Photocatalytic Oxidation of Aromatic Hydrocarbons

Yun Mao and Andreja Bakac*

Ames Laboratory, Iowa State University, Ames, Iowa 50011

Received February 8, 1996[⊗]

In acidic aqueous solutions UO_2^{2+} serves as a photocatalyst ($\lambda_{irr} \ge 425$ nm) for the oxidation of benzene by H_2O_2 . Under conditions where 50% of the excited state $*UO_2^{2+}$ is quenched by H_2O_2 ($k = 5.4 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) and 50% by benzene ($k = 2.9 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$), the quantum yield for the formation of phenol is 0.70. The yield does not change when benzene is replaced by benzene- d_6 , but decreases by a factor of ~4 upon the change of solvent from H_2O to D_2O . Photocatalytic oxidation of toluene by UO_2^{2+}/H_2O_2 produces PhCHO, PhCH₂OH, and a mixture of cresols with a total quantum yield of 0.28 under conditions where 50% of $*UO_2^{2+}$ is quenched by H_2O_2 . The quenching of $*UO_2^{2+}$ by benzene and substituted benzenes takes place with $k > 10^8 \text{ M}^{-1} \text{ s}^{-1}$. The system UO_2^{2+}/t -BuOOH/C₆H₆/hv does not result in the oxidation of benzene, but instead yields methane and ethane.

Introduction

Catalytic oxidation of hydrocarbons has scientific and practical importance. Biological systems that utilize dioxygen or hydrogen peroxide as oxidants are catalyzed by oxygenases and peroxidases, respectively.^{1–3} Laboratory and industrial oxidation of hydrocarbons utilize transition metal complexes as catalysts. Many of the reactive species involved are analogous to those encountered in the biological systems and include superoxo, peroxo, and oxo metal complexes, as well as metalfree intermediates such as $O_2^{\bullet-}/HO_2^{\bullet}$ and $HO^{\bullet,3-7}$

Hydrogen peroxide has been explored extensively as a hydroxylating agent. Catalysts are needed because the reactivity of H_2O_2 toward hydrocarbons is low. Transition metal complexes usually activate H_2O_2 by converting it into reactive metal peroxy and hydroperoxy species,^{3,8–10} or to hydroxyl radicals in Fenton-type reactions,^{11–14} eqs 1–2. Photochemical cleavage of H_2O_2 to hydroxyl radicals, eq 3, has also been explored.¹⁵

$$M^{n} + H_{2}O_{2} \rightarrow M(OO)^{n-2} + 2 H^{+} (or M(OOH)^{n-1} + H^{+})$$
(1)

$$M^{n} + H_{2}O_{2} \rightarrow M^{n+1}OH + HO^{\bullet}$$
⁽²⁾

$$H_2O_2 \xrightarrow{h\nu(UV)} 2HO^{\bullet}$$
 (3)

The reaction of HO[•] radicals with benzene produces cyclohexadienyl radicals, which undergo a number of reactions,

- (2) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994.
- (3) Simandi, L. I. Catalytic Activation of Dioxygen by Metal Complexes; Kluwer Academic Publishers: Dordrecht, The Netherlands/Boston, MA/London, 1992.
- (4) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel Publishing Company: Dordrecht, The Netherlands/Boston, MA/Lancaster, England, 1984.
- (5) Parshall, G. W.; Ittel, S. D. *Homogeneous Catalysis*, 2nd ed.; Wiley: New York, 1992; Chapter 10.
- (6) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic: New York, 1981.
- (7) (a) Ito, S.; Yamasaki, T.; Okada, H.; Okino, S.; Sasaki, K. J. Chem. Soc., Perkin Trans. 2 1988, 285. (b) Ito, S.; Kunai, A.; Okada, H.; Sasaki, K. J. Org. Chem. 1988, 53, 296. (c) Jintoku, T.; Taniguchi, H.; Fujiwara, Y. Chem. Lett. 1987, 1865. (d) Kimura, E.; Machida, R. J. Chem. Soc., Chem. Commun. 1984, 499.

depending on the catalyst and reaction conditions. Both oxidation states of the catalyst usually react with cyclohexadienyl radicals, as shown in eqs 4-6 using Fe³⁺/Fe²⁺ as example. The yield of phenol therefore depends on the redox properties of the catalyst and on the relative concentrations of the oxidized and reduced forms of the catalyst.

$$HO^{\bullet} + C_6 H_6 \longrightarrow HO \longrightarrow (4)$$

$$C_6H_6(OH)^{\bullet} + Fe^{3+} \rightarrow C_6H_5OH + Fe^{2+} + H^+$$
 (5)

$$C_6H_6(OH)^{\bullet} + Fe^{2+} + H^+ \rightarrow C_6H_6 + Fe^{3+} + H_2O$$
 (6)

Much less is known about the mechanism of oxidation of C_6H_6 by peroxo-metal species, but of those studied so far, peroxo-vanadium complexes appear to be the most efficient in hydroxylating aromatic hydrocarbons.⁸⁻¹⁰ All the mechanistic studies agree that these processes involve radicals. Some workers proposed an intramolecular electron transfer resulting in a $V^{IV}(O_2^{\bullet-})$ intermediate, which then inserts into a C-H bond.¹⁰ Others⁸ suggested the involvement of a one-electron reduced peroxovanadium complex.

