Synthesis, Structure, and Reactions of Triphenylphosphine *N***-((Perfluoroalkyl)sulfonyl)imine and Triphenylarsine** *N***-((Perfluoroalkyl)sulfonyl)imine**

Shizheng Zhu,* Bin Xu, Chaoyue Qin, and Guolin Xu

Laboratory of Organic Fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 FengLin Lu, Shanghai 200032, China

*Recei*V*ed September 18, 1996*

Introduction

Phosphine imine compounds were first prepared via the reaction of tertiary phosphines with organic azide 70 years ago.1 To date, various types of iminophosphoranes have been prepared. For example, triphenylphosphine *N*-tosylimine2 was synthesized from *N*-sulfinyl-*p*-toluenesulfonamide, TsNSO, and triphenylphosphine sulfide, $Ph_3P=S$, or triphenylphosphine phenylimine, and the triphenylarsine *N*-tosylimine3 could also be prepared from Chloramine-T and triphenylarsine (eqs 1 and 2).

$$
TsNSO + Ph3PS \rightarrow TsN = PPh3 + S2O \t(1)
$$

$$
RSO2NCINA + PR'3 \rightarrow RSO2N=PR'3 + NaCl (2)
$$

The synthesis of fluorine-containing analogues has attracted much more attention in recent years. The presence of a fluorine atom leads to profound changes of physical and biological properties of the molecules (p*K*a, lipoidal solubility, etc.).

The syntheses of *N*-(perfluoroalkyl)sulfonyl-substituted stibine imine, $R_fSO_2N=SbPh_3$ ⁴ and bismuthine imine, $R_fSO_2N=BiPh_3$ ⁵ were reported, and it was found that as $CF_3SO_2N =$ is a strong electron-withdrawing group,^{6,7} the introduction of R_fSO_2N into molecules can change their chemical properties prominently (eqs 3 and 4).

$$
CF3SO2N3 + SbPh3 \rightarrow CF3SO2N = SbPh3 + N2 (3)
$$

$$
CF3SO2N(SiMe3)2 + Ph3BiF2 \rightarrow CF3SO2N=BiPh3 + 2Me3SiF (4)
$$

Results and Discussion

In the present paper, we described a new method for the m are present paper, we described a new method for the
preparation of *N*-(perfluoroalkyl)sulfonyl-substituted phosphine
imine and arsine imine, $R_fSO_2N=EPh_3$ (E: P, As). These two
imines were obtained from the reactions imine and arsine imine, $R_fSO_2N=EPh_3$ (E: P, As). These two imines were obtained from the reactions of *N*,*N*-dichloroperfluoroalkanesulfonamides $R_fSO_2NCl_2^8$ with triphenylphosphine or triphenylarsine in the presence of zinc powder (eq 5).

$$
{}^{EPh_3} + R_6SO_2NCl_2 \xrightarrow[C_6H_6 \text{ or } Et_2O]{}^{Zn} R_6SO_2N = EPh_3
$$
 (5)
1 2 3 (72–78%)

$$
R_f: I(CF_2)_2O(CF_2)_2 (a), H(CF_2)_2O(CF_2)_2 (b),
$$

$$
C_AF_0 (c). E: P, As.
$$

- (1) Staudinger, H.; Meyer, J. *Hel*V*. Chim. Acta* **1919**, *2*, 635.
- (2) Senning, A. *Acta Chem. Scand.* **1965**, *19*, 1755.
- (3) Mann, F. G.; Chaplin, E. J. *J. Chem. Soc.* **1937**, 527.
- (4) Radchenko, O. A.; Nazaretyan, V. P.; Yagupolskii, L. M. *Zh. Obshch. Khim.* **1976**, *46*, 565.
- (5) Pasenok, S. V.; Kirij, N. V.; Yagupolskii, Y. L.; Nanmann, D.; Tyrra, W. *J. Fluorine Chem.* **1993**, *63*, 179.

These reactions proceeded readily in dry benzene or absolute ether at room temperature, and the reaction was monitored by ¹⁹F NMR. The chemical shift of CF_2 in the starting material $(-CF₂SO₂NCl₂)$ is around -106.6 ppm, whereas in the product $-CF_2SO_2N=$ P, it is at -116.6 ppm.

