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The ligand-field spectrum of [Cr(NH3)4F2]AsF6 has been pressure-tuned up to 100 kbar. The parametrical analysis
shows that the absolute values of the two independent tetragonalities of the chromophoric ion both decrease with
increasing isotropic pressure so that the molecular ion becomes more isotropic. Moreover, the Cr-N single
bonds appear to be more compressible than the Cr-F bonds, for which it is parametrically clear that they have
a partial multiple-bond character. While the spectrochemical parameter for F-, ∆F, increases with pressure, its
two components∆σF and∆πF decrease. It is confirmed that nephelauxetism increases with pressure.

Introduction

The spectrochemical series of ligands bears the name of
Tsuchida1 and has been known from before ligand-field theory
was used to rationalize it. This series depends roughly upon
the ligating atoms2 and can be sketched accordingly as

The ligand-field rationalization associated the series with
increasing values of the empirical parameter∆ applying to cubic
complexes. This parameter is defined by

whereh refers to the orbital energies of the model and the
symbols for the symmetry species to the octahedron. It was
found that the series was the same for all central ions and that
a spectrochemical series of constant ligand and varying central
ions could likewise be established.3

For octahedral complexes the eg orbitals are by symmetry
able to formσ bonds with the ligands, but notπ bonds, whereas
the opposite symmetry conditions apply to the t2g orbitals.
Therefore,∆ was later written as

and interpreted as thedifference between aσ and a π
antibonding energy (where∆π, however, could be negative in
case theπ interaction with the ligands made the t2g orbitals net
bonding rather than antibonding).
This interpretation contributed order to inorganic chemistry,

especially after it turned out that all∆ values seemed to be

positive (no negative∆ value having until now been found).
This fact was in good agreement with chemical feeling and with
computational experience thatσ interactions supersedeπ
interactions in energetic importance. There is therefore an
almost unanimous view among inorganic chemists that∆ can
be considered in this way.
On the other hand, the fact that∆ was a difference quantity

made its numerical value less valuable chemically. Immediately,
there seemed to be no solution to this problem because it is a
parameter obtained from spectra of octahedral complexes, which
only embody information about the single orbital energy
difference represented by the empirical ligand-field parameter
∆ of eq 2. One needs lower-symmetry complexes in order to
obtain more orbital energy differences and thereby the possibility
of determining the components of∆ according to eq 3.
For the kind of complexes that we are here discussing, that

is, complexes which have valence angles of 90 and 180°,
Yamatera4 and McClure5 invented a new parametrization of the
ligand field which in principle allowed the spectrochemical
series to be split into two new series: aσ and aπ series.
McClure5 gave for the central ion cobalt(III) a preliminary
proposal to the order of certain ligands in these new series for
which he invented the following collective name: the two-
dimensional spectrochemical series.
The complexes that we are here talking about were later called

orthoaxial complexes,6 and the additive ligand-field model of
Yamatera and McClure was generalized to what is now called
the angular overlap model (AOM).7 This model, which can be
used for any complex of any symmetry or even without
symmetry, has a molecular-orbital version (MO-AOM) and a
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I < Br < Cl < F< O< N < C (1)

∆ ≡ h(eg) - h(t2g) (2)

∆ ) ∆σ - ∆π (3)
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ligand-field version (LF-AOM).8 Geometrical knowledge is the
only prerequisite for setting up the theoretical part of the AOM.
The rest of the use of the model is concerned with the model’s
radial parameters, which must be determined by comparison
with experiment.
On the experimental side of the use of the LF-AOM, it turned

out that it was extremely difficult to obtain data which allowed
the determination of the empirical parameters required in order
to establish the parameter values for the various ligands in the
two-dimensional spectrochemical series. Actually, the task has
up till now been reasonably successfully solved only for the
central ion chromium(III) and only for a few ligands. The two
parametrically independent series are9

It is seen that the series are the same except for the position of
NH3, which has noπ electrons to contribute. This means, with
the limited knowledge we have, that it is important for a ligand’s
behavior whether it has filledπ orbitals or not. If it has such
orbitals, they will overlap and interact with the orbitals of the
central ion. This is in agreement with the extraordinary
spectrochemical results that apply to ligands with sulfur as
coordinating atom. These ligands cannot be placed in the series
(1) in agreement with the fact that their number of filledπ
orbitals varies. For example, SO32- which has no filledπ
orbitals on the sulfur has a high position in the spectrochemical
series, around the same place as NH3, whereas-SR has a low
position, among the heavy halides.10

In the past when the ligand-field model was conceived as an
electrostatic model, it provided an expectation for the depen-
dence of∆ on the metal to ligator distancer. This fact served
as an impetus for the study of the pressure dependence of∆,
which was made for several octahedral complexes.11 The
dependence found could be described as an approximate
proportionality

This result could not have killed the electrostatic model. In
fact, the event is an example of two interesting properties of
models: they may inspire new experiments and they may
provide predictions that turn out to be correct even if the model
itself turns out to be distant from being physically realistic.
The result (5) contains quantitative knowledge regarding the

empirical parameter∆, which, as we saw above, is conceived
as a difference quantity. It would therefore seem to be
worthwhile to try to establish the pressure dependencies of its
individual parts, theσ andπ components, especially in view of
the scarce knowledge we have about these parts. This problem
is not a trivial one, either on the experimental side or on the
conceptual side. The present paper is a first attempt at doing

this. It sets out with the complex ion [Cr(NH3)4F2]+ which was
the main contributor to the quantification of the series (4).9 The
ligand-field spectrum of [Cr(NH3)4F2]AsF6 was measured from
atmospheric pressure to 100 kbar.

