Articles

Thermodynamic Properties of the Rare Earth Element Vapor Complexes LnAl₃Cl₁₂ from Ln = La to Ln = Lu

Zhi-Chang Wang* and Lin-Shan Wang

Department of Chemistry, Northeastern University, Shenyang 110006, Liaoning, China

Received June 21. 1996^{\otimes}

Systematic analysis of rare earth element complexes has been carefully carried out in the liquid and solid states but not in the gaseous state because of the lack of a complete set of experimental data for any kind of vapor complexes of all rare earth elements. Here we present experimental quenching results which suggest that the LnAl₃Cl₁₂ complexes are the predominant vapor complexes roughly in the temperature range 588-851 K and pressure range 0.01-0.22 MPa for all of the 14 rare earth elements Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. For these elements, thermodynamic functions of the reactions $LnCl_3(s) + \frac{3}{2}Al_2Cl_6(g)$ = LnAl₃Cl₁₂(g) were calculated from the measurements. Those for the radioelement Pm were smoothly interpolated. The results show Gd divergences from the standard enthalpies and standard entropies from LaAl₃Cl₁₂ to LuAl₃Cl₁₂.

Introduction

Rare earth element complexes in liquid and solid states have been carefully investigated since the early 1950s. The experimental results often show anomalies such as Gd divergence,¹ tetrad,² double-double,³ and inclined W effects.⁴ Until now, however, a similar systematic analysis has not been carried out for rare earth element vapor complexes due to the lack of a complete set of experimental data for all of the rare earth elements.

Rare earth element complexes in the gaseous state are just as important as those in the condensed states. Rare earth element vapor complexes were recently studied in terms of various application possibilities such as laser materials,5-8 luminescent materials for high-intensity discharge lamps,⁹⁻¹¹ and intermediate materials for preparation of anhydrous rare earth elements halides in high purities, ^{12–14} for mutual separation

- (1) Schwarzenbach, G.; Gut, R. Helv. Chim. Acta 1956, 39, 1589.
- (2) Peppard, D. F.; Mason, G. W.; Lewey, S. J. Inorg. Nucl. Chem. 1969, 31, 2271.
- (3) Fidelis, I.; Siekierski, S. J. Inorg. Nucl. Chem. 1971, 33, 3191.
- (4) Sinha, S. P. Helv. Chim. Acta 1975, 58, 1978.
- (5) Jacobs, R. R.; Krupke, W. F.; Hessler, J. P.; Carnall, W. T. Opt. Commun. 1977, 21, 395.
- (6) Jacobs, R. R.; Krupke, W. F. Appl. Phys. Lett. 1978, 32, 31.
- (7) Jacobs, R. R.; Krupke, W. F. Appl. Phys. Lett. 1979, 35, 126.
 (8) Caird, J. A.; Carnall, W. T.; Hessler, J. P.; Williams, C. W. J. Chem. Phys. 1981, 74, 798.
- (9) Liu, C. S.; Zollweg, R. J. J. Chem. Phys. 1974, 60, 2384.
- (10) Hirayama, C.; Castle, P. M.; Liu, C. S.; Zollweg, R. J. J. Illum. Eng. Soc. 1977, 209
- (11) McPhall, D. S.; Hocking, M. G.; Jeffes, J. H. E. J. Mater. Sci. 1985, 20. 1457
- (12) Gunsilius, H.; Urland, W.; Kremer, R. Z. Anorg. Allg. Chem. 1987, 550.35
- (13) Hake, D.; Urland, W. Z. Anorg. Allg. Chem. 1990, 586, 99.
- 14) Hake, D.; Urland, W. Z. Anorg. Allg. Chem. 1992, 613, 45.
- (15) Adachi, G.; Shinozaki, K.; Hirashima, Y.; Machida, K. J. Less-Common Met. 1991, 169, L1.
- (16) Adachi, G.; Murase, K.; Shinozaki, K.; Machida, K. Chem. Lett. 1992, 511.
- (17) Murase, K.; Shinozaki, K.; Machida, K.; Adachi, G. Bull. Chem. Soc. Jpn. 1992, 65, 2724.
- (18) Murase, K.; Shinozaki, K.; Hirashima, Y.; Machida, K.; Adachi, G. J. Alloys Compd. 1993, 198, 31.

of rare earth elements¹⁵⁻²¹ and for recovery of rare earth metals.^{22,23} Moreover, unlike those in the condensed states, molecular interactions in the gaseous state could be neglected, which would make the vapor complexes model systems for studying the nature of the rare earth elements in their complexes.