Generally, after stirring for about 5 h, the starting R_fSO_2 -NCl₂ was all consumed. After removal of the zinc chloride by filtration, the filtrate was evaporated to dryness. The residue was recrystallized from CH₃CN to give pure product 3 in 72–78% yield. Treatment of 2 with PB filtration, the filtrate was evaporated to dryness. The residue was recrystallized from CH3CN to give pure product **3** in 72- 78% yield. Treatment of 2 with PBu₃ gave a similar result (eq 6).

$$
PBu3 + I(CF2)2O(CF2)2SO2NCl2 \frac{Zn}{C6H6 or Et2O}
$$

$$
I(CF2)2O(CF2)2SO2N=PBu3 (6)
$$

$$
4 (80%)
$$

All of the products (except **4**, which is a colorless liquid) are white solids and stable in dry air (see Table 1).

However, compounds **3** decomposed to the corresponding perfluoroalkanesulfonamides and triphenylphosphine oxide or triphenylarsine oxide when dissolved in solvents such as benzene, ether, and acetonitrile or exposed in air (eq 7). te solids and stable in dry air (se

lowever, compounds 3 decompo

luoroalkanesulfonamides and trip

nenylarsine oxide when dissolv

zene, ether, and acetonitrile or ex

SO₂N=EPh₃ + H₂O $\frac{C_6H_6 \text{ or } Et_2O}{\text{ or } CH_2CN$

$$
R_f SO_2 N = E Ph_3 + H_2 O \xrightarrow[or CH_3 CN]{C_6 H_6 \text{ or } H_2 O} R_f SO_2 NH_2 + Ph_3 E = O \tag{7}
$$

As monitored by 19F NMR spectroscopy, nearly 60% of **3a** or **3d** decomposed after 24 h. This is similar to the compound $Ph_3Bi=NSO_2R_f$; for this compound the literature⁵ gave only elemental analysis, 1H NMR, and 19F NMR. The author pointed out that their 13C NMR spectra could not be obtained because the samples decomposed in solvent during the time required to obtain spectra. Perhaps for the same reason, only the elemental analysis and IR spectrum were given for the compound $CF₃SO₂N=SbPh₃$.⁶ In our case both phosphine imine and arsine imine could be recrystallized from dry $C_6H_6-CH_3CN$ in a drybox, and their structures are fully confirmed by microanalysis, IR, MS, 1H NMR, 19F NMR, 13C NMR, and X-ray diffraction analysis. The 13C NMR spectra of **3a** and **3d** were obtained in a dry N2 atmosphere, and the 13C NMR spectrum of **3d** showed that a small amount of $Ph₃As=O$ is formed during the scanning period. The X-ray structure analyses of **3a** and **3d** are shown in Figures 1 and 2, respectively. From the X-ray diffraction analysis, both the N-P bond (1.609 Å) and the N-As bond (1.772 Å) have single-bond character. Comparing a similar compound, in triphenylstibonium bis(phenylsulfonyl)methylide, $Ph_3Sb=C(SO_2Ph)_2$, the Sb-O distance is 2.844 Å (0.5 Å shorter than the sum of the van der Waals radii), indicating some interaction between the Sb atom and the O atom.⁹

It is clear that the bond lengths of both $N-P$ and $N-As$ are longer than the normal N-P and N-As double bonds. The

- (6) Yagupolskii, L. M. *J. Fluorine Chem.* **1987**, *36*, 1.
- (7) Yagupolskii, L. M.; Popov, V. I.; Pavlenko, N. V.; Maletina, I. I.; Mironova, A. A.; Gavrilova, R. Yu.; Orda, V. V. *Zh. Org. Khim.* **1986**, *22*, 2169.
- (8) Zhu, S. Z *J. Chem. Soc., Perkin Trans. 1* **1994**, 2077.
- (9) Ferguson, G.; Lloyd, D. *J. Chem. Res.* **1987**, 32.

Table 1. Compounds 3 and 4 $(R_fSO_2N=EV_3)$

	R_f	EY_3	mp or bp $(^{\circ}C)$	yield ^{<i>a</i>} $(\%)$
3a	$I(CF_2)_2O(CF_2)_2$	PPh ₃	$88 - 90$	78
3 _b	C_4F_9	AsPh ₃	$76 - 78$	74
3c	$H(CF_2)$, $O(CF_2)$,	PPh_3	$76 - 78$	72
3d	$I(CF_2)_2O(CF_2)_2$	AsPh ₃	$114 - 116$	77
4	$I(CF_2)$, $O(CF_2)$,	PBu_3	$130/2$ Torr	80

^a Yields based on **2**.