Holistic Tetragonal Ligand Fields and Orthoaxial
Symmetry Hierarchy

In holistic, that is, nonadditive, ligand-field theory,12 the
molecular symmetry plus the restrictions that arise from the use
of a function space limited to the five d functions governs the
issue alone, and even though the ligands may have a conceptual
individuality, their individual ligand fields do not. The holistic
theory is useful because it allows one to decide how many
independent ligand-field parameters a system of a given
symmetry is able to provide within the model boundary
conditions.

When the holohedric symmetry is tetragonal and belongs to
the special hierarchyOh ⊃ D4h ⊃ D2h in which the two
equivalentC2 axes ofD4h which coincide with two of theC4

axes ofOh are also two of theC2 axes ofD2h, we have a situation
where symmetry and geometry meet in a way that is important
for “octahedral” complexes. We shall name thissymmetry-
geometry hierarchytheorthoaxial hierarchy.

In this hierarchy the tetragonal ligand field can be written in
terms of mutually orthogonal parametric operators12 if the
relative orbital energies are defined by

where∆(d) ) ∆ now accounts for the average octahedral field
and∆(e) and∆(t2) account for two parametrically independent
tetragonal fields, aσ field and aπ field, the octahedral property
that the e orbitals haveσ and the t2 orbitalsπ symmetries (and
not vice versa) being conserved because the b1(D4) and a1(D4)
orbitals still have a pure e(O) parentage and the b2(D4) and e(D4)
orbitals a pure t2(O) parentage. For these systems the para-
metrical ligand-field Hamiltonian then has the form

where the operators that are coefficients of the parameters are
mutually orthogonal, dimensionless entities, defined by eqs 6
and 7. For example,Q̂[∆(t2)] may alternatively be defined by
the expression

Q̂[∆(t2)]

xy

yz

zx

xy yz zx

[2/3 0 0

0 -1/3 0

0 0 -1/3
] (8)

or if the usual real d function basis is understood, the matrix of
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Br- < Cl- < OH2 < NH3 < F- < (OH)- ∆σ series

NH3 < Br- < Cl- < OH2 < F- < (OH)- ∆π series (4)

∆ ∝ r p, p≈ -5 or-6 (5)

b1(D4): h(x2 - y2) ) 3/5∆(d)+ 1/2∆(e) (6a)

a1(D4): h(z2) ) 3/5∆(d)- 1/2∆(e) (6b)

b2(D4): h(xy) ) -2/5∆(d)+ 2/3∆(t2) (6c)

e(D4): h(yz) ) h(zx) ) -2/5∆(d)- 1/3∆(t2) (6d)

HLF ) ∆(d) Q̂[∆(d)] + ∆(e) Q̂[∆(e)]+ ∆(t2) Q̂[∆(t2)] (7)
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Q̂[∆(t2)], Q[∆(t2)], may be simply written as

Q(∆(t2)] ) [2/3 0 0

0 -1/3 0

0 0 -1/3
] (9)

The norm square of the operator over the five d orbitals is found
as the sum of the squares of its matrix elements.12 For
Q[∆(t2)] we thus obtain

and for the other norm squares we obtain similarly

Perhaps the most important consequence12 of usingmutually
orthogonal operatorsis the fact that thesum-square splitting
(s.sq.s.), that is, the sum of the squares of the energies of all
the states on which the operator set acts, is equal to the sum of
the squares of the parameters, each parameter being weighted
by its coefficient operator’s norm square. This means that the
responsibility for the sum-square splitting can be quantitatively
allocated to the individual ligand-field parameters. From eq 6
it is immediately clear that the two parametric cross products
cancel when the sum-square splitting is calculated. It is also
clear that the operatorsQ̂[∆(e)] and Q̂[∆(t2)] are orthogonal
since they act on two different subspaces of d space.
Let us anticipate our results by calculating from our experi-

ments the three parametric contributions to the d orbital sum-
square splitting in [Cr(NH3)4F2]AsF6 at atmospheric pressure.
We find

With the norm squares6/5, 1/2, and2/3 of the coefficient operators
over the five-dimensional space of the d orbitals, we obtain

which shows that the cubic part of the ligand field in this
“octahedral” complex makes up 97% of the sum-square splitting
and the two parametrically independent tetragonal fields ac-
cordingly 3%.

