Notes

The Nonexistent Crystals of Macrocyclic Nickel(III). Structure of the Cobalt(III) Complex of 1,4,7-Triazacyclononane-*N*,*N'*,*N''*-triacetate

Jan C. A. Boeyens* and Magdalena J. van der Merwe[†]

Centre for Molecular Design, Department of Chemistry, University of the Witwatersrand, Johannesburg, South Africa

Received May 23, 1996

Introduction

The existence of a nickel(III) complex of 1,4,7-triazacyclononane-N,N',N"-triacetate (TCNTA), inferred from the crystallographic study¹ of a crystal that appeared after many months in a nitric acid solution of Ni(NO₃)₂ and TCNTA, has never been confirmed by electrochemical means or by any other independent study. It came to our attention that several such (unpublished) attempts have in fact failed, and this prompted a reinvestigation, using the one crystal preserved in our laboratory.

Experimental Section

A nondestructive analysis by energy-dispersive spectroscopy, using a JSM-5400 scanning electron microscope at the Research Laboratory of the Anglo American Platinum Corp., failed to detect any nickel but established the presence of cobalt instead.

Two independent refinements of the structure, based on the structure factors reported previously,¹ were carried out, using nickel and cobalt scattering factors, respectively. Because of the small one-electron difference between the two metals, the observed differences were small but were consistently in favor of cobalt as the central metal. All hydrogens could be placed by difference-Fourier synthesis, but since a few would not refine properly by least squares, they were all linked at a common refinable distance to, and with the displacement parameters of, their respective carbon atoms.

Crystallographic data are listed in Table 1 and refined atomic parameters in Table 2, according to the numbering scheme shown in Figure 1. Figure 2 is a stereoscopic drawing of one of the three equivalent molecules in the asymmetric unit.

Results and Discussion

There are three crystallographically independent molecules in the unit cell, with the central atom on a 3-fold axis. As a consequence, there are three independent measurements of each internal parameter. Comparison of these is one criterion that was used to assess the internal consistency of the two refinements. Using nickel scattering factors, the following values were determined: d(M-O) = 1.91, 1.92, 1.92 Å; d(M-N) =1.93, 1.94, 1.91 Å. This reversal does not occur with cobalt scattering factors, for which d(M-O) = 1.91, 1.92, 1.91 Å and d(M-N) = 1.93, 1.94, 1.92 Å. The average C-H distance of 0.96 Å in the cobalt refinement is also considered to be more

Table 1.	Crystal D	ata for	Co(TCNTA) ₃
----------	-----------	---------	------------------------

chem formula	$C_{12}H_{18}O_6N_3Co$	λ, Å	0.710 69				
fw	359.21	<i>T</i> , °C	25				
space group	P3c1	$ ho_{ m calcd}$, g cm ⁻³	1.76				
<i>a</i> , Å	13.670(7)	$ ho_{\rm obsd}$, g cm ⁻³	1.77				
<i>c</i> , Å	12.586(6)	μ (Mo K α) cm ⁻¹	12.19				
V, Å ³	2036.8(5)	R^a (F_o)	0.051				
Z	6	$R_{\rm w}{}^b (F_{\rm o})$	0.051				
${}^{a}R = \sum F_{o} - F_{c} / \sum F_{o} . {}^{b}R_{w} = \sum w^{1/2} F_{o} - F_{c} / \sum w^{1/2} F_{o} .$							
Table 2. Atomic Coordinates (and Esd's) for Co(TCNTA) ₃							