Figure 1. ORTEP drawing of R_fSO₂N=PPh₃. Selected bond lengths (A) and bond angles (deg): $S-O(2)$, 1.421; $S-O(3)$, 1.483; $S-N$, 1.543; P-N, 1.609; N-S-C(4), 105.3; S-N-P 128.9.

Figure 2. ORTEP drawing of $R_fSO_2N=AsPh_3$. Selected bond lengths (A) and bond angles (deg): $S-O(2)$, 1.437; $S-O(3)$, 1.424; $S-N$, 1.546; As-N, 1.772; N-S-C(19), 104.5; S-N-As, 119.4.

distances between the P and O atoms (in compound **3a**) and between the As and O atoms (in compound **3d**) are 3.19 and 3.95 Å, and 3.05 and 4.04 Å, respectively; all are longer than the sum of the radii of the P atom (1.06 Å) or the As atom (1.20 Å) and O atom (0.73 Å) . (See Tables 2 and Table 3). These data showed that no similar interaction occurred between P-O and As-O in compound **3**.

As mentioned above, **3** are easily hydrolyzed to the corresponding $R_fSO_2NH_2$ and $Ph_3E=O$. However, when **3** are treated with methanol, the product is not the expected R_fSO_2NHMe (eq 8).

 $R_1SO_2N = EPh_3 \xrightarrow{CH_3OH}$ \rightarrow R(SO₂NHMe CH3OH
R₁SO₂NH₂ + CH₃OCH₃ + Ph₃E=O RfSO2NH-E(OMe)Ph3-

Table 2. Crystallographic Data for the Structure Study of

ICF₂CF₂OCF₂CF₂SO₂N=PPh₃, 3a and ICF₂CF₂OCF₂CF₂SO₂N=AsPh₃ 3d

	3a	3d
formula	$C_{22}H_{15}F_8NO_3PS$	$C_{22}H_{15}AsF_8INO_3S$
fw	683.29	727.24
Z	2	4
D (calcd) g/cm ³	1.792	1.873
cryst syst	triclinic	monoclinic
space group	$P1$ (No. 2)	$P2_1/c$ (No. 14)
$a(\AA)$	10.797(3)	14.800(5)
b(A)	14.412(2)	9.348(3)
c(A)	9.328(2)	19.091(2)
α (deg)	99.53(2)	
β (deg)	111.90	102.44(2)
γ (deg)	102.37	
$V(A^3)$	1266.4(5)	2579(1)
$\lambda(Mo\ K\alpha)$ (Å)	0.710.69	0.710.69
F(000)	668.00	1408.00
temp $(^{\circ}C)$	20.0	20.0
R^a	0.036	0.039
R_w^a	0.055	0.050
$\mu(Mo\ K\alpha)$ (cm ⁻¹)	14.95	26.80

 ${}^{a}R = F_{0} - F_{c}/F_{o}; R_{w} = [(F_{o} - F_{c})^{2}/wF_{o}^{2}]^{1/2}.$

Table 3. Selected Bond Distances (Å) and Bond Angles (deg) for **3a** and **3d**

3a		3d					
Bond Distances							
$P(1) - N(1)$	1.609(3)	$As(1)-N(1)$	1.772(5)				
$P(1) - C(5)$	1.792(4)	$As(1)-C(1)$	1.915(6)				
$P(1) - C(11)$	1.804(4)	$As(1)-C(7)$	1.908(6)				
$P(1) - C(17)$	1.795(3)	$As(1) - C(18)$	1.908(7)				
$N(1)-S(1)$	1.543(3)	$N(1)-S(1)$	1.546(6)				
$S(1) - O(2)$	1.421(3)	$S(1) - O(2)$	1.437(5)				
$S(1) - O(3)$	1.438(3)	$S(1) - O(1)$	1.424(5)				
Bond Angles							
$C(5)-P(1)-C(11)$	108.1(2)	$C(1) - As(1) - N(1)$	102.5(3)				
$C(11)-P(1)-C(17)$	108.1(2)	$C(18)-As(1)-C(7)$	109.6(3)				
$C(17) - P(1) - N(1)$	114.2(2)	$C(7)-As(1)-N(1)$	115.8(3)				
$C(17)-P(1)-C(5)$	109.6(2)	$C(1) - As(1) - C(18)$	107.4(3)				
$O(2) - S(1) - N(1)$	110.5(2)	$O(2)-S(1)-N(1)$	110.4(3)				
$O(3)-S(1)-N(1)$	115.2(2)	$O(3)-S(1)-N(1)$	114.5(3)				
$S(1)-N(1)-P(1)$	128.9(2)	$S(1) - N(1) - As(1)$	119.4(3)				