The Ligand Field Partitioned into Single-Ligand
Contributions

The angular overlap model allows the ligand field to be
partitioned so that the ligands provide their individual contribu-
tions to the splitting of the d orbitals and the global ligand field
becomes a sum of these contributions.7 This means that we
must obtain empirical parameters which refer to these individual
ligands when we compare the experimental spectra with the
AOM expressions for the transition energies. It does not imply
any assumption about transferability of such empirical param-

eters either from one complex to the other or from one ligand
of the same kind to an other one within a given complex, unless
these ligands are equivalent by symmetry. On the other hand,
such transferabilities would of course be wonderful to find
empirically, and they have in fact in some cases been found to
apply extremely well.9

By using the AOM, one obtains the following expressions
for the parameters of the holistic model applied to the complex
ion [Cr(NH3)4F2]+:

∆(d)) ∆ ) 1/3(2∆N + ∆F) ) 1/3(2∆′N + ∆′F) (14ai)

∆(e)) 2/3(∆σN - ∆σF) ) 2/3(∆′σN - ∆′σF) (14aii)

∆(t2) ) 1/2(∆πN - ∆πF) ) -1/2∆′πF (14aiii)

where the parameters∆σ and∆π for linearly ligating ligands J
are related to the AOM single-ligand parameters by the relations

∆σJ ) 3(eσJ - eδJ) (14bi)

∆πJ ) 4(eπJ - eδJ) (14bii)

and where, by definition

∆J≡ ∆σJ - ∆πJ (14c)

The expressions on the extreme right of eq 14a use∆πN as the
zero point for the other parameters9 as illustrated by the
definitions

With these definitions, the problem of going from the three-
parameter holistic model to the four-parameter partitioned model
has been overcome. On the other hand, the parameter∆πN,
which we take as our zero point because we expect it to be
small from a chemical point of view, remains undetermined in
our experiment.
The reverse of eq 14a may usefully be written as

The above mentioned results (eq 12) for [Cr(NH3)4F2]AsF6 at
atmospheric pressure can then be given as

The remarkable thing is that F-, which is a low-∆ ligand
according to the quantification of expression 1, has aσ
parameter,∆′σF, which is pronouncedly larger than that,∆′σN,
applying to the high-∆ ligand NH3. This result, which of course

〈Q̂[∆(t2)]|Q̂[∆(t2)]〉 ) 〈Q[∆(t2)]|Q[∆(t2)]〉 )

(2/3)
2 + (-1/3)

2 + (-1/3)
2 ) 6/9 ) 2/3 (10)

〈Q̂[∆]|Q̂[∆]〉 ) 6/5 (11a)

〈Q̂[∆(e)]|Q̂[∆(e)]〉 ) 1/2 (11b)

∆ ) 1.900, ∆(e)) -0.215,
∆(t2) ) -0.412 (all inµm-1) (12)

∆2〈Q̂[∆]|Q̂[∆]〉 ) 4.33µm-2 (13a)

[∆(e)]2〈Q̂[∆(e)]|Q̂[∆(e)]〉 ) 0.023µm-2 (13b)

[∆(t2)]
2〈Q̂[∆(t2)]|Q̂[∆(t2)]〉 ) 0.113µm-2 (13c)

∆′σF≡ ∆σF - ∆πN (15a)

∆′πF≡ ∆πF - ∆πN (15b)

∆F≡ ∆σF - ∆πF ) ∆′σF - ∆′πF (15c)

∆′σN ) ∆(d)+ 1/2∆(e)- 2/3∆(t2) (16a)

∆′σF ) ∆(d)- ∆(e)- 2/3∆(t2) (16b)

∆′πF ) -2∆(t2) (16c)

∆N ) ∆′σN ) ∆(d)+ 1/2∆(e)- 2/3∆(t2) (16d)

∆F ) ∆(d)- ∆(e)+ 4/3∆(t2) (16e)

∆N ) ∆′σN ) 2.067, ∆F ) 1.566, ∆′σF ) 2.390,

∆′πF ) 0.824 (all inµm-1) (17)
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implies ∆σF > ∆σN (cf. eq 15), is a parametric fact and a
chemical consequence of the data transformation which the
model allows one to make. This result gives an additional
reason for finding it worthwhile to study the components of
∆F, ∆′σF and∆′πF, separately. How far the parameters will
prove to make chemical sense will be a question for the future,
but there is no doubt that the collection of empirical ligand-
field parameters known at this time from data transformations
provides a better clue to chemistry than do the spectra
themselves.

