+ +

Synthesis and Characterization of Rhodium(I) Boryl and Rhodium(III) Tris(Boryl) Compounds: Molecular Structures of $[(PMe_3)_4Rh(B(cat))]$ **and** fac **-** $[(PMe_3)_3Rh(B(cat))_3]$ **(cat = 1,2-O₂C₆H₄)**

Chaoyang Dai, Graham Stringer, and Todd B. Marder*

Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Andrew J. Scott, William Clegg, and Nicholas C. Norman*,†

Department of Chemistry, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE1 7RU, England

*Recei*V*ed September 6, 1996*

Transition metal monoboryl $(M-BR_2)$ complexes¹ have received considerable attention due to their role in the metalcatalyzed hydroboration² of unsaturated organic substrates. Recently, the first well-characterized polyboryl complexes $M(BR_2)_n$ ($n = 2,3$) have been isolated,³⁻⁵ particularly from the oxidative addition^{4,5} of B₂(cat)₂ (cat = 1,2-O₂C₆H₄) (1) and its analogues to low-valent unsaturated metal fragments. This is of importance with regard to the metal-catalyzed diboration of alkynes⁵ and alkenes⁶ and the related formation of ArBpin $Ar = \text{aryl}$, pin = OCMe₂CMe₂O) compounds⁷ from ArX + $B_2(pin)_2$ catalyzed by a Pd system.

In order to study the reactivity of the M-B bond in lowvalent, electron-rich, late metal boryl complexes, and to examine the reversibility of the B-B bond oxidative addition process, we sought to prepare a rhodium(I) boryl complex; the only previous example8 being the poorly characterized species $[(PPh₃)₃Rh(BBr₂)]$. Our previous attempts to prepare Rh(I)-B(cat) compounds via reactions of $[(PMe₃)₄RhH]$ or $[(ⁱPr₂PCH₂-$

- (6) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1336.
- (7) Ishiyama, T.; Murata, N.; Miyaura, N. *J. Org. Chem.* **1995**, *60*, 7508.
- (8) Schmid, G. *Chem. Ber.* **1969**, *102*, 191.

 $CH_2P^i Pr_2)Rh(\eta^3-2-Me-allyl)]$ with HB(cat)^{1c,9} resulted in the formation of compounds such as $[(PMe₃)₄Rh]⁺$, $[(PMe₃)₄Rh (H)_2$ ⁺ and the zwitterion [(dippe)Rh(η^6 -(cat)B(cat))]. We reasoned that reaction of **1** with [(PMe3)4RhMe] (**2**), however, would likely lead to $[(PMe₃)₄Rh(B(cat))]$ (3) via oxidative would likely lead to $[(PMe_3)_4$ Kn(B(cat))] (3) Via oxidative
addition of the B-B bond followed by rapid reductive elimina-
tion of MeB(cat) (4) (eq 1).
 $[(PMe_2)_R hMe] + B_2(cat)_2$ tion of MeB(cat) (**4**) (eq 1).

tion of MeB(cat) (4) (eq 1).
\n
$$
[(PMe_{3})_{4}RhMe] + B_{2}(cat)_{2} \frac{1}{-PMe_{3}}
$$
\n
$$
[(PMe_{3})_{3}Rh(Me)(B(cat))_{2}] (1)
$$
\n+PMe₃ (PMe₃). $Rh(B(cat))$

$$
\xrightarrow{-\mathrm{MeB}(\mathrm{cat})(4)} [(PMe_3)_4Rh(B(\mathrm{cat}))]
$$

Indeed, when this reaction was conducted using a 1:1 molar ratio of **1**:**2** in heptane, **3** and **4** were formed rapidly in essentially quantitative yield¹⁰ as evidenced by ¹H, ¹¹B{¹H}, 13C{1H}, and 31P{1H} NMR spectroscopy. The presence of **4** in solution was confirmed additionally by ambient temperature vacuum transfer of all volatiles to a separate vessel and subsequent examination of these by GC/MS.