Thermodynamic functions of the reactions $LnCl_3(s) + (n/2)$ 2)Al₂Cl₆(g) = LnAl_nCl_{3n+3}(g) (where Ln = rare earth elements) have been determined for Ln = Nd with n = 1 by mass spectrometric measurements,²⁴ for Ln = Nd with $n = 3^{25}$ and $n = 4^{25}$ and for Ln = Sm with $n = 3^{26}$ by UV-vis spectrometric measurements, for Ln = Gd with n = 3 by entrainment, quenching, and chemical transport experiments,²⁷ and for Ln = Gd,²⁸ Tm,²⁸ and Yb²⁹ with n = 1-4 by radiochemical analysis. In all the cases, the LnAl₃Cl₁₂ complexes were found to be the predominant vapor complexes in the temperature range 500-900 K for Ln = Nd,²⁵ Sm,²⁶ Gd,^{27,28} Tm,²⁸ and Yb.²⁹ However, Papatheodorou and Kucera²⁶ and Steidl et al.^{28,29} noted that thermodynamic values of the NdAl₃Cl₁₂ complex reported by Øye and Gruen²⁵ were considerably different from those of SmAl₃Cl₁₂,²⁶ GdAl₃Cl₁₂,²⁸ TmAl₃Cl₁₂,²⁸ and YbAl₃Cl₁₂²⁹ reported by themselves.

We³⁰ carried out a thermodynamic study of the same reactions for Ln = Sc and Y at 588-806 K and 0.02-0.22 MPa by quenching experiments and found the LnAl₂Cl₉ complexes to be the predominant vapor complexes. We have tried to extend

- (19) Murase, K.; Machida, K.; Adachi, G. Chem. Lett. 1994, 1297.
- (20) Murase, K.; Ozaki, T.; Machida, K.; Adachi, G. J. Alloys Compd. **1996**, 233, 96.
- (21) Wang, Z.-C.; Yu, J.; Yu, Y.-L. Bull. Chem. Soc. Jpn. 1996, 69, 2369.
- (22) Murase, K.; Machida, K.; Adachi, G. Chem. Lett. 1992, 1555
- (23) Murase, K.; Machida, K.; Adachi, G. J. Alloys Compd. 1995, 217, 218
- (24) Schäfer, H.; Flörke, U. Z. Anorg. Allg. Chem. 1981, 479, 89.
- (25) Øye, H. A.; Gruen, M. J. Am. Chem. Soc. 1969, 91, 2229.
- (26) Papatheodorou, G. N.; Kucera, G. H. Inorg. Chem. 1979, 18, 385.
- (27) Cosandey, M.; Emmenegger, F. P. J. Electrochem. Soc. 1979, 126,
- 1601. (28) Steidl, G.; Bächmann, K.; Dienstbach, F. J. Phys. Chem. 1983, 87, 5010.
- (29) Steidl, G.; Bächmann, K.; Dienstbach, F. Polyhedron 1983, 2, 727.
- (30) Wang, Z.-C.; Wang, L.-S.; Gao, R.-J.; Su, Y. J. Chem. Soc., Faraday Trans. 1996, 92, 1887.

[®] Abstract published in Advance ACS Abstracts, February 1, 1997.

Figure 1. The ampule.

the present work to the LnAl₃Cl₁₂ complexes roughly in the ranges 588–851 K and 0.01–0.22 MPa for the 14 rare earth elements Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu to systematically study the thermodynamic properties of the vapor complexes LnAl₃Cl₁₂ from Ln = La to Ln = Lu.