We have recently used UO_2^{2+} as a photocatalyst for the oxidation of aliphatic hydrocarbons and toluene by molecular oxygen.^{16,17} All of the reactions studied in that work involve a hydrogen atom abstraction by $*UO_2^{2+}$ from the substrate, as demonstrated by the kinetic isotope effects and the nature of the products. As expected, benzene was unreactive, owing to the strength of the C–H bonds and the ease with which benzene quenches $*UO_2^{2+}$ in a chemically unproductive reaction.

- (8) Bonchio, M.; Conte, V.; Di Furia, F.; Modena, G. J. Org. Chem. 1989, 54, 4368.
- (9) Butler, A.; Clague, M. J.; Meister, G. E. *Chem. Rev.* **1994**, *94*, 625. (10) Mimoun, H.; Saussine, L.; Daire, E.; Postel, M.; Fischer, J.; Weiss,
- R. J. Am. Chem. Soc. **1983**, 105, 3101.
- (11) Walling, C. Acc. Chem. Res. 1975, 8, 125.
- (12) Goldstein, S.; Meyerstein, D.; Czapski, G. Free Radical Biol. Med. 1993, 15, 435.
- (13) Czapski, G.; Ilan, Y. A. Photochem. Photobiol. 1978, 28, 651.
- (14) Oturan, M. A.; Pinson, J. J. Phys. Chem. 1995, 99, 13948.
- (15) Lunak, S.; Sedlak, P. J. Photochem. Photobiol. A 1992, 68, 1.
- (16) Wang, W.-D.; Bakac, A.; Espenson, J. H. Inorg. Chem. 1995, 34, 6034.
- (17) Mao, Y.; Bakac, A. J. Phys. Chem. 1996, 100, 4219.

[®] Abstract published in Advance ACS Abstracts, June 1, 1996.

⁽¹⁾ Karlin, K. D. Science **1993**, 261, 701.

We have now explored the use of H_2O_2 as oxidant in the photochemical UO_2^{2+} /benzene system. Two fundamentally different mechanisms might be expected to operate. U(VI) is known to form complexes with H_2O_2 ,^{18–21} and chemistry similar to that reported for the peroxovanadium complexes is possible if photoexcitation is provided. (In the absence of light, the peroxouranium complexes are ineffective as oxidants.)²² On the other hand, H_2O_2 may reduce the photoexcited UO_2^{2+} to UO_2^{+} , which would then engage in Fenton-type chemistry.

The results of a kinetic and mechanistic study of the oxidation of benzene and several other aromatic hydrocarbons by $UO_2^{2+/}$ $H_2O_2/h\nu$ are reported herein. A brief study of the oxidation of UO_2^+ by H_2O_2 has also been conducted.

Experimental Section

Chemicals. Benzene, toluene and *p*-xylene (Aldrich) were distilled prior to use. Phenol, benzaldehyde, *p*-benzoquinone, *p*-tolualdehyde, 4-methylbenzyl alcohol, phthalic dicarboxaldehyde, *p*-toluic acid, 1,3,5-mesitylene (all Aldrich), and 3,5-dimethylbenzaldehyde (Lancaster) were used without further purification. Stock solutions of uranyl perchlorate were prepared by dissolving uranium trioxide (Strem Chemicals, 99.8%) in aqueous perchloric acid. Hydrogen peroxide (Fisher) and *tert*-butyl hydroperoxide (Aldrich) were used as received.

Instrumentation. Product analyses were carried out by use of a Waters high performance liquid chromatograph, equipped with a C18 column and a photodiode array detector (Waters 996), which simultaneously records the chromatogram and the absorption spectrum. The eluent was usually the 40% aqueous acetonitrile. In some experiments the proportion of acetonitrile was changed for better separation of products. The GC-MS spectrometer (Magnum, Finnigan MAT) was equipped with a capillary column (DB5, 0.25 mm i.d. and 0.25 μ m film), EI source, and an ion trap assembly and operated by use of ITS40 software package. Methane and ethane were detected by use of a gas chromatograph (Hewlett-Packard, Model 5790) equipped with a flame ionization detector and a VZ-10 column. 1H NMR and UV absorption spectra were recorded by use of Varian 300 NMR and Shimadzu 3101 PC spectrometers, respectively. Molecular oxygen was quantitated by use of a YSI biological oxygen monitor (Model 5300) with a DAQdata acquisition software package.

Time-resolved experiments were performed with use of a flash-lamp pumped dye-laser photolysis system described earlier.¹⁶ The dyes used were LD 423 and LD 490. Most of the reactions were monitored by observing the luminescence of $*UO_2^{2+}$ at 515 nm. In some experiments the concentration of $*UO_2^{2+}$ was obtained from the absorbance at 580 nm ($\epsilon = 4500 \text{ M}^{-1} \text{ cm}^{-1}$).^{16,23} Steady-state irradiations used a 250-W quartz tungsten halogen lamp (Oriel Corporation), equipped with a beam turning assembly. The irradiation wavelength was adjusted to >425 nm by use of a Corning 3-67 filter.