Compound **3** is fluxional in solution as evidenced by the appearance of one doublet (-21.9 ppm, $J_{\text{Rh-P}} = 137 \text{ Hz}$) in the room temperature ${}^{31}P{^1H}$ NMR spectrum which displays a sharp doublet of doublets (-22.0 ppm, $J_{\text{Rh-P}} = 157, {}^{2}J_{\text{P-P}} =$ 48 Hz, 3P) and a broader overlapped doublet of quartets $(-13.2$ ppm, $J_{\text{Rh-P}} = 91$, $^2J_{\text{P-P}} = 48$ Hz, 1P) at 193 K. The lowtemperature limiting spectrum indicates a trigonal bipyramidal geometry with the B(cat) ligand occupying an axial site. This structure was confirmed by single-crystal X-ray diffraction 11 (Figure 1, top). That the B(cat) group prefers an axial rather

[†] Present address: The University of Bristol, School of Chemistry, Bristol, BS8 1TS, England.

⁽¹⁾ See, for example: (a) Knorr, J. R.; Merola, J. S. *Organometallics* **1990**, *9*, 3008. (b) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.; Williams, I. D.; Marder, T. B. *J. Am. Chem. Soc.* **1990**, *112*, 9399. (c) Westcott, S. A.; Taylor, N. J.; Marder, T. B.; Baker, R. T.; Jones, N. L.; Calabrese, J. C. *J. Chem. Soc., Chem. Commun.* **1991**, 304. (d) For a review of the early literature see: Schmid, G. *Angew. Chem., Int. Ed. Engl.* **1970**, *9*, 819.

⁽²⁾ See, for example: (a) Männing, D.; Nöth, H. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 878. (b) Burgess, K.; Ohlmeyer, M. J. *Chem. Re*V*.* **1991**, *91*, 1179. (c) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. *J. Am. Chem. Soc.* **1992**, *114*, 8863. (d) Burgess, K.; Van der Donk, W. A.; Westcott, S. A.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. *Ibid*. **1992**, *114*, 9350. (e) Musaev, D. G.; Mebel, A. M.; Morokuma, K. *Ibid.* **1994**, *116*, 10693. (f) Burgess, K.; van der Donk, W. A. In *Encyclopedia of Inorganic Chemistry*; King, R. B., Ed.; John Wiley & Sons: Chichester, England, 1994; Vol. 3, 1420 and references therein. (g) Pereira, S.; Srebnik, M. *Organometallics* **1995**, *14*, 3127. (h) He, X.; Hartwig, J. F. *J. Am. Chem. Soc.* **1996**, *118*, 1696.

^{(3) (}a) Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Nguyen, P.; Marder, T. B. *J. Am. Chem. Soc.* **1993**, *115*, 4367. (b) Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. *Ibid*. **1993**, *115*, 9329.

^{(4) (}a) Nguyen, P.; Lesley, G.; Taylor, N. J.; Marder, T. B.; Pickett, N. L.; Clegg, W.; Elsegood, M. R. J.; Norman, N. C. *Inorg. Chem.* **1994**, *33*, 4623. (b) Dai, C.; Stringer, G.; Corrigan, J. F.; Taylor, N. J.; Marder, T. B.; Norman, N. C. *J. Organomet. Chem.* **1996**, *513*, 273. (c) Dai, C.; Stringer, G.; Marder, T. B.; Baker, R. T.; Scott, A. J.; Clegg, W.; Norman, N. C. *Can. J. Chem.*, in press. (d) Hartwig, J. F.; He, X. *Organometallics* **1996**, *15*, 400. (e) Hartwig, J. F.; Xe, H. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 315.