Experimental Section

The chemicals used in this study were of 98.0% purity for anhydrous AlCl₃, 99.0% purity for anhydrous NH₄Cl, 99.95% purity for CeCl₃. 7H₂O, and more than 99.9% purity for Pr_6O_{11} , Tb₄O₇, and Ln'₂O₃ (where Ln' = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu). Anhydrous AlCl₃ was further purified by careful sublimation under vacuum. The first two anhydrous rare earth element chlorides, $LaCl_3$ and $CeCl_3$, were prepared by reactions of La2O3 and CeCl3·7H2O, respectively, with a large excess of anhydrous NH4Cl in an evacuated quartz tube at about 500-600 K. The residual NH₄Cl was removed by sublimation at 700 K under vacuum. The other 12 anhydrous rare earth element chlorides $Ln*Cl_3$ (here Ln* = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were prepared by the direct reaction of their corresponding oxides with a large excess of AlCl₃ at 573 K in evacuated and sealed quartz tubes. The quartz tubes were then subjected to a temperature gradient from 650 to 450 K, where the rare earth element chlorides Ln*Cl3 were chemically transported via their vapor complexes $Ln^*Al_nCl_{3n+3}$, which resulted in the deposition of Ln*Cl₃ at the middle of the tubes. (The anhydrous LaCl₃ can also be prepared by this method.) This method was designed and reported by Papatheodorou and Kucera²⁶ for preparing SmCl3 and other lanthanide and actinide halides and then used by Steidl et al.^{28,29} for preparing GdCl₃, TmCl₃, and YbCl₃. The residual AlCl₃ coexisting with the rare earth element chlorides was removed by reheating the chlorides in cylindrical alumina tubes under a carrier gas consisting of dry Cl₂ and dry N₂.¹⁵⁻²¹ All anhydrous chemicals were handled in a glovebox containing a dry argon atmosphere with a water vapor level less than 20 ppm.

The complexation equilibrium reactions were carried out in closed ampules made from Pyrex glass with a special shape as shown in Figure 1. This design was similar to those described in the literature.^{27,30,31} An excess of LnCl₃ and less AlCl₃ were placed in the deep ditch of the ampule (see part A in Figure 1), and the ampule was then sealed under vaccum. Four ampules were placed in a graphite container and placed in a furnace, where the temperature was kept constant within ± 0.5 K monitored with a Pt–PtRu₁₀ thermocouple; the maximum temperature difference in the container was always smaller than 1.0 K, so that all the samples were kept at the same temperature during each run. This design is similar to that used in our high-temperature thermodynamic measurements for alloys,^{32–34} molten salt mixtures,^{35,36} and slags.³⁷

The literature showed that solid–liquid phases and solid solutions of AlCl₃–LnCl₃ might exist at temperatures lower than 577 K for NdCl₃,²⁵ 600 K for SmCl₃,²⁶ 550 K for GdCl₃²⁸ and TmCl₃,²⁸ and 500 K for YbCl₃,²⁹ where the activity of LnCl₃ is unknown. The literature^{25,28,29} also showed that the predominant vapor complexes LnAl₃Cl₁₂ may coexist with the secondary complexes LnAl₄Cl₁₅, LnAl₂-Cl₉, and LnAlCl₆ in a different temperature range of 500–900 K for

different rare earth elements, in which case the equilibrium constants of the different complexes had to be calculated by using a complicated procedure,^{27,28} resulting in additional errors. Moreover, our preliminary experiments showed that the samples reacted with Pyrex glass above 900 K and that the glass ampules broke easily during quenching with an equilibrium pressure of >0.25 MPa at high temperatures. On the other hand, the melting point of TbCl₃ is only 855 K. Thus, we chose suitable ranges of 588-851 K and 0.01-0.22 MPa for each of the 14 rare earth element complexes to ensure the complete evaporation of AlCl3 and the existence of pure solid LnCl3 in the deep ditches of the ampules and to avoid the formation of the secondary complexes, so that the activities of LnCl₃(s) were always equal to unity and the equilibrium constants of the predominant vapor complexes LnAl₃Cl₁₂ could easily be determined. Preliminary experiments for the AlCl3-PrCl₃ and AlCl₃-HoCl₃ systems at about 700 K showed that the complexation equilibria might be achieved within 5 h. Therefore, the formal equilibrium period was chosen to be 6 h for each run. After the thermodynamic equilibria had been achieved, the other ends of the ampules (part B in Figure 1) were quickly covered with asbestos and then quenched with water. Thus, the equilibrium gas phases were condensed and the mole numbers of Cl- and Ln3+ in the condensates could then be determined by titration and spectrophotometry, respectively.

Results and Discussion

In all previous publications,^{24–30} only the monolanthanide complexes $LnAl_nCl_{3n+3}$ were assumed to be formed; this means that m = 1 in $Ln_mAl_nCl_{3(m+n)}$. This assumption may reasonably be extended to Ln = La-Lu in this study. Thus, the complexation reactions may generally be expressed as

$$LnCl_3(s) + (n/2)Al_2Cl_6(g) = LnAl_nCl_{3n+3}(g)$$
(1)

with the equilibrium constant

$$K_{\rm p} = (p_{{\rm LnAl}_n{\rm Cl}_{3n+3}}/p^{\circ})/(p_{{\rm Al}_2{\rm Cl}_6}/p^{\circ})^{n/2}$$
(2)