The Spin Quartets of the d3 Configuration

Ligand-field theory applies to systems for which the char-
acterization dq (or pq or fq) is more than just a consequence of
a formal oxidation state.13 Actually, one may express this fact
the other way round by saying that the effective dq configuration
is responsible for the ground-state symmetry of the system and
often also for that of several of the lower excited states and
thereby this effective dq configuration defines the oxidation
states in a far deeper way than just a formal one. Similarly, in
these cases, ligand-field theory has, in spite of its simplistic
character, provided qualitative knowledge: symmetry knowl-
edge about eigenstates, which will survive much more sophis-
ticated theoretical treatments. Moreover, by its simplicity, the
ligand-field treatment has gained a generality within inorganic
chemistry which has made it live on into this age of computa-
tional chemistry.
The system that we are concerned with here is [Cr(NH3)4F2]+,

which issas a chromium(III) complexsa d3 system. Moreover,
as an “octahedral” d3 complex, its ground state is4A2g(Oh), or
just using the rotation group, it is4A2(O). Moreover, it is a
consequence of ligand-field theory that it has the excited states
4T2, a4T1, and b4T1 (in order of increasing energy) plus a number
of states with a lower spin multiplicity that we shall not be
concerned with here. Actually, these excited states are all
observed in the aqueous solution spectrum of the complex. The
special thing about this particular complex is, however, that the
deviation from octahedral symmetry shows up as a splitting of
all the spin-allowed transitions. This fact makes its spectrum
especially valuable for analysis. It is customary to use the cubic
strong-field basis to set up the energy matrices.12 This descrip-
tion obtains a particularly simple form with the parametrization
of eq 6. By using the ground state as the zero point of energy
for the d3 system states, one may collect together all of the
ligand-field information about the spin quartets of the tetragonal
system by using the cubic strong-field basis and writing

supplemented with the nondiagonal elements

where the orthoaxial hierarchy specified above has been used
to label the cubic strong-field states and where the nonsymmetry
labels a, b, and c have been used to distinguish states with the
same orbital symmetry empirically according to increasing
energy. This latter labeling will survive the transition to more
practical situations of intermediate cubic or tetragonal fields
involving parameter values that render the total energy matrix
diagonal (cf. eqs 21 and 24). By using the barycentration of
the tetragonal parametric operators, one can immediately write
the diagonal energy expressions for the rest of the spin quartet
states that are the associated tetragonal split components,4A2-
(D4) and4B2(D4) of 4T1 and4T2, respectively. Thus we obtain,
for example, for the component associated with a4T1 b4E(D4)

where the coefficients of eq 18 for the parameters representing
the tetragonal field have been multiplied by-2 in order to obtain
the barycentration of this orbitally nondegenerate state and its
associated doubly degenerate state of eq 18. a4A2(D4) and b4A2-
(D4) are connected byQ̂[B] with the matrix element 6 as are
their associated4E(D4) states (cf. eq 19b).
It should be noted that in the same sense as the d orbitals are

used to calculate the coefficients of the empirical parameters
of the one-electron model, the ground state of d3, 4A2(O), and
the first excited quartet state,4T2(O), are pure4F states whereas
the 4T1 states only are eigenstates of the orbital angular
momentum when the field-strength parameterΣ ) ∆/B of
Tanabe and Sugano14 is equal to zero. For the intermediate
fields that we are concerned with here, the4P and4F terms are
about 50%mixed and actually the lower4T1, a4T1, often contains
slightly more than 50% of4P. In the strong-field basis the lower
4T1, t22e4T1, contains 80%4P in spite of the fact that4P has a
higher energy than4F in gaseous d3 ions.7c

It is convenient to discuss our results by giving them in a
representation similar to that of eq 18, but different in that we
use the eigenbasis of our experiment, which, of course, is the
one that is diagonal as far as the sum of all the parametric terms
is concerned. The results valid for atmospheric pressure (that
is, 0 kbar applied pressure) are

Here one obtains the transition energies by inserting the
parameter values of eq 12 into eq 21. In other words, the
energies of eq 21 are eigenenergies measured relative to that of
the ground state, which has the symmetry characterization t2

3(13) (a) Jørgensen, C. K.Oxidation Numbers and Oxidation States;
Springer: Berlin, 1969. (b) Bendix, J.; Brorson, M.; Scha¨ffer, C. E.
In ACS Symposium Series 565; Kauffman, G. B., Ed.; American
Chemical Society: Washington, DC, 1994; Chapter 18, pp 213-225. (14) Tanabe, Y.; Sugano, S.J. Phys. Soc. Jpn.1954, 9, 753-766.

|3〉 ) |t2e2 b4T1(O) c4E(D4)
4A(D2)〉:

3B+ 2∆(d)- 1/3∆(t2) (18a)

|2〉 ) |t22e a4T1(O) b4E(D4)
4A(D2)〉:

12B+ ∆(d)+ 1/4∆(e)+ 1/3∆(t2) (18b)

|1〉 ) |t22e 4T2(O) a
4E(D4)

4A(D2)〉:

∆(d)- 1/4∆(e)+ 1/3∆(t2) (18c)

〈1|Q̂[∆(e)]|2〉 ) (3/16)
1/2 ) 0.4330 (19a)

〈2|Q̂[B]|3〉 ) 6 (19b)

|t22e a4T1(O) a4A2(D4)〉: 12B+ ∆(d)- 1/2∆(e)- 2/3∆(t2)