^{(5) (}a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. *J. Am. Chem. Soc.* **1993**, *115*, 11018. (b) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. *Organometallics* **1996**, *15*, 713. (c) Iverson, C. N.; Smith, M. R., III. *J. Am. Chem. Soc.* **1995**, *117*, 4403. (d) *Organometallics*, **1996**, *15*, 5155. (e) Lesley, G.; Nguyen, P.; Taylor, N. J.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. *Organometallics* **1996**, *15*, 5137.

⁽⁹⁾ Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T.; Calabrese, J. C. *Inorg. Chem.* **1993**, *32*, 2175.

⁽¹⁰⁾ NMR spectroscopic data for **3** in C₆D₆: ¹¹B{¹H} δ 49.0 (br); ¹H δ 7.11 (m, 2H), 6.86 (m, 2H), 1.28 (s, 36H); 13C{1H} *δ* 150.6, 120.8, 110.7 (cat), 26.9 (br, $PMe₃$). The isolated yields were 92-99%, but the material always contained a small amount (*ca.* 2% by NMR) of $[(PMe₃)₄Rh(H)]$ due to its considerable moisture sensitivity. For MeB(cat): 11B{1H} *δ* 35.2 (s); 1H *δ* 6.99 (m, 2H), 6.79 (m. 2H), 0.46 (s, 3H); MS-EI m/z 134 (M⁺) with expected isotope pattern.

⁽¹¹⁾ Crystal data for **3**: $C_{18}H_{40}BO_2P_4Rh$, $M_r = 526.10$, monoclinic, $P2_1/c$, $a = 16.7763(12)$ Å, $b = 9.8236(7)$ Å, $c = 16.3714(12)$ Å, $\beta =$ $103.728(2)^\circ$, $V = 2621.0(3)$ \AA^3 , $Z = 4$, $D_{\text{calcd}} = 1.333$ g cm⁻³, $\mu =$ 0.91 mm^{-1} (Mo K α , $\lambda = 0.71073 \text{ Å}$), $F(000) = 1096$, $T = 160 \text{ K}$. Siemens SMART CCD, crystal size $0.50 \times 0.38 \times 0.14$ mm, $\theta_{\text{max}} =$ 26.35°, 14 698 reflections measured, 5342 unique ($R_{\text{int}} = 0.0323$), semiempirical absorption correction (transmission 0.540-0.647). Structure solution by direct methods, refinement on F^2 with weighting $w^{-1} = \sigma^2(F_0^2) + (0.0323P)^2 + 2.0805P$, where $P = (F_0^2 + 2F_c^2)/3$, anisotropic displacement parameters, riding isotropic hydrogen atoms. Final $R_w = {\sum [w(F_o^2 - F_c^2)^2]/\sum [w(F_o^2)^2]}^{1/2} = 0.0746$ for all data, conventional $R = 0.0278$ on *F* values of 4901 reflections with F_0^2 > $2\sigma(F_0^2)$, $S = 1.161$ on F^2 for all data, and 248 parameters. Final difference map between $+0.74$ and -1.11 e \AA^{-3} .

Figure 1. Top: view of the molecular structure of $[(PMe₃)₄Rh(B(cat))]$ (**3**) with thermal elipsoids at 50% probablility and H atoms omitted for clarity. Selected bond distances (A) and angles (deg): $Rh(1)-B(1)$ 2.047(2), Rh(1)-P(1) 2.3049(6), Rh(1)-P(2) 2.2891(6), Rh(1)-P(3) 2.3096(6), Rh(1)-P(4) 2.3404(6), B(1)-Rh(1)-P(1) 87.32(7), B(1)- $Rh(1)-P(2)$ 83.07(7), $B(1)-Rh(1)-P(3)$ 80.39(7), $B(1)-Rh(1)-P(4)$ 174.74(7). Bottom: view of the molecular structure of $[(PMe₃)₃Rh (B(cat))_3$] (**5**) as above. Selected bond distances (\hat{A}) and angles (deg): $Rh(1)-B(1)$ 2.055(4), $Rh(1)-B(2)$ 2.053(4), $Rh(1)-B(3)$ 2.061(4), Rh- $(1)-P(1)$ 2.3913(8), Rh(1)-P(2) 2.3906(9), Rh(1)-P(3) 2.3920(9); B-Rh-B 79.34(14)-82.05(14), P-Rh-P 94.42(3)-99.69(3).

