Synthesis and Structure of the Layered Thorium Telluride CsTh₂Te₆

Jason A. Cody and James A. Ibers*

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113

Received December 22, 1995[⊗]

The compound $CsTh_2Te_6$ has been synthesized at 800 °C by the reaction of Th with a Cs_2Te_3/Te melt as a reactive flux. The compound crystallizes in the space group D_{2h}^{17} -*Cmcm* of the orthorhombic system with two formula units in a cell of dimensions a = 4.367(2) Å, b = 25.119(10) Å, c = 6.140(3) Å, and V = 673.5(5) Å³ at T = 113 K. The structure of $CsTh_2Te_6$ has been determined from single-crystal X-ray data. The structure comprises infinite, two-dimensional double layers of ThTe₈-bicapped trigonal prisms. The structural motif of the trigonal prisms resembles that found in UTe₂. Cs^+ cations, disordered equally over two crystallographically equivalent sites, separate the layers and are coordinated by eight Te atoms at the corners of a rectangular parallelepiped. Short Te-Te distances of 3.052(3) and 3.088(3) Å form linear, infinite, one-dimensional chains within the layers. Simple formalisms describe neither the Te-Te bonding in the chain nor the oxidation state of Th. The compound shows weak semiconducting behavior along the Th/Te layers perpendicular to the Te-Te chain.

Introduction

Because of their interesting magnetic properties and because of the accessibility of several oxidation states, solid-state compounds of actinide metals have been studied extensively.^{1,2} The number of known uranium chalcogenide compounds greatly exceeds the number of known thorium chalcogenides. Binary thorium tellurides, characterized structurally only by X-ray powder patterns, include ThTe,³ ThTe₃,⁴ and Th₂Te₃.⁴ Powder patterns for the ternary compounds ThNTe,⁵ ThSbTe,⁶ and ThBiTe⁶ have also been reported. The ternary compound ThAsTe⁶ has been characterized by a single-crystal X-ray diffraction study.

Often, analogous structures occur in compounds of uranium and thorium.^{5,6} It is far more interesting, however, when the composition or structure or both change in going from uranium to thorium. In this extension to thorium, the new compound $CsTh_2Te_6$ has been synthesized and characterized. It has no analogues among cesium/uranium/tellurium compounds.

CsTh₂Te₆ was synthesized by the use of the reactive-flux method.⁷ This technique has afforded an amazing variety of low-dimensional metal polychalcogenides with novel structures.^{8–19} This synthetic approach exploits molten salts of the type A_2Q_x/Q (A = alkali metal or Cu; Q = S, Se, or Te; x =

- [®] Abstract published in Advance ACS Abstracts, May 15, 1996.
- Freeman, A. J., Darby, J. B., Jr., Eds. *The Actinides: Electronic Structure and Related Properties*; Academic Press: New York, 1974; Vols. 1, 2.
- (2) Dell, R. M.; Bridger, N. J. In *Lanthanides and Actinides*; MTP International Review of Science: Inorganic Chemistry, Series One; Bagnall, K. W., Ed.; Butterworths: London, 1972; Vol. 7, pp 211– 274.
- (3) D'Eye, R. W. M.; Sellman, P. G. J. Chem. Soc. 1954, 3760-3766.
- (4) Graham, J.; McTaggart, F. K. Aust. J. Chem. 1960, 13, 67–73.
 (5) Amoretti, G.; Blaise, A.; Burlet, P.; Gordon, J. E.; Troc, R. J. Less.
- Common Met. **1986**, 121, 233–248.
- (6) Hulliger, F. J. Less-Common Met. 1968, 16, 113-117.
- (7) Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. 1987, 109, 6202–6204.
- (8) Keane, P. M.; Ibers, J. A. Inorg. Chem. 1991, 30, 1327-1329.
- (9) Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1991, 93, 291–297.
 (10) Keane, P. M.; Lu, Y.-J.; Ibers, J. A. Acc. Chem. Res. 1991, 24, 223–229
- (11) Kanatzidis, M. G.; Park, Y. J. Am. Chem. Soc. 1989, 111, 3767– 3769.

1–5) as both a flux and a reactant. The resultant compounds typically exhibit unusual chalcogen–chalcogen bonding and novel structure types.