(20)

|a4A2(D4)〉: 5.4660B+ 1.19635∆(d)-
0.4018∆(e)- 0.4049∆(t2) (21a)

|b4E(D4)〉: 8.5854B+ 1.05403∆(d)+
0.1073∆(e)+ 0.2973∆(t2) (21b)

|4B2(D4)〉: 0B+ ∆(d)+ 1/2∆(e)- 2/3∆(t2) (21c)

|a4E(D4)〉: 0.1984B+ 1.00061∆(d)-
0.1191∆(e)+ 0.3329∆(t2) (21d)
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4F 4A2(O) 4B1(D4). Because this state contains a half-full cubic
subconfiguration, its energy expression’s coefficients of the
tetragonal field parameters are zero.
The second excited quartet state remains t2

2e 4F 4T2 4B2(D4)
throughout for the kind of complexes belonging to the orthoaxial
hierarchy of groups. Therefore, it keeps its coefficients of all
the parameters constantly equal to those of eq 18.
The other excited states are easy to characterize directly on

the basis of their coefficients in eq 21. The coefficients ofB
are measures of the contents of4P (energy 15B) and4F (energy
0B), coefficients of15/2 corresponding to 50% mixing. We
conclude that the first quartet excited state|a4E(D4)〉 has acquired
a little 4P character by having been mixed with4P 4T1 4E by
the tetragonal part of the ligand field. Moreover, the combined
cubic and tetragonal fields have made the third excited state
|b4E(D4)〉 acquire more than 50% P character whereas the fourth
excited state|a4A2(D4)〉 has not yet reached this limit. The
values of the coefficients ofB compared with those of eq 18
show that the cubic strong-field limit is not very useful for
quantitative parametric discussions of chromium(III) complexes.
Whereas the difference between the expectation energies
〈2|Q̂[B]|2〉 - 〈1|Q̂[B]|1〉 ) 12 (eq 18) in the strong-field
approximation, it is (5.466+ 2 × 8.5854- 2 × 0.1984)/3)
7.41 for the eigenbasis of [Cr(NH3)4F2]AsF6 at 0 kbar.
The coefficients of∆(d) tell about cubic subconfigurations,

for example that the fourth excited state contains 19.6% t2e2

character.

Experimental Procedure

The high-pressure optical absorption techniques have been described
elsewhere.15 A Merrill-Bassett type diamond anvil cell (DAC) was
utilized with the pressure measured by the ruby fluorescence technique.
The pressure-transmitting fluid was light mineral oil. The light source
was a 150 W xenon lamp with a1/4 m monochromator. Quartz light
pipes were utilized between the monochromator outlet slit and the DAC
and from the DAC to the photomultiplier. The data were accumulated
by a photon-counting system and were collected by a computer on line.
The samples studied were synthesized by Jørgen Glerup at the

University of Copenhagen. A microanalysis of the [Cr(NH3)4F2]AsF6
complex gave a composition essentially identical with that calculated
from the formula.
Data Treatment before Ligand-field Theoretical Analysis. Since

our theoretical model is essentially limited to concern transition energies
represented by the peak positions of the tetragonal split components
of the two lowest-energy, spin-allowed intra-d3 transitions assigned in
cubic symmetry, our primary problem is to obtain numbers that
represent these peak positions. This is an extremely tricky problem in
cases where the peaks do not appear to the eye as isolated maxima on
the absorption curve. On the other hand, when the peaks are directly
observable, the overlapping of absorption bands is a much smaller
problem that can be solved satisfactorily by using curve analysis
procedures. This situation makes our present chemical sample par-
ticularly valuable. Complexes containing chromophores of the type
CrN4F2+ are in fact practically the only known tetragonal complexes9

for which the two cubically assigned bands both exhibit clearly
separated split components (Figure 1).
It has been known since the 1930s that chromium(III) complexes

have absorption bands that can be approximately represented by
Gaussians with wavelength as the variable. The examples then were
mixed complexes with ethylenediamine and oxalate.16 Later, C.E.S.
showed by analyzing a large data set that wavelength Gaussians apply
well to a large number of cubic or nearly cubic complexes of chromium-
(III), in particular in the region between 40% and 90% of their maxima.
This is not in disagreement with Jørgensen’s analyses,17 for which he
used wavenumber Gaussians, which seemed physically more reasonable

but which had the empirical disadvantage of requiring two different
half-widths on the high-energy and low-energy sides, which caused
them also to have two different curvatures at their maxima. Jørgensen
did not use his Gaussians for curve analyses, but rather for estimation
of intensities. For our present purposes the wavenumber Gaussians
have the disadvantage of having two many parameters (an extra half-
width). We therefore analyzed our data using wavelength Gaussians
and found them satisfactory. In order to perform the analysis, we
eliminated for each spectrum all data corresponding to energies below
ca. 1.6µm-1 and above ca. 3.4µm-1 plus a single data point at 1.734
µm-1, which invariably singled itself out and which was assigned as a
narrow component of one of the spin-forbidden transitions.
In the curve fitting analyses, the maximal absorption peak was