Sample Preparation. Aqueous solutions of UO_2^{2+} at the desired pH (adjusted with H_3PO_4) were placed in a 1 cm quartz cell and sealed with a gastight septum. The appropriate gas (argon, oxygen, or air) was bubbled through the solution for 20 min, followed by injection and dissolution of the substrate. After photolysis, the reaction solution was introduced directly into the HPLC chromatograph. For GC-MS and ¹H NMR spectra, several samples were combined and concentrated by extraction with diethyl ether. All experiments were carried out at room temperature.

Solutions of UO_2^+ were prepared by the reduction²⁴ of UO_2^{2+} (0.25 mM) by substoichiometric amounts of $Cr(H_2O)_6^{2+}$ (0.1 mM) in 5 mM

- (20) Djogic, R.; Raspor, B.; Branica, M. Croat. Chim. Acta 1993, 66, 363.
- (21) Djogic, R.; Branica, M. Electroanalysis 1992, 4, 151.
- (22) Westland, A. D.; Tarafder, M. T. H. *Inorg. Chem.* 1981, 20, 3992.
 (23) Burrows, H. D. *Inorg. Chem.* 1990, 29, 1549.
- (24) Ekstrom, A. Inorg. Chem. 1973, 12, 2455.

Figure 1. Effect of the initial concentration of C_6H_6 on the yield of phenol. Conditions: $[UO_2^{2+}] = 0.25 \text{ mM}$, $[H_2O_2] = 0.2 \text{ M}$, $[H_3PO_4] = 0.1 \text{ M}$, and irradiation time 60 min.

HClO₄. The kinetics of the UO₂⁺/H₂O₂ reaction were monitored at the 255 nm maximum of UO₂^{+,25}

Results

Identification of the Photochemical Product. A 60-min steady-state photolysis of a solution containing $0.25 \text{ mM } \text{UO}_2^{2+}$, 0.2 M H₂O₂, and 3.7 mM C₆H₆ produced a single new peak in the HPLC chromatogram. The intensity of the peak increased linearly with irradiation time. The retention time and the UV spectrum of the product coincided with those of phenol.

The GC-MS and ¹H NMR spectra confirmed this assignment. The new component in the GC-MS chromatogram yielded a mass spectrum identical to that of phenol. The ¹H NMR spectrum exhibits multiplets at δ 6.85 and 7.25 ppm (phenol), in addition to a singlet at 7.26 ppm corresponding to unreacted benzene.

The quantum yield of phenol (Φ_{PhOH}) was determined indirectly by comparison with the known quantum yield of benzaldehyde ($\Phi_{PhCHO} = 0.01$)¹⁷ produced under identical experimental conditions in the system toluene/UO₂²⁺/O₂. The experiments were conducted under "standard" reactions conditions, see later, such that 50% of *UO₂²⁺ was quenched by H₂O₂, and the rest by benzene. Similar experiments in the toluene/UO₂²⁺/H₂O₂ system yielded $\Phi_{PhCHO} = 0.11$, approximately 10 times greater than that obtained with O₂ as oxidant.

Most of the product analyses were conducted after 1-2 h of irradiation at <1 turnover and <10% conversion to products. To confirm the catalytic nature of the reaction, a solution containing 0.67 M H₂O₂, 0.01 M benzene and 10 μ M UO₂²⁺ was photolyzed for 6 h. The reaction produced 0.22 mM PhOH, yielding a turnover number [PhOH]/[UO₂²⁺] = 22, and turnover/h = 3.6.

The yield of PhOH first increases, and then decreases with increasing benzene concentration. The maximum is reached at $[C_6H_6] = 2-4$ mM, Figure 1. The decrease at high $[C_6H_6]$ is caused by the unproductive quenching of $*UO_2^{2+}$ by benzene, which reduces the amount of $*UO_2^{2+}$ available for the reaction with H_2O_2 , as discussed later.

As shown in Figure 2 the yield of phenol increases with $[UO_2^{2+}]$ in a nonlinear fashion. A rapid increase at low $[UO_2^{2+}]$ (<0.1 mM) is followed by a more moderate and approximately linear increase up to the highest concentration investigated (1

(25) Bakac, A.; Espenson, J. H. Inorg. Chem. 1995, 34, 1730.

⁽¹⁸⁾ Thompson, M. E.; Nash, K. L.; Sullivan, J. C. Isr. J. Chem. 1985, 25, 155.

⁽¹⁹⁾ Sullivan, J. C.; Gordon, S.; Cohen, D.; Mulac, W.; Schmidt, K. H. J. Phys. Chem. 1976, 80, 1684.

Figure 2. Effect of $[UO_2^{2+}]$ on the yield of phenol. Conditions: $[C_6H_6] = 3.7 \text{ mM}$, $[H_2O_2] = 0.2 \text{ M}$, and $[H_3PO_4] = 0.1 \text{ M}$.

mM). The yield also increases with [H₂O₂], reaches a maximum at ~0.5 M H₂O₂, and then decreases slightly, Figure 3. No product was observed if any of the three ingredients $(UO_2^{2+}, H_2O_2, or benzene)$ was absent.