Experimental Section

Synthesis. The starting material Cs_2Te_3 was synthesized at -79°C from reaction of stoichiometric amounts of elemental Cs (Aldrich, 99.5%) and Te (Aldrich, 99.8%) in liquid ammonia under an Ar atmosphere. The composition Cs2Te3 was confirmed by X-ray powder diffraction methods.^{20,21} In an attempt to prepare CsHfThTe₅, the thorium and hafnium analogue of CsTiUTe₅,²² CsTh₂Te₆ was prepared instead. The elements Th (36 mg, 0.15 mmol; Alfa, 99.9%), Hf (27 mg, 0.15 mmol; Aesar, 99.9%), and Te (97 mg, 0.76 mmol) were combined with Cs₂Te₃ (99 mg, 0.15 mmol). The reaction mixture was loaded into a fused-silica tube in a drybox under an Ar atmosphere; the tube was evacuated to $\sim 10^{-4}$ Torr and sealed. The contents were kept at 650 °C for 1 day and then at 800 °C for 5 days, before being cooled at 3 °C/h to room temperature. A few lustrous, black crystals formed at the surface and within uncharacterized, amorphous byproducts. The compound reacts slowly with air. Crystals suitable for X-ray structure determination and conductivity measurements were manually extracted from the essentially homogeneous melt under oil. An alternative synthetic route in which Hf was omitted also afforded crystals of CsTh₂Te₆ in low yield.

Analysis of several crystals with an EDX-equipped Hitachi S570 SEM confirmed the presence of Cs, Th, and Te in the approximate ratio 1:2:4; no Hf was detected. The exact composition of the compound was established from the X-ray structure determination.

Electrical Conductivity Measurements. Single crystals of CsTh₂-Te₆ ranging in length from 0.4 to 0.6 mm were mounted with Ag paint

- (12) Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. 1990, 29, 914–915.
- (13) Kanatzidis, M. G. Chem. Mater. 1990, 2, 353-363.
- (14) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1992, 101, 257–264.
- (15) Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. J. Solid State Chem. 1993, 105, 580-587.
- (16) Lu, Y.-J.; Ibers, J. A. J. Solid State Chem. 1991, 94, 381-385.
- (17) Lu, Y.-J.; Ibers, J. A. Inorg. Chem. 1991, 30, 3317-3320.
- (18) Lu, Y.-J.; Ibers, J. A. J. Solid State Chem. 1993, 107, 58-62.
- (19) Ibers, J. A.; Lu, Y.-J. J. Solid State Chem. 1994, 111, 447-448.
- (20) Böttcher, P. J. Less-Common Met. 1980, 70, 263-271.
- (21) Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10,
- 73–74. (22) Cody, J. A.; Ibers, J. A. Inorg. Chem. **1995**, 34, 3165–3172.

Table 1. Crystal Data and Intensity Collection Details for $CsTh_2Te_6$

formula	CsTh ₂ Te ₆	Z	2
fw	1362.59	T of data collen (K) ^b	113(2)
space group	D_{2k}^{17} -Cmcm	$d_{\rm calcd} ({ m g}~{ m cm}^{-3})$	6.719
a (Å)	$4.367(2)^{a}$	linear abs coeff (cm ⁻¹)	374
b (Å)	25.119(10)	transm factors ^c	0.369-0.710
c (Å)	6.140(3)	$R(F)$ for $F_0^2 > 2\sigma(F_0^2)$	0.049
$V(Å^3)$	673.5(5)	$R_{\rm w}(F_{\rm o}^2)$ (all data)	0.102

^{*a*} Obtained from a refinement with the constraints $\alpha = \beta = \gamma = 90^{\circ}$. ^{*b*} The low-temperature system is based on a design by Huffman.²³ ^{*c*} The analytical method, as employed in the Northwestern absorption program AGNOST, was used for the absorption correction.²⁴

Table 2. Atomic Coordinates and Equivalent Isotropic Displacement Parameters for CsTh₂Te₆

atom	x	у	Z	$U_{ m eq}({ m \AA}^2)^a$	occ
Cs	0	0.4967(2)	1/4	0.0155(8)	0.50
Th	0	0.68235(5)	1/4	0.0071(3)	1
Te(1)	0	0.27349(8)	1/4	0.0069(4)	1
Te(2)	0	0.11170(5)	0.0015(2)	0.0095(3)	1

 $^{a}U_{eq}$ is defined as one-third of the trace of the orthogonalized \mathbf{U}_{ij} tensor.

on Au wires with graphite extensions. Two-probe dc resistivity measurements along the needle axis [100] were made at room temperature.