normalized to unit absorbance. We then obtained variances of about
3 × 10-5 for the wavelength Gaussians using 45 data points of unit
weight. This corresponds to a standard deviation of 0.0008 absorbance
units, which is an unrealistically good fit (∼0.1% at the maxima), caused
by the fact that the four Gaussians with 12- 1 ) 11 independent
parameters provide a body-stocking adaptation to an absorption curve
of the type of Figure 1, which does not contain enough information to
determine the 12 parameters very well. Nevertheless, a model using
four symmetrical wavenumber Gaussians gave standard deviations that
were about 10 times higher.
The important point is that the changes in peak location and splitting

are very large compared with the scatter of the points shown in Figure
2 so that we can draw firm conclusions.

Pressure Tuning of the Ligand-Field Spectra of
[Cr(NH 3)4F2]AsF6

Figure 1 shows typical spectra of [Cr(NH3)4F2]AsF6. Figure
2 shows the peak positions of the first four spin-allowed
transitions of [Cr(NH3)4F2]AsF6 with increasing pressure, as-
signed in tetragonal symmetry (cf. eqs 18, 20, 21, and 24). The
first two peaks are those which approximately have the first
excited state4T2, assigned in octahedral symmetry, as its
parentage, and the next two similarly correspond to a4T1. The
assignments were made as in the past on the basis of chemical
induction9 as well as single-crystal polarized spectral analysis.18

It is a reassuring experience to have semiquantitative visual
perception of all four peaks’ increase with pressure by a

(15) Lang, J. M.; Drickamer, H. G.J. Phys. Chem. 1993, 97, 5058-5064.
(16) Mead, A.Trans. Faraday Soc.1934, 30, 1052-1058.
(17) Jørgensen, C. K.Acta Chem. Scand. 1954, 8, 1495-1501.

Figure 1. Spectra oftrans-[Cr(NH3)4F2]AsF6 at various pressures.
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comparison of the four direct data sets of Figure 1, which also
reveal that the splitting of the first “cubic” band increases
whereas that of the second “cubic” band decreases. This
increase of the first band splitting concomitant with the
increasing energy of both of its components is an indication
that ∆N and∆F both increase with pressure, but∆N more so
than∆F. Figure 2 quantifies the visual perceptions and shows
that the peak positions increase linearly with pressure within
the uncertainty of the (slightly transformed) data. This figure
includes all of our 13 data sets.
We measured [Cr(en)2F2]I and obtained qualitatively the same

results as those just discussed for [Cr(NH3)4F2]AsF6. However,
the excited state a4T1a4A2 is situated not far from the region of
rising absorption toward the UV, thereby rendering the quantita-
tive estimates of the peak positions uncertain.
Figure 3 shows the results of the data transformation in terms

of the variation of the orbital energies with pressure. In the
calculation of these orbital energies the linear functions given
in Figure 2 were used. Since the transformation is not quite
linear, a smooth curve between the sets of points of Figure 3 is
not a straight line. The full-line curves drawn represent the
cubic average energies of the orbital sets e(O) and t2(O). These
energies are immediately defined as weighted averages for these
complexes because the four orbital sets do not have any
symmetry species ofD4 in common and therefore cannot be
mixed by the tetragonal field. At atmospheric pressure, the
complex showsσ- as well asπ-compressed orbital-energy
tetragonality,∆(e) and∆(t2) both being negative. Both tet-
ragonal splitting parameters increase with pressure, and their
absolute values decrease accordingly. The variation of∆(e)
makes the complex change from being tetragonallyσ com-
pressed to becomingσ elongated at approximately 85 kbar. At
this pressure, the complex is cubic as far as theσ interactions
are concerned.

∆(d) increases by about 12% between 0 and 100 kbar of
applied pressure. If we assume an average variation with

distance that follows anr-6 law,11 this means that the 100 kbar
pressure has resulted in a 2% decrease in average metal to ligand
bond distance. Even though the stress that we applied is
isotropic, the strain is not, at least not when the anisotropy is
estimated on the basis of ligand-field parameters. We shall now
discuss this aspect.
Referring to our results at 0 kbar, already discussed in

connection with eqs 12 and 13, we now provide our results at
100 kbar

and observe that the cubic field now amounts to as much as
98.4% and the combined tetragonal fields 1.6%. This is a
halving of the tetragonal fields’ contribution to the sum-square
splitting. So the isotropic stress results in a more isotropic
complex ion. This result could not have been obtained from
the raw spectra. Here the data transformation into one-electron
energies as well as the sum-square-splitting analysis was
essential.
The Racah parameterB decreases rather smoothly from

0.0694µm-1 at 0 kbar to 0.0658µm-1 at 100 kbar. This is in
agreement with previous findings for octahedral complexes,11

but these were not particularly clear-cut. It is therefore
gratifying that the present homogeneous data set confirms this
increase in nephelauxetism3 with pressure, which is the expected

(18) Dubicki, L.; Hitchman, M. A.; Day, P.Inorg. Chem. 1970, 9, 188-
190.