To ascertain that the catalytic decomposition of H_2O_2 is not a serious side reaction, the concentration of H_2O_2 was determined before and after a 60-min irradiation of a solution containing 0.25 mM UO_2^{2+} , 0.10 M H_2O_2 , and 3 mM C_6H_6 at pH 1. After the irradiation the concentration of H_2O_2 was 0.097 M, which is reasonably close to the initial concentration, and shows that the unproductive loss of H_2O_2 is minimal under the experimental conditions. At the typical 10% conversion, the consumption of H_2O_2 was expected to be 6×10^{-4} M.

Deuterium Isotope Effects. There was no significant decrease in the yield of phenol when C_6H_6 was replaced by C_6D_6 , $\Phi_{Ph-d_5OH}/\Phi_{PhOH} \sim 0.94$. However, when the reaction was conducted in D_2O (93% D), the yield of phenol was only 25% of that observed in H_2O , yielding a product isotope effect $\Phi_{H_2O}/\Phi_{D_2O} = 4$.

Quenching Kinetics. The quenching of $*UO_2^{2+}$ by benzene and several derivatives was studied by laser flash photolysis in 0.1 M H₃PO₄. The bimolecular rate constants k_q were obtained as a slope of the plot of k_{obs} against the concentration of the substrate according to eq 7. The value of k_0 for the self-decay

$$k_{\rm obs} = k_0 + k_{\rm q}[\mathbf{Q}] \tag{7}$$

of $*UO_2^{2+}$ in 0.1 M H₃PO₄ is $(1.45 \pm 0.07) \times 10^4$ s⁻¹. The rate constants k_q exceed 10^8 M⁻¹ s⁻¹ for all the compounds studied, Table 1. There is no kinetic isotope effect upon substituting C₆D₆ for C₆H₆, as expected if the quenching takes place by exciplex formation.²⁶ The kinetic data in Table 1 allow one to calculate that at low conversions (<10%) $*UO_2^{2+}$ reacts mainly with H₂O₂ and benzene and that the quenching by the product phenol is minor.

The quenching of $*UO_2^{2+}$ by C₆H₆ was also examined in the presence of 5.0 mM H₂O₂. The intercept of the plot of k_{obs} vs [C₆H₆] was larger than in the absence of H₂O₂ (4.0 × 10⁴ vs 1.5 × 10⁴ s⁻¹), Figure 4, because two processes, the self-decay and the reaction with H₂O₂ (see below) contribute. The slope of the line was, however, practically unchanged (2.86 × 10⁸ vs 3.18 × 10⁸ M⁻¹ s⁻¹), indicating that either peroxouranium complexes are not formed under these conditions or their excited states do not react with C₆H₆ significantly faster than the

Figure 3. Effect of $[H_2O_2]$ on the yield of phenol. Conditions: $[C_6H_6] = 3.7 \text{ mM}$, $[UO_2^{2+}] = 0.25 \text{ mM}$, $[H_3PO_4] = 0.1 \text{ M}$, and irradiation time 30 min.

uncomplexed $*UO_2^{2+}$ does. Careful spectral measurements on solutions of UO_2^{2+} containing 0.1 M H₂O₂ in 0.1 M H₃PO₄ showed no evidence for peroxouranium species. Similarly, there was no indication that a benzene–uranium complex formed in a solution containing 0.25 mM UO_2^{2+} , 0.1 M H₃PO₄, and 3 mM C₆H₆.

The quenching of $*UO_2^{2+}$ emission by H_2O_2 obeyed the general rate law of eq 7 and yielded $k_q = 5.45 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ in H_2O and $8.28 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ in D_2O . This kinetic isotope effect of 6.5 is undoubtedly caused by the rapid hydrogen exchange between hydrogen peroxide and water, such that the reactive species changes from H_2O_2 in H_2O to D_2O_2 in D_2O .

Time-resolved absorbance measurements on $UO_2^{2+}/H_2O_2/h\nu$ reaction detected an intermediate after the quenching was complete. The kinetics of the formation and decay of the intermediate were monitored at 320 nm. At 5 mM UO_2^{2+} , 0.1 M H_2O_2 , and 0.1 M H_3PO_4 , the formation stage obeyed first-order kinetics with $k = (1.8 \pm 0.5) \times 10^3 \text{ s}^{-1}$. The large standard deviation is the result of the small signal to noise ratio. This rate constant is somewhat larger than expected if the intermediate is the known complex $UO_2(HO_2^{\bullet})^{2+}$, eq 8.²⁷

$$UO_2^{2+} + HO_2^{\bullet} \xrightarrow{1.5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}}_{100 \text{ s}^{-1}} UO_2(HO_2^{\bullet})^{2+}$$
 (8)

From the rate constants in eq 8, one would expect $k = 850 \text{ s}^{-1}$ for the absorbance increase under our conditions. This kinetic discrepancy may be the result of different reaction conditions in the two studies (0.1 M HClO₄ vs 0.1 M H₃PO₄). A recent report²⁸ also concluded that UO₂(HO₂•)²⁺ is produced in the UO₂²⁺/H₂O₂/*hv* system, although the yield has not been quantitated.