where $p^{\circ} = 0.100$ MPa. In the simplest case, where only one complex is formed, the values of *n*, $K_{\rm p}$, $p_{\rm Al_2Cl_6}$, and $p_{\rm LnAl_nCl_{3n+3}}$ in eq 2 may be calculated by

$$\ln(p_{\text{LnAl}_{n}\text{Cl}_{3n+3}}/p^{\circ}) = \ln K_{\text{p}} + (n/2)\ln(p_{\text{Al}_{1}\text{Cl}_{6}}/p^{\circ}) \qquad (3)$$

$$p_{\mathrm{LnAl}_{n}\mathrm{Cl}_{3n+3}} = RTn_{\mathrm{LnAl}_{n}\mathrm{Cl}_{3n+3}}/V \tag{4}$$

$$p_{\mathrm{Al}_{2}\mathrm{Cl}_{6}} = RTn_{\mathrm{Al}_{2}\mathrm{Cl}_{6}}/V \tag{5}$$

$$p_{\text{AICl}_3} = RTn_{\text{AICl}_3}/V \tag{6}$$

$$n_{\mathrm{Ln}^{3+}} = n_{\mathrm{LnAl}_n \mathrm{Cl}_{3n+3}} \tag{7}$$

- (32) Wang, Z.-C.; Zhang, X.-H.; He, Y.-Z.; Bao, Y.-H. J. Chem. Soc., Faraday Trans. 1988, 84, 4369.
- (33) Wang, Z.-C.; Zhang, X.-H.; He, Y.-Z.; Bao, Y.-H. J. Chem. Thermodyn. 1989, 21, 653.
- (34) Wang, Z.-C.; Zhang, X.-H.; Zhou, J.-K. *Metall. Trans. B* **1992**, *23*, 623.
- (35) Wang, Z.-C.; Tian, Y.-W.; Yu, H.-L.; Zhou, J.-K. *Metall. Trans. B* **1992**, *23*, 666.
- (36) Tian, Y.-W.; Yu, H.-L.; Wang, Z.-C.; Zhang, X.-H.; Zhou, J.-K. J. Chem. Thermodyn. 1993, 25, 711.
- (37) Wang, Z.-C.; Tian, Y.-W.; Yu, H.-L.; Zhang, X.-H.; Zhou, J.-K. *Metall. Mater. Trans. B* **1994**, *25*, 103.

1538 Inorganic Chemistry, Vol. 36, No. 8, 1997

$$n_{\rm Cl^{-}} = 3n_{\rm AlCl_3} + 6n_{\rm Al_2Cl_6} + (3n+3)n_{\rm LnAl_nCl_{3n+3}}$$
(8)

and24-30

$$\log K'_{p,10} = 2 \log(p_{\text{AICl}_3}/p^{\circ'}) - \log(p_{\text{AI}_2\text{Cl}_6}/p^{\circ'})$$
$$= 6.649 - 5.684 \times 10^3 (1/T) - 1.607 \times 10^5 (1/T)^2$$
(9)

where *T* is the reaction temperature, *V* is the volume of the ampule, n_i and p_i are mole number and partial pressure of component i, and $K'_{p,10}$ is the equilibrium constant of the dissociation reaction 10 with a special standard pressure of $p^{\circ'}=$ 0.101 325 MPa.

$$Al_2Cl_6(g) = 2AlCl_3(g) \tag{10}$$

The total pressure may be calculated by

$$P_{\rm T} = p_{\rm AlCl_3} + p_{\rm Al_2Cl_6} + p_{\rm LnAl_nCl_{3n+3}} \tag{11}$$

Here we only report the experimental results for each of the 14 rare earth elements in the temperature range where the $LnAl_3$ - Cl_{12} complexes are predominant. Experimental results in other temperature ranges where $LnAl_3Cl_{12}$ coexist with $LnAl_4Cl_{15}$ or $LnAl_2Cl_9$ will be reported elsewhere.

