂.

Conclusion

Reaction of $[(THF)_2LiH_3AlMes^*]_2$ with an appropriate number of equivalents of Me₃SiCl affords various arylaluminum halides in good yield. Although ether complexes of Mes*AlX₂ (X = Cl, Br) have not been isolated, it is possible to crystallize the THF-complexed species Mes*AlCl₂(THF) and Mes*Al(H)-Cl(THF). These compounds are the first Lewis-base complexes of Mes*-substituted Al derivatives. However, even the THF can be removed by mild heating under reduced pressure. The relatively weak coordinating ability of the Al center with regard to Et₂O or THF is due to the large size of the Mes* substituent and the presence of agostic interactions involving the metal and C–H bonds from the ortho *t*-Bu groups.

Acknowledgment. We are grateful to the National Science Foundation for financial support.

Supporting Information Available: Full tables of data collection parameters, atom coordinates, bond distances and angles, anisotropic thermal parameters, and hydrogen coordinates (35 pages). Ordering information is given on any current masthead page.

IC9515416