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Transition metal monoboryl (M-BR2) complexes1 have
received considerable attention due to their role in the metal-
catalyzed hydroboration2 of unsaturated organic substrates.
Recently, the first well-characterized polyboryl complexes
M(BR2)n (n) 2,3) have been isolated,3-5 particularly from the
oxidative addition4,5 of B2(cat)2 (cat) 1,2-O2C6H4) (1) and its
analogues to low-valent unsaturated metal fragments. This is
of importance with regard to the metal-catalyzed diboration of
alkynes5 and alkenes6 and the related formation of ArBpin
(Ar ) aryl, pin ) OCMe2CMe2O) compounds7 from ArX +
B2(pin)2 catalyzed by a Pd system.
In order to study the reactivity of the M-B bond in low-

valent, electron-rich, late metal boryl complexes, and to examine
the reversibility of the B-B bond oxidative addition process,
we sought to prepare a rhodium(I) boryl complex; the only
previous example8 being the poorly characterized species
[(PPh3)3Rh(BBr2)]. Our previous attempts to prepare Rh(I)-
B(cat) compounds via reactions of [(PMe3)4RhH] or [(iPr2PCH2-

CH2PiPr2)Rh(η3-2-Me-allyl)] with HB(cat)1c,9 resulted in the
formation of compounds such as [(PMe3)4Rh]+, [(PMe3)4Rh-
(H)2]+ and the zwitterion [(dippe)Rh(η6-(cat)B(cat))]. We
reasoned that reaction of1 with [(PMe3)4RhMe] (2), however,
would likely lead to [(PMe3)4Rh(B(cat))] (3) via oxidative
addition of the B-B bond followed by rapid reductive elimina-
tion of MeB(cat) (4) (eq 1).

Indeed, when this reaction was conducted using a 1:1 molar
ratio of 1:2 in heptane,3 and 4 were formed rapidly in
essentially quantitative yield10 as evidenced by1H, 11B{1H},
13C{1H}, and31P{1H} NMR spectroscopy. The presence of4
in solution was confirmed additionally by ambient temperature
vacuum transfer of all volatiles to a separate vessel and
subsequent examination of these by GC/MS.
Compound3 is fluxional in solution as evidenced by the

appearance of one doublet (-21.9 ppm,JRh-P ) 137 Hz) in
the room temperature31P{1H} NMR spectrum which displays
a sharp doublet of doublets (-22.0 ppm,JRh-P ) 157,2JP-P )
48 Hz, 3P) and a broader overlapped doublet of quartets (-13.2
ppm, JRh-P ) 91, 2JP-P ) 48 Hz, 1P) at 193 K. The low-
temperature limiting spectrum indicates a trigonal bipyramidal
geometry with the B(cat) ligand occupying an axial site. This
structure was confirmed by single-crystal X-ray diffraction11

(Figure 1, top). That the B(cat) group prefers an axial rather
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than equatorial site suggests12 that it is a strongσ-donor and a
poorπ-acceptor (cf. [(PMe3)4Rh(CtCPh)]);13 if B(cat) were a
strongπ-acceptor, it would be expected to occupy an equatorial
site and to lie perpendicular to the equatorial plane in such a
d8-ML4-B(cat) complex in order to maximize RhfB π-bond-
ing.
Direct reaction of2 with 2 equiv of1 generates the triboryl

complexfac-[(PMe3)3Rh(B(cat))3] (5)14 in 95% yield with loss
of one PMe3 group and formation of4 (eq 2). Reaction of

isolated3 with 1 equiv of1 also gives5 cleanly by31P and1H
NMR. The only previously reported3b tris(boryl) complexes are
[(η6-arene)Ir(B(cat))3] (6) derivatives, one of which was found
to react with 3 equiv of PEt3, yielding fac-[(PEt3)3Ir(B(cat))3]
(7) analogous to5. Compound5 is the first structurally
characterized15 phosphine or Rh containing tris(boryl) complex
(Figure 1, bottom). Thefac-arrangement of the three B(cat)
groups is evidence of their very strongtrans-influence which
is most likely a reflection of their strongσ-donating ability. In
fact, there are, as yet, no well characterized16 bis- or tris(boryl)
complexes in which two boryl groups occupy mutuallytrans-
coordination sites.
In order to examine the possibility that the second B-B bond

oxidative addition (3 f 5) might be reversible,5 was reacted
with one equiv of2 in the presence of one drop (excess) of
PMe3 giving 3 + 4 in quantitative yields (eq 3). The simplest

pathway consistent with eq 3 is the reductive elimination of
B2(cat)2 from 5 to give the transient complex [(PMe3)3Rh-
(B(cat))] which is rapidly trapped by PMe3 forming 1 equiv of
3, the free B2(cat)2 then reacting with2 as in eq 1 to give a
second equivalent of3 and 1 equiv of4.
While studies of the reactivity of3 and 5 with organic

substrates and small molecules are in progress, as are studies
of the reaction of2with other boron compounds, the preliminary
results described herein demonstrate the strongσ-donor ability,
strongtrans-influence, and poorπ-acceptor ability of the B(cat)
group, and the apparent reversibility of the B-B bond oxidative
addition process, and provide a simple route to a novel electron-
rich rhodium(I) boryl complex.
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Figure 1. Top: view of the molecular structure of [(PMe3)4Rh(B(cat))]
(3) with thermal elipsoids at 50% probablility and H atoms omitted
for clarity. Selected bond distances (Å) and angles (deg): Rh(1)-B(1)
2.047(2), Rh(1)-P(1) 2.3049(6), Rh(1)-P(2) 2.2891(6), Rh(1)-P(3)
2.3096(6), Rh(1)-P(4) 2.3404(6), B(1)-Rh(1)-P(1) 87.32(7), B(1)-
Rh(1)-P(2) 83.07(7), B(1)-Rh(1)-P(3) 80.39(7), B(1)-Rh(1)-P(4)
174.74(7). Bottom: view of the molecular structure of [(PMe3)3Rh-
(B(cat))3] (5) as above. Selected bond distances (Å) and angles (deg):
Rh(1)-B(1) 2.055(4), Rh(1)-B(2) 2.053(4), Rh(1)-B(3) 2.061(4), Rh-
(1)-P(1) 2.3913(8), Rh(1)-P(2) 2.3906(9), Rh(1)-P(3) 2.3920(9);
B-Rh-B 79.34(14)-82.05(14), P-Rh-P 94.42(3)-99.69(3).
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