Structure Determination. Initial cell parameters were determined from well-exposed Weissenberg photographs taken at room temperature. A crystal was mounted directly in the cold stream of a Picker diffractometer;²³ final cell parameters were determined from 31 reflections automatically centered at 113 K in the range 34.18° \leq $2\theta(Mo) \leq 35.96^{\circ}$. Six standards from diverse regions of reciprocal space were monitored every 100 reflections and exhibited no significant variation in intensity throughout data collection. The data were processed and corrected for absorption effects.²⁴ Additional experimental details are given in Table 1.

The initial positions for the Th and Te atoms were determined with the direct-methods program SHELXS²⁵ in the noncentrosymmetric space group Cmc21. The Cs atom was located from subsequent electron density maps. An unreasonably large thermal parameter was observed for Cs. After the constraint on the occupancy of Cs was lifted, the occupancy refined to a value of 0.47. The Cs atom occupancy was held at 0.50 for subsequent refinements. The structure was refined by full-matrix, least-squares techniques with the use of the program SHELXL-93.26 Examination of the structure solution with the use of the MISSYM algorithm²⁷ in the PLATON program package²⁸ revealed a center of inversion in the structure. Hence, the correct space group is Cmcm. A refinement that included the occupancy of the Cs atom converged to an $R_w(F_o^2)$ value of 0.101 and to an occupancy of 0.474-(9). Since refinement of site occupancies is a risky way to determine chemical compositions²⁹ and since the occupancy of the Cs atom did not differ significantly from 0.5, that value was adopted in the final refinement. This refinement on F_0^2 in space group *Cmcm* converged to an $R_{\rm w}(F_{\rm o}^2)$ value of 0.102 and for those 450 reflections having $F_{\rm o}^2$ $> 2\sigma(F_0^2)$ to a conventional *R* index *R*(*F*) of 0.049. The final difference electron density map shows no peaks of height greater than 2.5% that of a Te atom. Table 2 gives the final values of the positional parameters and equivalent isotropic displacement parameters.

- (24) de Meulenaer, J.; Tompa, H. Acta Crystallogr. 1965, 19, 1014–1018.
 (25) Sheldrick, G. M. SHELXTL PC Version 5.0: An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data; Siemens Analytical X-Ray Instruments, Inc.: Madison, WI, 1994.
- (26) Sheldrick, G. M. J. Appl. Crystallogr., in press.
- (27) Le Page, Y. J. Appl. Crystallogr. 1987, 20, 264-269.
- (28) Spek, A. L. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, C34.
- (29) Mitchell, J. F.; Burdett, J. K.; Keane, P. M.; Ibers, J. A.; DeGroot, D. C.; Hogan, T. P.; Schindler, J. L.; Kannewurf, C. R. J. Solid State Chem. 1992, 99, 103–109.

Figure 1. Unit cell of $CsTh_2Te_6$ as viewed down [100]. The atom-

Figure 2. View of one half of the $\frac{2}{\infty}$ [Th₂Te₆⁻] layer of CsTh₂Te₆ showing the infinite, linear Te–Te chains that run along [001].

Table 3. Selected Bond Lengths (Å) for CsTh₂Te₆

Cs-Te(2)	$4 \times$	3.817(4)	Th-Te(1)	$2 \times$	3.264(2)
Cs-Te(2)	$4 \times$	3.929(4)	Te(2)-Te(2)		3.052(3)
Th-Te(1)	$2 \times$	3.164(2)	Te(2)-Te(2)		3.088(3)
Th-Te(2)	$4 \times$	3.201(2)			

Results and Discussion

labeling scheme is given.

A view of the unit cell of $CsTh_2Te_6$ is shown in Figure 1, and Table 3 gives important distances. Unlike the linked chains of the one-dimensional uranium ternary compound $CsUTe_6$,²² the structure of $CsTh_2Te_6$ is two-dimensional. It contains ${}^2_{o}$ [Th₂Te₆⁻] layers (Figure 2) that lie perpendicular to the [010] direction. The Cs⁺ cations that separate the layers are coordinated by eight Te atoms at the corners of a rectangular parallelepiped. Cs⁺⁺Te distances range from 3.817(4) to 3.929-(4) Å. The Cs⁺ cations are equally disordered over two crystallographically equivalent sites; if the Cs atom position were fully occupied, the Cs atoms would only be 3.075(1) Å apart.