The point by point spectrum of the intermediate was recorded. The absorbance rises from ~ 400 nm into the UV and has no prominent features, similar to the published spectrum of UO₂-(HO₂•)²⁺.²⁷ From the measured initial concentration of *UO₂²⁺ in these experiments, we calculate that \geq 80% of *UO₂²⁺ is converted to UO₂(HO₂•)²⁺ ($\epsilon_{305} = 725 \text{ M}^{-1} \text{ cm}^{-1}$).²⁷ From the equilibrium constant $K_8 = 1.5 \times 10^3 \text{ M}^{-1}$, the maximum amount of UO₂(HO₂•)²⁺ that could be observed under our experimental conditions is 88%. The chemistry observed is thus fully accounted for by eqs 8–10.

⁽²⁶⁾ Matsushima, R. J. Am. Chem. Soc. 1972, 94, 6010.

⁽²⁷⁾ Meisel, D.; Ilan, Y. A.; Czapski, G. J. Phys. Chem. 1974, 78, 2330.
(28) Folcher, G.; Paris, J.; Saito, E. Nouv. J. Chem. 1983, 7, 703.

Table 1. Summary of the Kinetic Data (25 °C) for Quenching of UO_2^{2+} by Aromatic Hydrocarbons and Peroxides and Product Analysis Under Photocatalytic Conditions Using H₂O₂ as Oxidant

compound	$k_{\rm q},{ m M}^{-1}~{ m s}^{-1}~{ m a}$	photochemical product	quantum yield Φ^{b}
benzene	$2.86(9) \times 10^8$	phenol	0.70 (<0.002)
benzene- d_6	$2.85(12) \times 10^8$	phenol-d ₅	0.67 (<0.002)
phenol	$1.66(4) \times 10^9$	<i>p</i> -benzoquinone	0.005 (<0.0002)
toluene	$5.84(9) \times 10^{8}$ c	benzaldehyde	0.11 (0.01)
		benzyl alcohol	0.06 (<0.004)
		<i>p</i> -cresol	0.05 (<0.003)
		o-cresol	0.035 (<0.003)
		<i>m</i> -cresol	0.03 (<0.003)
<i>p</i> -xylene	$8.50(9) \times 10^8$	<i>p</i> -tolualdehvde	0.24 (0.02)
		<i>p</i> -methylbenzyl alcohol	0.02 (<0.002)
<i>p</i> -methylbenzyl alcohol	$7.51(45) \times 10^8$	p-tolualdehvde ^d	0.70 (0.07)
<i>p</i> -tolualdehyde	$3.80(22) \times 10^8$	<i>p</i> -toluic acid	0.10 (0.02)
		phthalic dicarboxaldehvde	
1,3,5-mesitylene	$8.37(8) \times 10^8$	3.5-dimethyl benzaldehyde	0.10 (0.016)
	0.07 (0) / 10	3.5-dimethyl benzyl alcohol	0.028 (< 0.003)
H_2O_2	$5.45(4) \times 10^{6}$		0.020 (0.000)
D_2O_2	$8.28(19) \times 10^5$		
Me ₂ COOH	$7.61(30) \times 10^6$		

 a [UO₂²⁺] = 1.0 mM, [H₃PO₄] = 0.1 M, 25 °C. Numbers in parantheses represent 1 standard deviation of the last significant figure. Product analyses were carried out at <1 turnover and <10% conversion to products. b Numbers in parentheses refer to O₂ as oxidant.¹⁷ c Reference 17.^d An unidentified product was also formed; see text.

Figure 4. Plot of the observed rate constants for the quenching of $*UO_2^{2+}$ with benzene against the concentration of benzene in the presence (top line) and absence (bottom line) of H_2O_2 . Conditions: $[UO_2^{2+}] = 1 \text{ mM}, [H_2O_2] = 5 \text{ mM}, \text{ and } [H_3PO_4] = 0.1 \text{ M}.$

$$\mathrm{UO}_{2}^{2+} \xrightarrow{h\nu} * \mathrm{UO}_{2}^{2+} \tag{9}$$

$$*UO_{2}^{2+} + H_{2}O_{2} \rightarrow UO_{2}^{+} + H^{+} + HO_{2}^{\bullet}$$
(10)

The subsequent slow decrease in absorbance in the 320– 400 nm range is caused by the disappearance of $UO_2(HO_2^{\bullet})^{2+}$ in self- and cross-disproportionation reactions of eq 11. The

$$HO_2^{\bullet}, UO_2(HO_2^{\bullet})^{2+} \to H_2O_2, O_2, UO_2^{2+}$$
 (11)

production of O₂ was confirmed by use of an oxygen electrode. Figure 5 shows an increase in O₂ concentration under steady state irradiation of a solution containing 5 mM UO₂²⁺ and 0.1 M H₂O₂ in 0.1 M H₃PO₄. The addition of 3 mM benzene to this solution slowed down the O₂ production significantly, owing to the competing quenching of $*UO_2^{2+}$ by C₆H₆ and the consumption of O₂ in the reaction(s) with intermediates; see Discussion. The rapid initial increase in both traces in Figure 5 is the result of the equilibration of the oxygen electrode after the injection of the last reagent.

Figure 5. Increase in the concentration of O_2 during photoirradiation of an air-saturated solution of 0.5 mM UO_2^{2+} , 0.1 M H_2O_2 , and 0.1 M H_3PO_4 in the absence and presence of 3 mM C_6H_6 .