than equatorial site suggests¹² that it is a strong σ -donor and a poor π -acceptor (cf. [(PMe₃)₄Rh(C=CPh)]);¹³ if B(cat) were a strong *π*-acceptor, it would be expected to occupy an equatorial site and to lie perpendicular to the equatorial plane in such a d⁸-ML₄-B(cat) complex in order to maximize Rh→B π-bonding. to the equa

order to max
 $\log 2$ equiv of 1
 $\log 1$
 $\log 14$ if $\log 14$
 $\log 14$
 $\log 14$
 $\log 14$

Direct reaction of **2** with 2 equiv of **1** generates the triboryl complex fac -[(PMe₃)₃Rh(B(cat))₃] (5)¹⁴ in 95% yield with loss of one PMe3 group and formation of **4** (eq 2). Reaction of

$$
\begin{aligned} \left[(PMe_{3})_{4}RhMe \right] &+ B_{2}(cat)_{2} \xrightarrow{-MeB(cat)(4)} \left[(PMe_{3})_{4}Rh(B(cat)) \right] \ (2) \\ & \xrightarrow{-B_{2}(cat)_{2}} fac - \left[(PMe_{3})_{3}Rh(B(cat))_{3} \right] \\ & \xrightarrow{+B_{2}(cat)_{2}} fac - \left[(PMe_{3})_{3}Rh(B(cat))_{3} \right] \\ & \xrightarrow{5} \end{aligned}
$$

Communications *Inorganic Chemistry, Vol. 36, No. 3, 1997* **273**

isolated **3** with 1 equiv of 1 also gives **5** cleanly by ${}^{31}P$ and ${}^{1}H$ NMR. The only previously reported^{3b} tris(boryl) complexes are $[(\eta^6\text{-}arene)Ir(B(cat))_3]$ (6) derivatives, one of which was found to react with 3 equiv of PEt₃, yielding fac -[(PEt₃)₃Ir(B(cat))₃] (**7**) analogous to **5**. Compound **5** is the first structurally characterized15 phosphine or Rh containing tris(boryl) complex (Figure 1, bottom). The *fac*-arrangement of the three B(cat) groups is evidence of their very strong *trans*-influence which is most likely a reflection of their strong *σ*-donating ability. In fact, there are, as yet, no well characterized¹⁶ bis- or tris(boryl) complexes in which two boryl groups occupy mutually *trans*coordination sites.

+ +

In order to examine the possibility that the second B-B bond oxidative addition $(3 \rightarrow 5)$ might be reversible, 5 was reacted with one equiv of **2** in the presence of one drop (excess) of PMe₃ giving $3 + 4$ in quantitative yields (eq 3). The simplest

$$
fac-[(\text{PMe}_3)_3\text{Rh}(\text{B}(\text{cat}))_3] + [(\text{PMe}_3)_4\text{RhMe}] + \text{PMe}_3
$$

5 2 (3)

$$
\rightarrow 2 [(\text{PMe}_3)_4\text{Rh}(\text{B}(\text{cat}))] + \text{MeB}(\text{cat})
$$
3

pathway consistent with eq 3 is the reductive elimination of $B_2(cat)$ from **5** to give the transient complex $[(PMe_3)_3Rh (B(cat))$] which is rapidly trapped by PMe₃ forming 1 equiv of **3**, the free $B_2(cat)_2$ then reacting with **2** as in eq 1 to give a second equivalent of **3** and 1 equiv of **4**.

