Modeling the Claus Reaction: Preparation of *trans***-Pt(PPh₃)**₂(phthalimido)S(O)₂SR

Alan Shaver,* Hélène Boily, and Anne-Marie Lebuis

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

*Recei*V*ed May 24, 1996*

The removal of sulfur from crude oil is accomplished by hydrodesulfurization $(HDS)^1$ followed by the Claus process,² mydrodesunturization (HDS)⁻ followed by the Claus process,-
which converts the H₂S produced by HDS to sulfur and water
(eq 1). Natural gas contaminated by H₂S is purified by direct
 $2H_2S + SO_2 \xrightarrow{\text{catalyst}} \frac{3}{8}S_8 + 2H$ (eq 1). Natural gas contaminated by H_2S is purified by direct

$$
2H_2S + SO_2 \xrightarrow{\text{catalyst}} \, \, \,^3/\, \,^8S_8 + 2H_2O \tag{1}
$$

application of the Claus process. The Claus reaction is conducted at 300 °C using alumina as a catalyst although other materials also catalyze the reaction. The mechanism is unknown, but the reaction must involve the formation of sulfursulfur bonds and oxygen transfer, a suite of reactions with few precedents in homogeneous catalysis. Three simple conceptual models of the Claus reaction can be described. Model **A** depicts

attack by H_2S on adsorbed SO_2 , model **B** represents attack by SO_2 on adsorbed H_2S ,³ and in **C** both the H_2S and the SO_2 are adsorbed before reaction.4 Studies of the sequential adsorption and reactions of SO_2 and H_2S on alumina⁵ are for the most part inconclusive; however, preadsorbed $SO₂$ is reactive toward H_2S ^{5d} Therefore, the complex $Pt(PPh_3)_3SO_2$ ⁶ chosen as an example of preadsorbed SO_2 , was treated with a source of RS^+ as a simulation of model **A**.

* Author to whom correspondence should be addressed.

- (1) (a) Satterfield, C. N. *Heterogeneous Catalysis in Industrial Practice*, 2nd ed.; McGraw-Hill: New York, 1991; pp 378-383. (b) Gates, B. C.; Katzer, J. R.; Schuit, G. C. A. *Chemistry of Catalytic Processes*; McGraw Hill: New York, 1979; pp 390-445.
- (2) (a) Grancher, P. *Hydrocarbon Process.* **1978**, *57*, 155. (b) Grancher, P. *Hydrocarbon Process.* **1978**, *57*, 257. (c) George, Z. M.; Tower, R. W. *Can. J. Chem. Eng.* **1985**, *63*, 618 and references therein.
- (3) For examples of model **B** involving soluble metal thiolates and sulfides see: (a) Eller, P. G.; Kubas, G. J. *J. Am. Chem. Soc.* **1977**, *99*, 4346. (b) Shaver, A.; Plouffe, P.-Y. *Inorg. Chem.* **1992**, *31*, 1823. (c) Schenk, W. A.; Dombrowski, E.; Reuther, I.; Stur, T. *Z. Naturforsch., B: Chem. Sci.* **1992**, *47B*, 732. (d) Darensbourg, M. Y.; Tuntulani, T.; Reibenspies, J. H. *Inorg. Chem.* **1994**, *33*, 611. (e) Kubas, G. J.; Ryan, R. R. *J. Am. Chem. Soc.* **1985**, *107*, 6138. (f) Kubas, G. J.; Wasserman, H. J.; Ryan, R. R. *Organometallics* **1985**, *4*, 419. (g) Brunner, H.; Klement, U.; Pfauntsch, J.; Wachter, J. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 230. (h) Kubas, G. J.; Ryan, R. R. *Inorg. Chem.* **1984**, *23*, 3181. (i) Toupadakis, A.; Kubas, G. J.; Burns, C. J. *Inorg. Chem.* **1992**, *31*, 3810. (j) Kubas, G. J.; Ryan, R. R.; Kubat-Martin, K. A. *J. Am. Chem. Soc.* **1989**, *111*, 7823. (k) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. *Organometallics* **1989**, *8*, 1910. (l) Yamanari, K.; Mori, M.; Dogi, S.; Fuyuhiro, A. *Inorg. Chem.* **1994**, *33*, 4807. (m) Heyke, O.; Neher, A.; Lorenz, I.-P. *Z. Anorg. Allg. Chem.* **1992**, *608*, 23.
- (4) For examples of model C involving soluble complexes containing both thiolato and SO2 ligands see refs 3b and 3c and: Kubas, G. J. *Inorg. Chem.* **1979**, *18*, 182.
- (5) (a) Datta, A.; Cavell, R. G.; Tower, T. W.; George, Z. M. *J. Phys. Chem.* **1985**, *89*, 443. (b) Datta, A.; Cavell, R. G. *J. Phys. Chem.* **1985**, *89*, 450. (c) Datta, A.; Cavell, R. G. *J. Phys. Chem.* **1985**, *89*, 454. (d) Karge, H. G.; Dalla Lana, I. G. *J. Phys. Chem.* **1984**, *88*, 1958.
- (6) Levison, J. J.; Robinson, S. D. *J. Chem. Soc., Dalton Trans.* **1972**, 2013.