Other Oxidations. Toluene yielded benzaldehyde, benzyl alcohol and cresols. *p*-Xylene was oxidized to tolualdehyde and methylbenzyl alcohol. 1,3,5-Mesitylene yielded 3,5-dimethylbenzaldehyde and 3,5-dimethylbenzyl alcohol. Dimethylphenol and trimethylphenol were not observed, indicating a lower probability of attack at phenyl ring in the case of *p*-xylene and 1,3,5-mesitylene, respectively. The overall quantum yields for these oxidations by H_2O_2 , Table 1, are significantly higher than those obtained in oxidations by O_2 .¹⁷

The phenol, produced by the oxidation of benzene, was oxidized further to *p*-benzoquinone, although the yields were low. Methylbenzyl alcohol was oxidized to *p*-tolualdehyde. Another product, possibly *p*-hydroxymethyl benzaldehyde, was also observed, but it was not identified unequivocally. *p*-Tolualdehyde was oxidized further to phthalic dicarboxaldehyde and *p*-toluic acid. All the results are summarized in Table 1.

tert-Butyl hydroperoxide was found to quench $*UO_2^{2+}$ with $k_q = 7.6 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$. Under steady-state photolysis, the UO_2^{2+}/t -BuOOH/C₆H₆/h ν reaction yielded no products detectable by HPLC. When the reaction was carried out under strictly air-free conditions, gas chromatography showed large amounts of methane and some ethane.

The kinetics of the reaction of H_2O_2 with UO_2^+ were measured briefly. The bimolecular rate constant $k = 3.4 \pm 0.7$ $M^{-1} s^{-1}$ was determined at [HClO₄] = 5 mM, [H₂O₂] = 0.5-1.0 mM, and [UO₂⁺] = 0.1 mM. After correction for the stoichiometric factor, [UO₂⁺]/H₂O₂] = 2, one obtains $k_{12} = 1.7$ $\pm 0.4 M^{-1} s^{-1}$ for the rate-determining step, which we presume takes place as shown in eq 12.

$$\mathrm{UO_2}^+ + \mathrm{H_2O_2} \xrightarrow{\mathrm{H}^+} \mathrm{UO_2}^{2+} + \mathrm{HO}^\bullet + \mathrm{H_2O} \qquad (12)$$

Discussion

Both C_6H_6 and H_2O_2 quench $*UO_2^{2+}$. The quenching by C_6H_6 alone yields no products when the reaction is carried out under either Ar or O₂, consistent with the previously proposed mechanism involving the formation and decay of an exciplex.²⁶

The findings for the reaction of $*UO_2^{2+}$ with H₂O₂, eq 10, suggest hydrogen atom abstraction. The kinetic isotope effect $k_{\rm H}/k_{\rm D} = 6.6$, and quantitative formation of $UO_2({\rm HO_2}^{\bullet})^{2+}$ strongly support this mechanism.

The quenching by a mixture of C_6H_6 and H_2O_2 takes place with a rate constant that is, within experimental error, identical with the sum of rate constants for the quenching by individual components. This result establishes the irrelevancy of the quenching of any uranium peroxo complexes by benzene or uranium-benzene complexes by H_2O_2 . No spectroscopic evidence for such complexes was found at the high [H⁺] (0.1 M) and low [C_6H_6] (≤ 5 mM) used. Peroxouranium complexes are known to exist at pH ≥ 5 .¹⁸⁻²¹

Because of the simultaneous quenching of the excited state by H_2O_2 and C_6H_6 , the product yield is a function of the concentration ratio of the two quenchers. The quenching by benzene reduces the amount of the excited state available for product formation, which requires that $[C_6H_6]$ be kept low. On the other hand, benzene is the substrate, and its concentration determines the amount of the product formed; ergo $[C_6H_6]$ should be high. Our "standard" conditions, $[H_2O_2]/[C_6H_6] =$ 52, for the catalytic oxidation are a compromise which allows 50% of $*UO_2^{2+}$ to be quenched by C_6H_6 and 50% by H_2O_2 . This ratio is obtained from the rate constants in Table 1.

The overall quantum yield for the formation of PhOH ($\Phi = 0.7$) was obtained under these conditions. Thus for each mol of the excited state that had reacted with H₂O₂, 1.4 mol of PhOH was produced. This value is a result of several different determinations (quantum yield of acetone in the UO₂²⁺/H₂O₂/2-PrOH/*hv* reaction,¹⁶ kinetics of quenching of *UO₂²⁺ by C₆H₆ and by H₂O₂, and finally the yield of PhOH in the UO₂²⁺/H₂O₂/C₆H₆/*hv* reaction). As a result, the accumulated error is large, and we are not confident that the quantum yield indeed exceeds unity, but only that it is close to it.