The (fluoroalkyl)sulfonyl-substituted triphenylphosphine imine $R_fCH_2CH_2N=PPh_3$ reacted with CS_2 at normal temperature to give $R_fSO_2N=C=S^{10}$ But in our case, compounds **3** were stable when refluxed in excess CS_2 or reacted in a sealed tube. The reason may due to the strong electron-withdrawing group R_fSO_2 , which decreased the negative charge on the N atom and reduced its reactivity.

Further chemical translations of these compounds **3** are now under investigation.

Experimental Section

The melting and boiling points reported are uncorrected. Solvents were purified and dried before use. ¹H NMR (60 MHz) and ¹³C NMR and 19F NMR (54.6 MHz) spectra were recorded on a Varian-360L instrument or a Bruker AM-300 spectrometer with TMS or TFA (δ_{CFCI3}) $= \delta_{\text{TFA}} + 76.6$, and with upfield negative) as an internal or external standard, respectively. X-ray structure analysis were performed on a Rigaku AFC7R diffractometer. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Lower resolution mass spectra were obtained on a Finnigan GC-MS 4021 instrument.

Preparation of *N***-(Perfluoroalkyl)sulfonyl-Substituted Triphenylphosphine Imine and Arsine Imine.** *N*,*N*-Dichloroperfluoroalkane-

⁽¹⁰⁾ Trabelsi, E.; Bollens, E.; Jouani, M. A.; Gaysinki, M.; Szoenyi, F.; Cambon, A. *Phosphorus, Sulfur Silicon Relat. Elem.* **1994**, *90 (*1-4), 185.

sulfonamide **2a** (2.4 g, 4.89 mmol) was added dropwise into a 25 mL flask containing a solution of triphenylphosphine (1.3 g, 4.96 mmol) and benzene (10 mL) in the presence of zinc powder (0.4 g, 6.15 mmol) at room temperature. After 0.5 h of stirring, zinc chloride was filtered out and the filtrate was evaporated to dryness. The crude product was recrystallized from dry CH3CN (10 mL) at room temperature to give pure **3a** (2.6 g, yield 78%). Similarly, compounds **3b**-**d** were prepared.

 $I(CF_2)_2O(CF_2)_2SO_2N=PPh_3$, 3a. δ_H (ppm) (CDCl₃, TMS): 7.13 (m, C₆H₅). δ_F (ppm): -65.6 (ICF₂, s), -81.1 (OCF₂, m), -84.9 (CF₂O, s), -116.9 (CF₂S, s). δ _C (ppm): 133.6 (d, 4-C, ⁴J_{P-C} = 3 Hz), 133.2 (d, 2-C, ${}^{2}J_{P-C} = 11$ Hz), 129.1 (d, 3-C, ${}^{3}J_{P-C} = 13$ Hz), 126.3 (d, 1-C, $1J_{P-C} = 105$ Hz), 116.9 (tt, CF₂), 114.9 (tt, CF₂), 112.1 (tt, CF₂), 89.6 (tt, ICF₂) (¹J_{F-C} = 320 Hz, ²J_{F-C} = 42 Hz). MS (*m*/*e*, %): 684 $(M^+H, 0.63)$, 683 $(M^+, 0.40)$, 600 $(M^+ - C_6H_5 - O, 0.50)$, 556 $(M^+$ $-$ I, 2.03), 341 (M⁺H $-$ IR_f, 28.48), 340 (Ph₃PNSO₂⁺, 100.00), 324 $(Ph₃PNSO⁺, 5.35), 277 (IC₂F₄⁺, 2.69), 262 (Ph₃P⁺, 0.66), 122 (PhPN⁺,$ 5.86).