The first four columns in Tables S1-S14 (Supporting Information) list the volumes of the ampules, total pressures, and partial pressures of Al_2Cl_6 and $LnAl_nCl_{3n+3}$, respectively, at every reaction temperature for the 14 rare earth elements. The fifth column lists the apparent values of the stoichiometric factor *n* determined by a least-squares computation in terms of eq 3. It can be seen that all the apparent values of n are 2.9-3.1 and are independent from temperature. Also, all the plots of $\ln(p_{\text{LnAl}_n\text{Cl}_{3n+3}}/p^\circ)$ vs $\ln(p_{\text{Al}_2\text{Cl}_6}/p^\circ)$ are straight lines as shown in Figure S1 (Supporting Information). Both of these features meet the requirement of eq 3. Thus, LnAl₃Cl₁₂ are the predominant vapor complexes from Ln = La to Ln = Lu to a first approximation. The equilibrium constants for the LnAl₃- Cl_{12} vapor complexes from Ln = La to Ln = Lu could then be calculated by eq 2, and the results are listed in the last column of Tables S1–S14. Figure 2 shows the plots of $R \ln K_p$ vs 1/Tfor the LnAl₃Cl₁₂ complexes of the 14 elements. It can be seen that all of them are also straight lines.

Let ΔG° , ΔH° , ΔS° , and ΔC_{p}° denote the molar Gibbs free energy, molar enthalpy, molar entropy, and molar heat capacity of reaction 1. One may then define ΔG° :

$$\Delta G^{\circ} = -RT \ln K_{\rm p} = \Delta H^{\circ} - T \Delta S^{\circ} \tag{12}$$

Previous publications assumed $\Delta C_p^{\circ} = 0 \text{ J mol}^{-1} \text{ K}^{-1}$ for the vapor complexes NdAl₃Cl₁₂,^{28,38} SmAl₃Cl₁₂,²⁸ GdAl₃Cl₁₂,²⁸ TmAl₃Cl₁₂²⁸, and YbAl₃Cl₁₂.²⁹ This assumption may reasonably be extended to the vapor complexes LnAl₃Cl₁₂ from Ln = La to Ln = Lu in this study. The molar enthalpies and molar entropies of reaction 1 for the vapor complexes LnAl₃Cl₁₂ of the 14 rare earth elements at 298 K can then be determined by a least-squares computation in terms of eq 12 and those of PmAl₃Cl₁₂ may then be smoothly interpolated in terms of atomic number of Ln³⁺. All the results are listed in Table 1 and shown in Figures 3 and 4, respectively.

The probable overall errors of the ΔG° , ΔH° , and ΔS° values should be computed from the statistical errors and the estimated

probable uncertainties.^{39,40} The statistical errors calculated from the equilibrium constant data for $LnAl_3Cl_{12}$ from Ln = La to Ln = Lu are not more than ± 0.2 kJ mol⁻¹ for ΔG° at every temperature, $\pm 0.7 \text{ kJ mol}^{-1}$ for $\Delta H^{\circ}_{T_{m}}$ and $\pm 1.0 \text{ J mol}^{-1} \text{ K}^{-1}$ for $\Delta S^{\circ}_{T_{\rm m}}$, where the subscript $T_{\rm m}$ denotes mean experimental temperature. While the estimated probable uncertainties may arise from absolute errors of the chemical analysis for Ln³⁺ and Cl^{-} as $\pm 0.5\%$, of the volume measurement of the ampule as $\pm 0.5\%$, and of the temperature measurement as ± 2.0 K, these uncertainties together with that inherent in eq 9 and the error from the scatter of the experimental points in Figures S1 and 2 may give rise to the probable overall errors of ± 0.5 kJ mol⁻¹ for ΔG° , $\pm 1.5 \text{ kJ mol}^{-1}$ for $\Delta H^{\circ}_{T_{\text{m}}}$, and $\pm 2.0 \text{ J mol}^{-1} \text{ K}^{-1}$ for $\Delta S^{\circ}_{T_{m}}$ for LnAl₃Cl₁₂ from Ln = La to Ln = Lu, being the same as those for ScAl₂Cl₉ and YAl₂Cl₉.³⁰ Moreover, because no experimental data were available for the heat capacities of the vapor complexes, Schäfer^{24,38} introduced the estimated values of $\Delta C_p^{\circ} = -12$ J mol⁻¹ K⁻¹ for LnAlCl₆, $\Delta C_p^{\circ} = 0$ J mol⁻¹ K⁻¹ for LnAl₃Cl₁₂, and $\Delta C_p^{\circ} = 14$ J mol⁻¹ K⁻¹ for LnAl₄Cl₁₅ and then Steidl et al.^{28,29} introduced $\Delta C_p^{\circ} = -8$ J $mol^{-1} K^{-1}$ for LnAl₂Cl₉. We³⁰ have assumed an absolute error of $\pm 2.0 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for the estimated value of $\Delta C_p^{\circ} = -8 \text{ J}$ mol⁻¹ K⁻¹ for ScAl₂Cl₉ and YAl₂Cl₉. Similarly, we may assume an absolute error of $\pm 1.0 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for the estimated value of $\Delta C_p^{\circ} = 0$ J mol⁻¹ K⁻¹ for LnAl₃Cl₁₂ from Ln = La to Ln = Lu, resulting in the additional probable uncertainties of not more than $\pm 0.5~kJ~mol^{-1}$ for ($\Delta H^{\rm o}{}_{T_{\rm m}}$ – $\Delta H^{\rm o}{}_{298})$ and not more than $\pm 1.0 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for ($\Delta S^{\circ}_{T_{\text{m}}} - \Delta S^{\circ}_{298}$). Therefore, the probable overall errors may be $\pm 2 \text{ kJ mol}^{-1}$ for ΔH°_{298} and $\pm 3 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for ΔS°_{298} , respectively, for LnAl₃Cl₁₂ from Ln = La to Ln = Lu.