Several mechanisms for the oxidation of benzene and its derivatives by $UO_2^{2+}/H_2O_2/h\nu$ can be put forward. The homolysis of coordinated H_2O_2 in an intermediate/transition state of the form [* $UO_2(H_2O_2)^{2+}$] to yield hydroxyl radicals, eq 13, would eventually produce phenol. In the absence of substrates, hydroxyl radicals would react with H_2O_2 to yield HO_2^{\bullet} , and finally the observed $UO_2(HO_2^{\bullet})^{2+}$. This mechanism will not be considered further, however, because it cannot explain the deuterium isotope effect of hydrogen peroxide on the yield of phenol, $\Phi_{H_2O_2}/\Phi_{D_2O_2} = 4$.

$$UO_2(H_2O_2)^{2+} \xrightarrow{h\nu} UO_2^{2+} + 2^{\bullet}OH$$
 (13)

Next we consider a mechanism similar to that proposed for the hydroxylation of benzene by complexes of vanadium, iron, and cobalt.²⁹ The addition of $UO_2(HO_2^{\bullet})^{2+}$ to the aromatic ring, eq 14, produces a transient cyclohexadienyl radical, which is then oxidized to phenol with the concomitant formation of a peroxouranium(V) complex or uranium(VI) and hydroxyl radicals. This mechanism is consistent with the strong isotope effect associated with H_2O_2 and the lack of substrate isotope effect, but does not explain the facile oxidation of the methyl group in toluene, Table 1.

$$\begin{bmatrix} 0 \\ -U \\ -U \\ 0 \\ -H \end{bmatrix}^{2+} \qquad \bigoplus \qquad \sum_{\substack{U \\ U \\ U \\ 0 \\ H \end{bmatrix}}^{0} \xrightarrow{O}_{H} \xrightarrow{O}_{H$$

Similarly, hydrogen atom abstraction by coordinated³⁰ hydrogen peroxide in the transient complex $*U^{VI}O_2(H_2O_2)^{2+}$ (eq 15) leading to the formation of carbon-centered radicals is inconsistent with the lack of substrate isotope effect. Moreover, this mechanism would require that the quenching of $*UO_2^{2+}$ by a mixture of H_2O_2 and benzene be faster than quenching by the individual components, contrary to the experimental observation. The same would be true for a mechanism involving a nucleophilic attack at coordinated H_2O_2 in eq 16.

The best mechanistic candidate seems to be the photochemically induced Fenton reaction in Scheme 1.

Scheme 1

$$\mathrm{UO}_{2}^{2+} \xrightarrow{h\nu} * \mathrm{UO}_{2}^{2+} \tag{9}$$

$$*UO_{2}^{2+} + H_{2}O_{2} \rightarrow UO_{2}^{+} + H^{+} + HO_{2}^{\bullet}$$
(10)

$$\mathrm{UO}_{2}^{2+} + \mathrm{HO}_{2}^{\bullet} \rightleftharpoons \mathrm{UO}_{2}(\mathrm{HO}_{2}^{\bullet})^{2+}$$
(8)

$$HO_{2}^{\bullet}, UO_{2}(HO_{2}^{\bullet})^{2+} \rightarrow H_{2}O_{2}, O_{2}, UO_{2}^{2+}$$
 (11)

$$\mathrm{UO_2}^+ + \mathrm{H_2O_2} \xrightarrow{\mathrm{H^+}} \mathrm{UO_2}^{2+} + \mathrm{HO^{\bullet}} + \mathrm{H_2O}$$
(12)

$$C_6H_6 + HO^{\bullet} \rightarrow C_6H_6(OH)^{\bullet}$$
(4)

$$C_6H_6(OH)^{\bullet} \xrightarrow{O_2, HO_2^{\bullet}, UO_2^{2+}} PhOH$$
 (17)

A number of observations support this mechanism. The quenching of $*UO_2^{2+}$ by H_2O_2 produces UO_2^+ (in addition to

HO₂•). The oxidation of UO₂⁺ by H₂O₂ ($k[H_2O_2] \sim 0.3 \text{ s}^{-1}$), is much faster than the competing oxidation with molecular oxygen ($k[O_2] < 0.04 \text{ s}^{-1}$)²⁵ at the concentrations used. UO₂⁺ can undergo only one-electron oxidation, and an odd-electron intermediate has to be involved in the reaction with H₂O₂. We propose that this intermediate is the HO• radical as shown in eq 12, although we cannot rule out the possibility that some closely related species,¹² such as a short-lived U^V-H₂O₂ complex, is the active oxidant for aromatic hydrocarbons.

The **product** isotope effect demonstrates clearly that the UO_2^{2+}/H_2O_2 reaction is the main (and probably only) productive reaction of the excited state. The measured **kinetic** isotope effect for UO_2^{2+}/H_2O_2 reaction is 6.6. Under the conditions employed, only 50% of UO_2^{2+} reacts with H_2O_2 . Upon substitution of H_2O_2 by D_2O_2 the quantum yield of phenol decreased by a factor of ~4, in reasonable agreement with the expected factor of ~3.3, calculated from eq 18, where k_b represents the rate constant for the quenching of UO_2^{2+} by benzene.

$$\frac{[\text{PhOH}]}{[\text{PhOD}]} = \frac{\frac{k_{\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2]}{k_{\text{b}}[\text{C}_6\text{H}_6] + k_{\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2]}}{\frac{k_{\text{D}_2\text{O}_2}[\text{D}_2\text{O}_2]}{k_{\text{b}}[\text{C}_6\text{H}_6] + k_{\text{D}_2\text{O}_2}[\text{D}_2\text{O}_2]}}$$
(18)