While studies of the reactivity of **3** and **5** with organic substrates and small molecules are in progress, as are studies of the reaction of **2** with other boron compounds, the preliminary results described herein demonstrate the strong *σ*-donor ability, strong *trans*-influence, and poor *π*-acceptor ability of the B(cat) group, and the apparent reversibility of the $B-B$ bond oxidative addition process, and provide a simple route to a novel electronrich rhodium(I) boryl complex.

Acknowledgment. T.B.M. thanks the NSERC of Canada and N.C.N. and W.C. thank the EPSRC for research support, A.J.S. thanks EPSRC for a studentship, T.B.M., N.C.N., and W.C. thank the NSERC and the Royal Society (London) for Bilateral Exchange Awards, and T.B.M. thanks the University of Newcastle-upon-Tyne for a Senior Visiting Research Fellowship and Johnson Matthey Ltd. and E. I. du Pont de Nemours & Co., Inc., for generous supplies of rhodium salts.

Supporting Information Available: X-ray crystallographic files in CIF format for compounds **3** and **5**. Access information is given on any current masthead page.

IC9611047

- (15) Crystal data for 5: $C_{27}H_{39}B_{3}O_{6}P_{3}Rh \cdot 0.5C_{7}H_{8}$, $M_{r} = 733.90$ triclinic, $P\overline{1}$, *a* = 9.4861(9) Å, *b* = 11.5356(11) Å, *c* = 17.8907(18) Å, α = $73.055(3)^\circ$, $\beta = 83.211(2)^\circ$, $\gamma = 68.390(2)^\circ$, $V = 1741.0(3)$ Å³, $Z =$ 2, *D*_{calcd} = 1.400 g cm⁻³, $μ = 0.668$ mm⁻¹ (Mo Kα, $λ = 0.710$ 73 Å), $F(000) = 758$, $T = 160$ K. Procedures as for **3**, crystal size 0.48 \times 0.40 \times 0.38 mm, $\theta_{\text{max}} = 25.74^{\circ}$, 7712 reflections measured, 5643 unique ($R_{\text{int}} = 0.0354$), transmission 0.672-0.936. Weighting *w* $= \sigma^2 (F_0^2) + (0.0632P)^2 + 2.1542P$, geometrical and displacement parameter restraints on toluene molecule disordered over inversion center. Final $R_w = 0.1023$ for all data, conventional $R = 0.0375$ on *F* values of 5433 reflections with $F_0^2 > 2\sigma(F_0^2)$, $S = 1.050$ for all data, 416 parameters, and 164 restraints. Final difference map between $+0.96$ and -1.22 e \rm{A}^{-3}
- (16) For some early work on Co-bis(boryl) complexes see: Schmid, G.; Nöth, H. Chem. Ber. 1967, 100, 2899.

⁽¹²⁾ Rossi, A. R.; Hoffmann, R. *Inorg. Chem.* **1975**, *14*, 2899. Steric arguments also favor the observed geometry, but as none of the ligands is large, electronic factors likely predominate.

⁽¹³⁾ Zargarian, D.; Chow, P.; Taylor, N. J.; Marder, T. B. *J. Chem. Soc., Chem. Commun.* **1989**, 540.

⁽¹⁴⁾ NMR spectroscopic data for (5) in C_6D_6 : ¹¹B{¹H} δ 46.8 (br); ³¹P-{1H} *δ* -26.2 (br), 1H *δ* 6.98 (m, 2H), 6.73 (m, 2H), 1.19 (dd, ⁴*J*Rh-^H $= 1.8$, ${}^{3}J_{\rm P-H} = 3.6$ Hz, 9H); ${}^{13}C\{{}^{1}H\}$ δ 150.4, 120.9, 111.2 (cat), 22.5 (dd, ${}^{3}J_{\text{Rh-C}} = 8.5$, ${}^{2}J_{\text{P-C}} = 18.7$ Hz, PMe₃). Anal. Calcd for C27H39B3O6P3Rh: C, 47.15; H, 5.71. Found: C, 47.80; H, 5.88.