The literature thermodynamic data for the LnAl₃Cl₁₂ complexes where $Ln = Nd^{25}$ Sm,²⁶ Gd,^{27,28} Tm,²⁸ and Yb²⁹ determined by using different methods mentioned above are also listed in Table 1, where only the GdAl₃Cl₁₂ data were determined previously by two research groups using different methods. It can be seen that the values of $\Delta H^{\circ}_{298} = 27.3$ kJ mol^{-1} and $\Delta S^{\circ}_{298} = -4.6 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ for SmAl₃Cl₁₂ reported in this study exactly fit those of $\Delta H^{\circ}_{298} = 28.0 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ}_{298} = -4.2 \text{ J mol}^{-1} \text{ K}^{-1}$ reported by Papatheodorou and Kucera.²⁶ It can also be seen that the value of $\Delta H^{\circ}_{298} = 29.0$ kJ mol⁻¹ for GdAl₃Cl₁₂ reported in this study is almost the same as that of $\Delta H^{\circ}_{298} = 30.7 \text{ kJ mol}^{-1}$ reported by Steidl et al.²⁸ and that the value of $\Delta S^{\circ}_{298} = 2.9 \text{ J mol}^{-1} \text{ K}^{-1}$ for GdAl₃Cl₁₂ reported in this study is almost equal to the average values of both $\Delta S^{\circ}_{298} = 11 \text{ J mol}^{-1} \text{ K}^{-1}$ reported by Cosandey and Emmenegger²⁷ and $\Delta S^{\circ}_{298} = -6.7 \text{ J mol}^{-1} \text{ K}^{-1}$ reported by Steidl et al.²⁸ Our measurements also agree reasonably well with those for TmAl₃Cl₁₂ and YbAl₃Cl₁₂ determined by Steidl et al.^{28,29} but not so well with those for NdAl₃Cl₁₂ determined by Øye and Gruen.²⁵ As mentioned above, Papatheodorou and Kucera²⁶ and Steidl et al.^{28,29} have noted the considerable difference between their thermodynamic values for SmAl₃Cl₁₂, GdAl₃Cl₁₂, TmAl₃Cl₁₂, and YbAl₃Cl₁₂ and those for NdAl₃-Cl₁₂ reported by Øye and Gruen.²⁵ Also, they²⁶ suggested that this difference might be attributed either to the experimental uncertainties of the methods used or to the different bondings and structures of the vapor complexes. However, the experiments showed that the overall adsorption spectrum for the vapor complexes LnAl₃Cl₁₂ was similar to those observed in con-

⁽³⁹⁾ Hilpert, K.; Gerads, H.; Kobertz, D.; Miller, M. Ber. Bunsen-Ges. Phys. Chem. 1987, 91, 200.

⁽⁴⁰⁾ Hilpert, K.; Miller, M.; Venugopal, V. Ber. Bunsen-Ges. Phys. Chem. 1991, 95, 474.

⁽³⁸⁾ Schäfer, H. Angew. Chem. 1976, 88, 775.

Figure 2. Plots of R ln K_p vs 1/T for the rare earth element vapor complexes LnAl₃Cl₁₂ from Ln = La to Ln = Lu; $p^\circ = 0.100$ MPa.