A thorough analysis of the available literature data has led to the conclusion³¹ that there is no "fingerprint" product distribution in Fenton-type oxidations of aromatic hydrocarbons. The ratio of the three isomeric cresols depends on acidity and on the nature and concentration of the metal ions involved. Also, the presence of O_2 has a dramatic effect on this ratio. The formation of PhCHO, PhCH₂OH and cresols in the UO₂²⁺/H₂O₂/ $h\nu$ system, and the cresol ratio (o:m:p = 1.2:1:1.8) suggest that both benzyl and cyclohexadienyl radicals are produced, the final products being derived mostly from the reactions of the radicals with O₂. This conclusion is consistent with the decreased accumulation of O_2 in the *UO₂²⁺/H₂O₂ reaction in the presence of aromatic hydrocarbons, Figure 5. A typical³¹ ratio of cresols derived from the reaction of cyclohexadienyl radicals with O₂ is 1:1.2:1. The smaller fraction of *m*-cresol in the present system is probably the result of the low pH used. Such conditions favor the formation of toluene radical cations,³² which yield only mand *p*-cresols. Scheme 2 summarizes the proposed mechanism.

The oxidation of cyclohexadienyl radicals with UO_2^{2+} appears to be insignificant. If this were not the case, reaction 19 would regenerate UO_2^+ and initiate a chain reaction, resulting in $\Phi >$ 0.5 for the formation of phenol.

$$C_6H_6(OH)^{\bullet} + UO_2^{2+} \rightarrow C_6H_5OH + UO_2^{+} + H^{+}$$
 (19)

Even if the observed $\Phi = 0.7$ is outside the experimental error of 0.5, expected on the basis of Scheme 1 at 50% quenching by H₂O₂, the chain length is still short and demonstrates that reaction 19 is a minor path at best.

Additional support for a Fenton-type mechanism of Scheme 1 comes from the experiments with *t*-BuOOH. The failure to

- (30) Kurz, M. E.; Johnson, G. J. J. Org. Chem. 1971, 36, 3184.
- (31) Eberhardt, M. K. Rev. Heteroat. Chem. 1991, 4, 1.

Scheme 2

1

oxidize benzene, and the formation of (mostly) methane and (some) ethane under air-free conditions are indicative of a oneelectron process yielding *t*-BuO[•] radicals, followed by rapid β -scission,³³ hydrogen atom abstraction from *t*-BuOOH, and self-reactions³⁴ of *t*-BuOO[•] radicals, eqs 20–25.

$$UO_2^{2+} + (CH_3)_3 COOH \rightarrow UO_2^{+} + (CH_3)_3 COO^{\bullet} + H^{+}$$
(20)

$$UO_2^+ + (CH_3)_3COOH + H^+ \rightarrow UO_2^{2+} + (CH_3)_3CO^{\bullet}$$
 (21)

$$(CH_3)_3CO^{\bullet} \rightarrow CH_3^{\bullet} + (CH_3)_2CO$$
(22)

$$CH_3^{\bullet} + (CH_3)_3 COOH \rightarrow CH_4 + (CH_3)_3 COO^{\bullet}$$
(23)

$$2CH_3^{\bullet} \rightarrow C_2H_6 \tag{24}$$

$$2(CH_3)_3COO^{\bullet} \rightarrow 2(CH_3)_3CO^{\bullet} + O_2$$
(25)

Conclusions. UO_2^{2+} catalyzes the photochemical oxidation of benzene and substituted benzenes by H₂O₂. The following evidence suggests that these are photochemically driven Fentontype reactions. (1) $*UO_2^{2+}$ reacts with H_2O_2 to yield UO_2^+ and HO₂[•]. The reaction has a kinetic isotope effect, $k_{H_2O_2}/k_{D_2O_2}$, of 6.6, consistent with hydrogen-atom abstraction as rate determining step. (2) UO_2^+ reacts with H_2O_2 ($k = 1.7 M^{-1}$ s^{-1}) in a presumably Fenton-type reaction. (3) The yield of PhOH derived from H_2O_2 is ~4 times greater than the yield of PhOD derived from D_2O_2 . Combined with the kinetic isotope effect of 6.6 for the reaction of $*UO_2^{2+}$ with H_2O_2 , this product isotope effect clearly identifies the $*UO_2^{2+}-H_2O_2$ (or D_2O_2) reaction as the only productive reaction of the excited state. (4) When H₂O₂ is replaced by *t*-BuOOH, the reaction produces large amounts of methane and some ethane, as expected if tert-butoxyl radicals are involved.

Acknowledgment. We thank Drs. J. H. Espenson, G. A. Russell, K. S. Suslick, and W.-D. Wang for helpful discussions. We are also grateful to Dr. W.-D. Wang for help with some experiments. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences under Contract W-7405-Eng-82. An Ames Laboratory Directed Research and Development Grant is gratefully acknowledged.

IC960142N

⁽²⁹⁾ Strukul, G. *Catalytic Oxidations with Hydrogen Peroxide as Oxidant*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.

⁽³²⁾ Bard, A. J.; Ledwith, A.; Shine, H. J. Adv. Phys. Org. Chem. 1976, 13, 156.

⁽³³⁾ Erben-Russ, M.; Michael, C.; Bors, W.; Saran, M. J. Phys. Chem. 1987, 91, 2362.

^{(34) (}a) Russell, G. A. J. Am. Chem. Soc. 1957, 79, 3871. (b) Batt, L. Int. Rev. Phys. Chem. 1987, 6, 53.