Figure 2. Peak shift vs pressure: four fitted peaks fortrans-[Cr-
(NH3)4F2]AsF6. Slopes (k) and intercepts (b) of linearizations are given.

Figure 3. Variation of orbital energies with pressure calculated from
the straight lines of Figure 2. The solid lines represent the average
energies of the e(O) and t2(O) sets of orbitals.

∆ ) 2.141, ∆(e)) +0.0303,
∆(t2) ) -0.3600 (all inµm-1) (22)

∆2〈Q̂[∆]|Q̂[∆]〉 ) 5.50µm-2 (23a)

[∆(e)]2〈Q̂[∆(e)]|Q̂[∆(e)]〉 ) 0.0005µm-2 (23b)

[∆(t2)]
2〈Q̂[∆(t2)]|Q̂[∆(t2)]〉 ) 0.0866µm-2 (23c)
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variation if the usual interpretation of nephelauxetism as being
a consequence of increasing covalency is to be accepted.
The parametric expressions for the energies of the excited

states at 100 kbar are given in eq 24. When the parametric

values of eq 22 are inserted into eq 24, the transition energies
at 100 kbar are obtained. The combined effect of the increased
value for∆(d) and the decreased value ofB results in much
more cubic strong-field-like energy expressions in eq 24 than
in eq 21. This can be clearly seen by comparing these two
equations with eq 18. In terms of the field strengthΣ ) ∆/B,
this parameter ranges from 27.4 (0 kbar) to 32.5 (100 kbar).

Pressure Dependence of Single-Ligand Parameters

In eqs 14 and 16 the three parameters of the holistic model
are related to the four single-ligand parameters of the AOM.
The information contained in our experiment allows only three
independent orbital energy parameters to be determined. There-
fore, some sort of reduction of the number of single-ligand
parameters is necessary and it was chosen to use theπ parameter
∆πN referring to NH3 as the zero point of energy for the other
parameters. This choice was thought to be a fortunate one in
view of the interpretation of the parameters as being parametric
expressions of the donor properties of the ligands toward the
central ion d orbitals. The fact that NH3 has noπ lone pairs
should then secure that the parameter∆πN was zero or at least
small compared with the other parameters of∆π type. This
information is a prerequisite for the following discussion. It
should also be remembered that the theoretical part of the AOM
is the coefficients of its energy parameters while its parameters
must be thought of as expressions of a data reduction, made
possible by the model.
Upon insertion of the holistic parametric results of eq 22 into

eq 16, the following single-ligand parameters, valid at 100 kbar,
emerge:

These results should be compared with those of eq 17, which
are valid at 0 kbar. The two values∆N and∆F exhibit increases
of 16% and 4%, respectively.∆σF and∆πF decrease by 2%
and 12%, respectively. The results for the two∆ values are
just what should be qualitatively expected in view of previous
experience from pressure-tuned spectra of octahedral complexes.
The general question that we were asking here was, however,
how the pressure increase of∆J applying to a specific ligand J
was distributed upon its two parts∆σF and∆πJ. We now have
the answer as far as the parameters referring to fluoride are
concerned, provided we can assume that∆πN is zero at all
pressures. This is the parametric answer from the model we
have used, together with the data transformation of our
experiments we have made, namely that the difference quantity

∆F increases with pressure while its two components according
to eq 15 decrease in such a way that the most rapidly decreasing
component is that having a negative coefficient (cf. eq 15). We
cannot, of course, exclude that these decreases fully or partially
are caused by increases of∆πN with pressure.
In the comparison of eqs 17 and 25, it is not easy to discern

the increasing isotropy with pressure which we inferred in the
preceding section on the basis of the sum-square-splitting results.
The reason for this is that the three independent single-ligand
parameters do not belong to mutually orthogonal coefficient
operators. The very concrete consequence of this is that if the
one-electron energies of eq 6 are written in terms of the single-
ligand parameters of eq 16 and the s.sq.s. is calculated, then
part of the s.sq.s. occurs in cross products of the parameter
values. Thus the s.sq.s. cannot be simply analyzed by using
the single-ligand parameters.
From eq 14 together with eqs 17 and 25, it appears, however,

that theσ difference parameter,∆(e), and theπ difference
parameter,∆(t2), show a decrease in their absolute values with
pressure; and both of these are members of a set of mutually
orthogonal operators.