Table 1. Thermodynamic Properties of the Reactions $LnCl_3(s) + (n/2)Al_2Cl_6(g) = LnAl_nCl_{3n+3}(g)$

	ΔH°_{298} , kJ mol ⁻¹	ΔS°_{298} , J mol ⁻¹ K ⁻¹	ref
La	47.9 ± 2	7.8 ± 3	this study
Ce	43.6 ± 2	3.6 ± 3	this study
Pr	38.2 ± 2	1.2 ± 3	this study
Nd	34.6 ± 2	-3.3 ± 3	this study
	45.2 ± 1	8.4 ± 1	25
Pm	30.6 ± 2^{a}	-4.0 ± 3^{a}	this study
Sm	27.3 ± 2	-4.6 ± 3	this study
	28.0 ± 0.8	-4.2 ± 0.8	26
Eu	23.5 ± 2	-6.3 ± 3	this study
Gd	29.0 ± 2	2.9 ± 3	this study
	35.8 ± 8	11.0 ± 11	27
	30.7 ± 4	-6.7 ± 8	28
Tb	21.1 ± 2	-3.5 ± 3	this study
Dy	16.6 ± 2	-10.5 ± 3	this study
Ho	16.1 ± 2	-14.9 ± 3	this study
Er	14.8 ± 2	-18.2 ± 3	this study
Tm	18.0 ± 2	-16.7 ± 3	this study
	27.7 ± 4	-9.6 ± 8	28
Yb	22.7 ± 2	-11.1 ± 3	this study
	27.6 ± 4	-11.5 ± 8	29
Lu	26.7 ± 2	-7.4 ± 3	this study

^a Interpolated values.

densed states for each trivalent lanthanide⁴¹ and that the solid molecules DyAl₃Cl₁₂,¹³ HoAl₃Cl₁₂,⁴² LaAl₃Br₁₂,¹⁴ PrAl₃Br₁₂,¹⁴ and NdAl₃Br₁₂¹⁴ all possessed trigonal symmetry, which would unlikely support the second argument. Furthermore, the thermodynamic values for NdAl₃Cl₁₂ are $\Delta G^{\circ}_{800} = 36.8$ kJ mol⁻¹

(42) Hake, D.; Urland, W. Angew. Chem. 1989, 101, 1416.

Figure 3. Series behavior of ΔH°_{298} for the vapor complexes LnAl₃-Cl₁₂ from Ln = La to Ln = Lu: \bullet , this study; \bigcirc and \bullet , literature data.^{25–29} The probable overall error of ΔH°_{298} reported in this study for each of the 14 elements is $\pm 2 \text{ kJ mol}^{-1}$ (only shown at Ln = La), while those reported in the literature are different for Ln = Nd,²⁵ Sm,²⁶ Gd,^{27,28} Tm,²⁸ and Yb.²⁹

and $\Delta G^{\circ}_{600} = 38.9 \text{ kJ mol}^{-1}$ derived from ref 25, while $\Delta G^{\circ}_{800} = 37.2 \text{ kJ mol}^{-1}$ and $\Delta G^{\circ}_{600} = 36.6 \text{ kJ mol}^{-1}$ derived from this paper. Both only show a larger difference at low temperature where a lower pressure ratio of the complex to aluminum chloride may make the spectroscopic investigation rather difficult.⁴¹ Therefore, the experimental uncertainties for NdAl₃-Cl₁₂ at low temperature in ref 25 might be the main cause for the difference in the thermodynamic data reported by Øye and Gruen²⁵ and those reported by all the others.

This study reports the first complete set of property values for the rare earth element vapor complexes from Ln = La to Ln = Lu. As shown in Figures 3 and 4, the values of ΔH°_{298} and ΔS°_{298} for the LnAl₃Cl₁₂ complex decrease from Ln = La

⁽⁴¹⁾ Papatheodorou, G. N. In *Current Topics in Materials Science*; Kaldis, E., Ed.; North Holland Publishing Co.: New York, 1982; Vol. 10, p 249.

Figure 4. Series behavior of ΔS°_{298} for the vapor complexes LnAl₃-Cl₁₂ from Ln = La to Ln = Lu: •, this study; \bigcirc and •, literature data.²⁵⁻²⁹ The probable overall error of ΔS°_{298} reported in this study for each of the 14 elements is ±3 J mol⁻¹ K⁻¹ (only shown at Ln = La), while those reported in the literature are different for Ln = Nd,²⁵ Sm,²⁶ Gd,^{27,28} Tm,²⁸ and Yb.²⁹