Treatment of $Pt(PPh₃)₃SO₂$ with RSphth⁷ gave pale yellow complexes of the type *trans*-Pt(PPh₃)₂(phth)S(O)₂SR, 1a-f, where phth $=$ phthalimido (eq 2). The IR and NMR (¹H and

31P) spectra of **1a**-**f** are consistent with their formulation,8 and the structure of **1f**, shown in Figure 1, confirms the presence of the PtS(O)₂SCH₂Ph moiety.⁹ Interestingly, while organic thiosulfonates ($RS(O)_2SR'$) are known,¹⁰ few structures have been reported;¹¹ complexes $1a$ -f are the first to contain an $RSS(O)_2$ ligand.12 Sulfito groups are the parent ligands of this new $class.^{3k,13}$

Attachment of the RS^+ residue to the SO_2 ligand of $Pt(PPh₃)₃$ -SO2 and oxidation of the metal center result in a much shorter Pt-S distance (2.261(3) Å) in **1f** than in the precursor (2.368- (3) Å).¹⁴ The Pt-S distance in **1f** is also shorter than those in cis -Pt(PPh₃)₂(phth)SSCHMe₂ (2.353(3) Å),¹⁵ [Pt(PPh₃)₂(S(O)-

- (7) (a) Behforouz, M.; Kerwood, J. E. *J. Org. Chem.* **1969**, *34*, 51. (b) Buchel, K. H.; Conte, A. *Chem. Ber.* **1967**, *100*, 1248. (c) Harpp, D. N.; Ash, D. K.; Back, T. G.; Gleason, J. G.; Orwig, B. A.; van Horn, W. F.; Snyder, J. P. *Tetrahedron Lett.* **1970**, 3551.
- (8) Preparative procedures and characterization data are given in the Supporting Information.
- (9) Crystal data for *trans*-Pt(PPh3)2(phth)S(O)2SCH2Ph'0.75CH2Cl2 **1f**: monoclinic *P*2₁/*c* (No. 14), $a = 21.212(4)$ Å, $b = 13.996(2)$ Å, $c =$ 17.789(3) Å, $V = 4868.9(14)$ Å³, $\beta = 112.79(1)$ °, $Z = 4$, $D_c = 1.524$ g/cm³, μ (Mo Kα) = 3.190 mm⁻¹, λ (Mo Kα) = 0.709 30 Å (graphite monochromated); $2\theta_{\text{max}} = 50^{\circ}$, 32 688 measured reflections (8585) unique, $R(int) = 0.133$; $R = 0.063$, $R_w = 0.108$, GOF = 0.887 (4409) reflections with $I > 2.00\sigma(I)$). A complete structural report is included in the Supporting Information.
- (10) (a) Block, E. *Angew. Chem., Int. Ed. Engl.* **1992**, *31*, 1135. (b) Freeman, F. *Chem. Re*V*.* **1984**, *84*, 117. (c) Oae, S. *Organic Chemistry of Sulfur*; Plenum Press: New York, 1977. (d) Reid, E. E. *Organic Chemistry of Bi*V*alent Chemistry*; Chemical Publishing Co.: New York, 1958; Vol. 1.
- (11) (a) Wahl, G. H.; Bordner, J.; Harpp, D. N.; Gleason, J. G. *Acta Crystallogr., Sect. B* **1973**, *B29*, 2272. (b) Noordik, J. H.; Vos, A. *Recl. Tra*V*. Chim. Pays-Bas* **1967**, *86*, 156. (c) Block, E.; O'Connor, J. *J. Am. Chem. Soc.* **1974**, *96*, 3921.
- (12) The $RSS(O)_2$ ⁻ ligands in $1a$ -**f** are isomeric with those in (a) CpRu-(PPh3)(CO)SS(O)2-4-C6H4Me (Shaver, A.; Plouffe, P. Y. *J. Am. Chem. Soc.* **1991**, *113*, 7780) and (b) CpRu(CO)2SS(O)2Ph (Trojansek, D. Ph.D. Thesis, McGill University, 1995).
- (13) (a) Michelin, R. A.; Napoli, M.; Ros, R. *J. Organomet. Chem.* **1979**, *175*, 239. (b) Barlex, D. M.; Kemmitt, R. D. W. *J. Chem. Soc., Dalton Trans.* **1972**, 1437. (c) Graziani, M.; Ros, R.; Carturna, G. *J. Organomet. Chem.* **1971**, *27*, C19. (d) Schenk, W. A.; Karl, U. *Z. Naturforsch., B: Chem. Sci.* **1989**, *44B*, 993. (e) Schenk, W. A.; Urban, P.; Stahrfeldt, T.; Dombroswki, E. A. *Z. Naturforsch., B: Chem. Sci.* **1992**, *47B*, 1493.
- (14) Ellen, P. G.; Ryan, R. R.; Moody, D. C. *Inorg. Chem.* **1976**, *15*, 2442.
- (15) Shaver, A.; Hartgerink, J.; Lai, R. D.; Bird, P. *Organometallics* **1983**, *2*, 938.