Consequences of the Nonlinearity of the Data
Transformations

In obtaining the orbital energy parameters given in eqs 12
and 22, we used our full set of data for Figure 3 by assuming
that the pressure dependence of the peaks was actually linear.
Since the data transformation is nonlinear, this assumption has
the consequence that neither the orbital energy parameters of
eq 14a nor the one-electron energies will vary linearly with
pressure. By using the constant slopes of the curves of Figure
2, it is possible to find the limiting slopes of the three orbital
energy parameters and of the Racah parameterB from eqs 21
(0 kbar) and 24 (100 kbar). The results are given in Table 1
together with the average slope over the entire pressure region.
The discrepancy is clearly minor and possibly not even
discernible within the accuracy of the data treatment. It
maximizes for∆(e), which at 50 kbar takes the value-0.092
µm-1 when linearly interpolated from∆(e) versusp whereas
its value calculated from the linear functions of the observed
peaks is-0.082.

Conclusion

The effect of pressure on the ligand-field spectrum of the
salt [Cr(NH3)4F2]AsF6 has been measured up to 100 kbar. The
spin-allowed cubic bands both split in the tetragonal symmetry
of the molecular ion and the peaks all blue-shift linearly with
pressure (Figures 1 and 2).
From these linear relations, the pressure dependencies of the

one-electron energies and of the Racah parameterB have been
calculated by using the holistic ligand-field model, which is
essentially based upon symmetry.
The fact that our one-electron operators are mutually or-

thogonal allows us to express the sum-square splitting (s.sq.s.)
of our one-electron energies as a sum of contributions from each
of our three one-electron parameters. The result of this
quantification (eqs 13 and 22) is that the s.sq.s. increases by

a4A2(D4)〉: 7.6043B+ 1.09587∆(d)- 0.4521∆(e)-
0.5388∆(t2) (24a)

b4E(D4)〉: 9.1795B+ 1.04288∆(d)+ 0.2545∆(e)+
0.3047∆(t2) (24b)

4B2(D4)〉: 0B+ ∆(d)+ 1/2∆(e)- 2/3∆(t2) (24c)

a4E(D4)〉: 0.0033B+ 1.00001∆(d)- 0.2654∆(e)+
0.3333∆(t2) (24d)

∆N ) 2.396, ∆F ) 1.631, ∆σF ) 2.351, ∆πF ) 0.721

(all in µm-1) (25)

Table 1. Energy Parameter Derivatives with Respect to Pressure in
Units of µm-1 kbar-1

d∆/dp d∆(e)/dp d∆(t2)/dp dB/dp

0 kbar 0.0022 0.0029 0.0006 0.000005
100 kbar 0.0025 0.0021 0.0004 -0.00004
averages,
0-100 kbar

0.0024 0.0025 0.0005 -0.00003
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25% from 0 to 100 kbar and that the ligand field becomes much
more isotropic (cubic) with increasing pressure.
The results may be interpreted by using the angular overlap

model. There is an analogy between the two halfπ bonds in
the oxygen molecule and those in the F-Cr-F system. In both
cases, the antibonding component orbitals of the interaction are
only half full of electrons. The partial double-bond character
of the chromium(III)-fluoride bonds, resulting from the ad-
ditional formation of a coordinate bond from the filled fluoride
π orbitals to the half-filled dzxand dyzorbitals, as evidenced by
the largeσ andπ AOM parameters for the Cr-F bond, makes
these bonds less compressible than the chromium(III)-nitrogen
single bonds. During the compression, the chromium-nitrogen
σ parameter∆′σN increases so much as to become larger than
the corresponding chromium-fluoride parameter∆′σF. Thisσ
parameter as well as theπ parameter∆′πF decreases slightly
with pressure, possibly an indication of the resistance of the
system against charge accumulation (the donor parameter of
nitrogen increases; accordingly those of fluoride decrease). It
would have been nice to see the bond-length picture of these
pressure events, but that lies in the future.
One obtains a chemical perspective of the size of the pressure

effects by noting the comparison of the data set (∆, B)/µm-1

for Cr(NH3)63+, (2.16, 0.0651),19 with that for the 100 kbar
spectrum of [Cr(NH3)4F2]AsF6, (2.14, 0.0658). The two data
sets are close.

Since the model that we have been using throughout contains
the two essentially different terms, repulsion and ligand field,
it would as a final issue be interesting to address the question
as to how much these two contributions mean in comparison
with each other. This question finds a quantitative answer by
noting that their operators are mutually orthogonal. If we
consider the sum-square splitting of the 10 quartet states with
MS ) 3/2 for which the norm square of the barycenteredQ̂[B]
is found to be 256.5 and the one-electron operator norm squares
are found to take values 3 times those given in eqs 10 and 11,
then we obtain the results that repulsion makes up 0.06942 ×
256.5/(0.06942× 256.5+ 1.92× 3.6+ 0.2152× 1.5+ 0.4122

× 2)) 8.4% at 0 kbar (eq 12) and 6.2% at 100 kbar (eq 22) of
the sum-square splitting. Even though the cubic strong-field
approximation is a poor approximation of the eigenstates, as
we realized in connection with eq 24, it is still the one-electron
energies that dominate the issue as far as the splitting of the
spin quartets of the d3 configuration is concerned.
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