to Ln = Eu and then increase from Ln = Eu to Ln = Gd in the left-hand sides and decrease from Ln = Gd to Ln = Er and then increase from Ln = Er to Ln = Lu in the right-hand sides, indicating a significant Gd divergence and two weak minimum points at Ln = Eu and Er. Here the Gd divergence is consistent with the half-filled 4f shell. Moreover, our previous paper³⁰ and this paper suggest that the predominant vapor complexes are $LnAl_2Cl_9$ for Ln = Sc and Y but $LnAl_3Cl_{12}$ from Ln = Lato Ln = Lu in roughly the same temperature and pressure ranges (i.e., 500-800 K and 0.01-0.22 MPa). Sc³⁺ is the smallest rare earth element trivalent ion but Y³⁺ is at least larger than Tm³⁺, Yb³⁺, and Lu³⁺. Therefore, the rare earth element ionic radii are not decisive factors for the stoichiometry of the predominant vapor complexes $LnAl_nCl_{3n+3}$. On the other hand, up to now scientists have had different opinions on the nature of the rare earth element complexes even in the condensed states. The Gd divergence effect in the rare earth element liquid complexes, for example, has been explained by a change either in the 4f electron configuration or in the coordination number.43 Similar to the second explanation, Papatheodorou^{26,41} assumed a 9-fold coordination structure for early lanthanides and a nearoctahedral coordination structure for end lanthanides in the LnAl₃Cl₁₂ vapor complexes. However, recent experiments found the same microstructure for the solid complexes $DyAl_3Cl_{12}$,¹³ HoAl_3Cl_{12},⁴² LaAl_3Br₁₂,¹⁴ PrAl_3Br₁₂,¹⁴ and

NdAl₃Br₁₂.¹⁴ Moreover, both Sc³⁺ and Y³⁺ have no 4f electrons. In general, La^{3+} is also believed to have no 4f electrons. However, Gschneidner⁴⁴ recently assumed La³⁺ to have 4f electron hybridization and explained physical and chemical properties of pure metals, compounds, alloys, and EDTA complexes in aqueous solutions of rare earth elements by using 4f hybridization. It would seem that the 4f hybridization concept is supported by the recent theoretical calculation of Temmerman et al.,45 who found the unoccupied 4f bands in Pr metal to hybridize strongly with the conduction s, p, and d bands. Therefore, 4f hybridization might be accepted as a reasonable explanation both for the difference in the stoichiometry of the predominant vapor complexes $LnAl_2Cl_9$ for Ln = Sc and Y and $LnAl_3Cl_{12}$ from Ln = La to Ln = Lu and for the Gd divergence from the behavior of the vapor complexes LnAl₃Cl₁₂ from Ln = La to Ln = Lu if the same calculation results and direct experimental evidence on the microstructure of Ln = Lacan be obtained. Until now, however, the 4f hybridization concept has not been accepted by many scientists, as pointed out by Gschneidner himself.⁴⁶ One of the reviewers suggested that a structure change in the gas phase of the LnAl₃Cl₁₂ molecules for the heavier lanthanides might be responsible for the differences between the results for Sc^{3+} and Y^{3+} , on the one hand, and the results for Tm^{3+} , Yb^{3+} , and Lu^{3+} , on the other. Therefore, further experimental and theoretical studies on the microstructures of the vapor complexes $LnAl_nCl_{3n+3}$ will be very interesting and will provide a more satisfactory understanding of the mechanisms of the systematics and anomalies in their thermodynamic properties from Ln = Sc to Ln = Lu.

Acknowledgment. This work was supported by the National Natural Science Foundation of China and partly supported by the Doctoral Foundation of the State Educational Committee. The publication costs of this paper were absorbed by the Jin Shu-Liang Commemoration Fund of NU. We thank Y. Su and R.-J. Gao for assistance with the quenching experiments.

Supporting Information Available: Tables S1–S14, listing experimental quenching data for the vapor complexes LnAl_nCl_{3n+3} of the 14 rare earth elements Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and Figure S1, showing plots of $\ln(p_{\text{LnAl}_n\text{Cl}_{3n+3}}/p^\circ)$ vs $\ln(p_{\text{Al}_2\text{Cl}_6}/p^\circ)$ for the same 14 rare earth elements (24 pages). Ordering information is given on any current masthead page.

IC960746R

- (45) Temmerman, W. M.; Szotek, Z.; Winter, W. Phys. Rev. B. 1993, 47, 1184.
- (46) Gschneidner, K. A., Jr. J. Alloys Compd. 1995, 223, 165.

⁽⁴³⁾ Kanno, H. J. Alloys Compd. 1993, 192, 271.

⁽⁴⁴⁾ Gschneidner, K. A., Jr. J. Alloys Compd. 1993, 192, 1.