Figure 1. ORTEP drawing of *trans-Pt*(PPh₃)₂(phth)SO₂SCH₂Ph, 1f. Selected bond lengths (\hat{A}) and angles (deg): Pt-S, 2.261(3); Pt-P(1), 2.341(3); Pt-P(2), 2.360(2); Pt-N, 2.061(7); S(1)-S(2), 2.154(4); S(1)-O(1), 1.446(7); S(1)-O(2), 1.451(7); Pt-S(1)-O(1), 114.4(3); Pt-S(1)-O(2), 112.5(3); Pt-S(1)-S(2), 102.3(1); O(1)-S(1)-O(2), 114.2(5); P(1)-Pt-P(2), 171.1(1); S(1)-Pt-N, 177.2(2).

 $(CH₂)₄S$] (Pt-S(O) = 2.333(2) Å, Pt-S = 2.334(3) Å).¹⁶ The S -O bond lengths are within the normal range,¹⁷ while the S -S bond distance (2.154(4) Å) is longer^{11c} than that in 4-C₆H₄BrS- $(O)_2S-4-C_6H_4Br (2.091(6)$ Å)^{11b} and those in *cis*-Pt(PPh₃)₂(phth)-SSCHMe₂ (2.037(4) $\rm \AA$ ¹⁵ and in other metal-coordinated polysulfur oxide ligands of the type $\text{RS}(\text{O})\text{S}^-$ and $\text{RS}(\text{O})_2\text{S}^{-18}$

Complex 1f lost SO₂ at 110 °C under vacuum to give *trans*- $Pt(PPh₃)₂(pthth) SCH₂Ph$, which does not react in solution with $SO₂$ to regenerate **1f**. This leads one to suggest that the 1,2oxidative addition¹⁹ of RSphth to the Pt-SO₂ bond in Pt(PPh₃)₃- $SO₂$ occurs via direct attachment of the RS⁺ group to the pyramidal (nucleophilic)¹⁷ SO₂ ligand rather than by attack at the platinum metal atom followed by insertion of $SO₂$ into the Pt-SR bond thus formed. While insertion reactions of $SO₂$ into metal-carbon bonds are well-known,²⁰ similar insertion reactions of SO_2 into other metal-atom bonds are rare^{3fk,13ac,21} and are unknown for M-SR bonds even in complexes containing both the RS⁻ and SO₂ groups as ligands⁴ (i.e., model C).