atom	x/a	y/b	z/c	atom	x/a	y/b	z/c
Co1	0.0000	0.0000	0.5000	H222	0.1436	0.7345	0.3456
	0.0000	0.0000	0.0000		0.0033	0.0069	0.0079
011	0.0949	0.1285	0.4137	C32	0.1601	0.6207	0.4836
	0.0006	0.0006	0.0005		0.0009	0.0009	0.0009
O21	0.2748	0.2354	0.3687	H312	0.1326	0.6543	0.5340
	0.0007	0.0007	0.0006		0.0077	0.0077	0.0061
N1	0.1315	0.0501	0.5892	H322	0.0983	0.5878	0.4339
	0.0008	0.0008	0.0007		0.0057	0.0073	0.0060
C11	0.2013	0.1632	0.4275	C42	0.2012	0.5402	0.5188
	0.0008	0.0009	0.0008		0.0009	0.0009	0.0008
C21	0.2307	0.1098	0.5160	H412	0.2464	0.5867	0.5768
	0.0009	0.0010	0.0008		0.0071	0.0067	0.0052
H211	0.2952	0.1650	0.5553	H422	0.1269	0.4761	0.5292
	0.0052	0.0065	0.0066		0.0039	0.0053	0.0077
H221	0.2441	0.0533	0.4846	Co3	0.6667	0.3333	0.3368
	0.0087	0.0063	0.0071		0.0000	0.0000	0.0002
C31	0.1282	0.1263	0.6752	013	0.7635	0.3021	0.4224
	0.0009	0.0010	0.0009		0.0006	0.0005	0.0006
H311	0.0930	0.0805	0.7369	O23	0.9456	0.3752	0.4601
	0.0079	0.0070	0.0049		0.0007	0.0007	0.0007
H321	0.2077	0.1777	0.6856	N3	0.7962	0.4172	0.2479
	0.0030	0.0070	0.0080		0.0007	0.0007	0.0006
C41	0.0571	0.1757	0.6403	C13	0.8681	0.3714	0.4084
	0.0009	0.0010	0.0009		0.0009	0.0008	0.0008
H411	0.0365	0.2141	0.6923	C23	0.8931	0.4603	0.3205
	0.0081	0.0077	0.0063		0.0009	0.0009	0.0008
H421	0.0982	0.2344	0.5889	H213	0.9649	0.4968	0.2846
	0.0078	0.0062	0.0063		0.0041	0.0080	0.0065
Co2	0.3333	0.6667	0.3456	H223	0.9006	0.5234	0.3611
	0.0000	0.0000	0.0002		0.0085	0.0058	0.0067
012	0.3738	0.7973	0.2596	C33	0.7826	0.5099	0.1988
	0.0006	0.0006	0.0005		0.0009	0.0009	0.0009
O22	0.3070	0.9112	0.2163	H313	0.7928	0.5570	0.2596
	0.0006	0.0006	0.0006		0.0088	0.0069	0.0049
N2	0.2574	0.7231	0.4356	H323	0.8486	0.5357	0.1332
	0.0007	0.0007	0.0006		0.0086	0.0088	0.0079
C12	0.3064	0.8374	0.2717	C43	0.6608	0.4591	0.1642
	0.0008	0.0009	0.0008		0.0010	0.0009	0.0010
C22	0.2218	0.7855	0.3620	H413	0.6313	0.5098	0.1707
	0.0010	0.0010	0.0008		0.0079	0.0067	0.0085
H212	0.2073	0.8327	0.4085	H423	0.6652	0.4212	0.1015
	0.0082	0.0071	0.0064		0.0095	0.0079	0.0051

realistic than the 0.93 Å value for nickel. The most extreme deviations from the average C–C, C–O, and C–N bond lengths all occurred in the nickel refinement, and the conventional R factors of 0.051 and 0.053, although comparable, also favored the cobalt scattering factors.

The SHELX² program was used for the refinements as before.¹ Residual electron densities were alike for the two refinements and probably reflect errors of measurement only.

 $^{^\}dagger$ Present address: Department of Chemistry, Pretoria Technikon, Pretoria.

Van der Merwe, M. J.; Boeyens, J. C. A.; Hancock, R. D. Inorg. Chem. 1983, 22, 3489.

⁽²⁾ Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: Oxford, U.K., 1985.

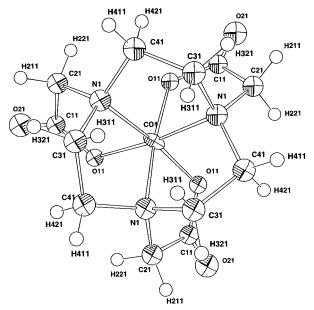


Figure 1. Atomic-numbering scheme for each of the three independent parts of the asymmetric unit.

It is fair to conclude that the previous report was in error and that a crystal of a cobalt rather than a nickel macrocyclic complex was isolated from the crystallization vessel.

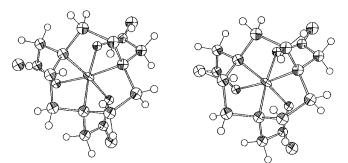


Figure 2. Stereoscopic view of one of the three equivalent molecules in the structure.

A detailed reconstruction of events is no longer feasible, but it seems obvious that a crystal must have grown from cobalt impurities in the nickel salt, over a period of months. It is interesting to note that contemporaneous efforts to crystallize the cobalt TCNTA complex from more concentrated solutions were unsuccessful.

Acknowledgment. We thank Dr. Peter Hey for the EDS analysis.

Supporting Information Available: Listings of atomic coordinates and displacement factors, bond distances and angles, dihedral angles, and X-ray experimental details (12 pages). Ordering information is given on any current masthead page.

IC960605P