The one crystallographically unique Th atom in the CsTh₂-Te₆ structure is coordinated to eight Te atoms in a bicapped trigonal-prismatic geometry. The ThTe₈ polyhedra share triangular faces of two Te(2) atoms and one Te(1) atom in the [100] direction, and Te(1) capping atoms in the [001] direction. All Th–Te distances fall within the range 3.164(2)-3.264(2)Å, and all Te–Th–Te angles range from 56.94(6) to $150.70-(3)^{\circ}$. These bond distances must be compared to uranium tellurides because of the paucity of geometrical data for thorium tellurides. The Th–Te distances in CsTh₂Te₆ agree with the U–Te distances found in CsUTe₆ (3.013(5)-3.263(5)Å).²²

The structural motif of the bicapped trigonal prism in CsTh₂-Te₆ is also seen in the structure of UTe₂.³⁰ The layered structure

⁽²³⁾ Huffman, J. C. Ph.D. Dissertation, Indiana University, 1974.

of $CsTh_2Te_6$ can be transformed into the three-dimensional structure of UTe_2 by removal of the interlamellar Cs atoms and condensation of the layers.

In both CsTh₂Te₆ and UTe₂, one edge of the triangular face of the trigonal prisms is shortened. Te–Te interactions of 3.052(3) Å result in CsTh₂Te₆. These Te–Te pairs combine to form infinite, linear Te–Te chains through the close interaction (3.088(3) Å) of two adjacent trigonal prisms. These Te chains line the $\frac{2}{\infty}$ [Th₂Te₆⁻] layers of CsTh₂Te₆ along the [001] axis (perpendicular to the needle axis).

The assignment of formal oxidation states in $CsTh_2Te_6$ is somewhat arbitrary. In the discussion of the oxidation state of the U atom in UTe₂, Beck and Dausch³⁰ formulated the compound as $U^{3+\delta}Te(1)^{2-\frac{1}{\omega}}[Te(2)^{-(1+\delta)}]$. This description allows for partial reduction of the Te(2) atoms in the chain and subsequent oxidation of the U³⁺ ion but does not define a value for the oxidation state for the U atom. Specific elements of this formalism can be applied to $CsTh_2Te_6$. Atom Te(1) has no short Te–Te interactions and can be described as a discrete Te^{2-} anion; the infinite chain that contains atom Te(2) can be described as $\frac{1}{\omega}[Te(2)^{-(1+\delta)}]$. If the short Te–Te interactions in CsTh₂Te₆ formed along the needle axis, high conductivity could result. However, whereas the ${}^{2}_{\infty}$ [Th₂Te₆⁻] layers lie along the needle axis [100], the ${}^{1}_{\infty}$ [Te(2)^{-(1+ δ)}] chains extend in the [001] direction. As seen for several low-dimensional cesium tellurides,^{22,31,32} the electrical conductivity is low. The conductivity of CsTh₂Te₆ measured along [100] is below the detection limits of the instrument (<1 × 10⁻⁵ Ω⁻¹ cm⁻¹) (295 K). The material is a weak semiconductor or insulator.

Acknowledgment. This research was supported by NSF Grant No. DMR 91-14934 and used MRL Central Facilities supported by the National Science Foundation at the Materials Research Center of Northwestern University under Grant No. DMR91-20521.

Supporting Information Available: Additional crystallographic details (Table SI), anisotropic displacement parameters (Table SII), and bond lengths and angles (Table SIII) (6 pages). Ordering information is given on any current masthead page.

IC951641B

⁽³⁰⁾ Beck, H. P.; Dausch, W. Z. Naturforsch., B: Chem. Sci. 1988, 43, 1547–1550.

⁽³¹⁾ Cody, J. A.; Ibers, J. A. Inorg. Chem. 1994, 33, 2713-2715.

⁽³²⁾ Mansuetto, M. F.; Cody, J. A.; Chien, S.; Ibers, J. A. Chem. Mater. 1995, 7, 894–898.