- (17) Mingos, D. M. P. *Transition Met. Chem.* **1978**, *3*, 1.
- (18) S-S bond distances are as follows. (a) CpRu(PPh₃)(CO)E:^{12a} E = SS(O)CHMe₂, 2.076(3) Å; E = SS(O)₂-4-C₆H₄Me, 2.023(3) Å. (b) $CpRu(CO)_2E$ ^{12b} E = SS(O)Ph, 2.050(4) Å; E = SS(O)₂Ph, 2.037(2) Å. (c) CpRu(PPh₃)₂E: E = SS(O)CH₂Ph, 2.086(3) Å (Weigand, W.; Bosl, G.; Robl, C.; Kroner, J. *Z. Naturforsch., B:; Chem. Sci.* **1993**, *48B*, 627.
- (19) Other examples of 1,2-oxidative addition to a metal-ligand bond: (a) Casey, C. P.; Vosejpka, P. C.; Askham, F. R. *J. Am. Chem. Soc.* **1990**, *112*, 3713. (b) Reed, C. A.; Roper, W. R. *J. Chem. Soc. A* **1970**, 3054.
- (20) Wojcicki, A. *Ad*V*. Organomet. Chem.* **1974**, *12*, 31.

Complex f **f** reacted with ROH in CHCl₃ to give quantitatively the sulfito complexes *trans*-Pt(PPh₃)₂(phth)S(O)₂OR⁸ (R = H, C_2H_5 , CHMe₂). These are resistant to loss of SO₂ up to 200 °C. Exchange of **1f** with RSH is very slow, whereas treatment of **1f** with H₂S gave Pt(PPh₃)₂(H)(SH)²² and (PhCH₂S)₂ as the major products as determined by 1H NMR.

Treatment of $Pt(PPh₃)₃SO₂$ with the oxidized sulfur transfer reagent $RS(O)$ phth²³ was expected to produce complexes containing the PtS(O)2S(O)R moiety; however, complexes **1d**-**f** and PPh3O were isolated and there was no evidence of the expected products. Since RS(O)phth is deoxygenated only very slowly by PPh3, complexes **1d**-**f** are probably the products of deoxygenation of *trans*-Pt(PPh₃)₂(phth)S(O)₂S(O)R by free PPh₃ released from $Pt(PPh_3)_3SO_2$. The apparent activation of the oxygen atom on the β -sulfur atom of the RS(O)S(O)₂⁻ ligand is noteworthy. The complexes $CpRu(PPh₃)(CO)SS(O)R$ also undergo facile oxygen exchange to give CpRu(PPh₃(CO)SSR and $CpRu(PPh₃)(CO)SS(O)₂R¹²$ Kubas and co-workers have observed similar chemistry.^{3h-k,24} On the other hand, complexes $1a-f$, which have oxygen atoms on the α -sulfur atom, are inert toward PPh3. This observation may be useful in developing Claus-like chemistry with soluble metal complexes.

Acknowledgment. We thank the Natural Sciences and Engineering Council of Canada and the Quebec Department of Education for financial support and postgraduate scholarships to H.B.

Supporting Information Available: Text giving preparative methods, spectroscopic data, and X-ray analysis and tables of crystal data, atomic coordinates, anisotropic thermal parameters, bond lengths and angles, and calculated hydrogen atom coordinates for **1f** (16 pages). See any current masthead page for ordering information.

IC960617A

- (23) Harpp, D. N.; Back, T. G. *J. Org. Chem.* **1973**, *38*, 4328.
- (24) Kubas, G. J. *Acc. Chem. Res.* **1994**, *7*, 183.

⁽¹⁶⁾ Weigand, W.; Bosl, G.; Robl, C.; Amrein, W. *Chem. Ber.* **1992**, *125*, 1047.

^{(21) (}a) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. *Organometallics* **1988**, *7*, 1657. (b) Green, L. M.; Meek, D. W. *Organometallics* **1989**, *8*, 659. (c) Alcock, N. W.; Platt, A. W.; Powell, H. H.; Pringle, P. G. *J. Organomet. Chem.* **1989**, *361*, 409. (d) Bryndza, H. E.; Dretchmor, S. A.; Tulip, T. H. *J. Am. Chem. Soc.* **1986**, *108*, 4805. (e) Randall, S. L.; Miller, C. A.; Janik, T. S.; Rowen-Churchill, M.; Atwood, J. D. *Organometallics* **1994**, *13*, 141.

^{(22) (}a) Blacklaws, I. M.; Ebsworth, E. A. V.; Rankin, D. W. H.; Robertson, H. E. *J. Chem. Soc., Dalton Trans.* **1978**, 753. (b) Ugo, R.; La Monica, G.; Cenini, S. *J. Chem. Soc. A* **1971**, 522. (c) Morelli, D.; Segre, A.; Ugo, R.; LaMonica, G.; Cenini, S.; Conti, F.; Bonati, F. *J. Chem. Soc., Chem. Commun.* **1967**, 524.