 $C_4F_9SO_2N=AsPh_3$, 3b. δ_H (ppm) (CDCl₃, TMS): 7.50 (m, C₆H₅). *δ*_F (ppm): -81.1 (CF₃, s), -103.1 (CF₂, t), -121.3 (CF₂, s), -126.3 (CF₂, s). MS (m/e , %): 604 (M⁺H, 0.48), 584 (M⁺ – F, 0.51), 520 $(M^+ - F - SO_2, 0.54)$, 385 $(M^+H - C_4F_9, 21.14)$, 384 $(M^+ - C_4F_9,$ 100.00), 368 (M⁺ - C₄F₉ - O, 3.08), 306 (AsPh₃⁺, 0.84), 229 (AsPh₂⁺, 5.86), 154 (2Ph⁺, 9.52), 152 (AsPh⁺, 25.39), 80 (SO₃⁺, 26.56), 69 $(CF_3^+$, 20.31), 64 (SO_2^+ , 9.13). Elemental anal. for $C_{22}H_{15}AsF_9NO_2S$. Required: C, 43.78; H, 2.49; N, 2.32. Found: C, 43.49; H, 2.35; N, 2.32.

H(CF_2)₂O(CF_2)₂SO₂N=PPh₃, 3c. δ _H (ppm) (CDCl₃, TMS): 7.35 (m, C₆H₅), 5.90 (t, HCF₂). δ _F (ppm): -80.6 (OCF₂, t), -88.4 (CF₂O, s), -116.6 (SCF₂, s), -127.6 (HCF₂, d). MS (m/e, %): 558 (M⁺H, 1.61), 538 (M⁺ - F, 0.50), 277 (M⁺ - R_fSO₂, 100.00), 341 (M⁺ - R_f, 11.07), 340 (M^+ – HR_f, 48.96), 324 (M^+ – HR_f – O, 2.80), 262 $(PPh₃⁺, 0.83), 201 (HC₄F₈⁺, 27.50), 185 (PPh₂⁺, 7.59), 154 (2Ph⁺, 5.82),$ 119 ($C_2F_5^+$, 10.37), 108 (PPh⁺, 1.23), 101 (HC₂F₄⁺, 18.75). Elemental anal. for $C_{22}H_{16}F_8NO_3PS$. Required: C, 47.40; H, 2.87; N, 2.51. Found: C, 47.13; H, 2.55; N, 2.31.

I(CF₂)₂O(CF₂)₂SO₂N=AsPh₃, 3d. *δ*_H (ppm) (CDCl₃, TMS): 7.60 (m, C₆H₅). δ_F (ppm): -63.2 (ICF₂, s), -80.2 (OCF₂, m), -84.4 (CF₂O,

s), -114.9 (CF₂S, s). δ _C (ppm): 132.7 (s, 4-C), 132.3 (s, 2-C), 129.9 $(s, 3-C)$, 127.4 $(s, 1-C)$, 116.9 (tt, CF_2) , 114.9 (tt, CF_2) , 112.1 (tt, CF_2) , 89.6 (tt, ICF₂) (¹J_{F-C} = 320 Hz, ²J_{F-C} = 42 Hz). MS (*m*/*e*, %): 728 (M⁺H, 0.36), 600 (M⁺ - I, 1.13), 572 (M⁺H - 2 × Ph, 0.2), 511 (M⁺ $-$ R_f, 0.3), 385 (M⁺H - IR_f, 23.01), 384 (M⁺ - IR_f, 100.00), 306 $(AsPh₃⁺, 0.96), 227 (IC₂F₄⁺, 20.39), 177 (ICF₂⁺, 3.59), 154 (2 \times Ph⁺,$ 7.86), 64 $(SO₂⁺, 9.34)$.

I(CF₂)₂O(CF₂)₂SO₂N=PBu₃, 4. δ _H (ppm) (CDCl₃, TMS): 1.0 (3 \times CH₃, m), 1.6 (9 \times CH₂, m). δ_F (ppm): -64.6 (ICF₂, s), -79.6 (OCF2, s), -83.6 (CF2O, s), -114.6 (CF2S, s). MS (*m*/*e*, %): 624 $(M^+H, 20.69)$, 594 $(M^+ - C_2H_5, 8.98)$, 552 $(M^+ - C_5H_{11}, 5.39)$, 497 $(M^+H - I, 21.35), 440 (M^+H - I - Bu, 15.21), 412 (M^+H - I C_6H_{13}$, 2.79), 280 (⁺N=PBu₃, 100.00), 227 (IC₂F₄⁺, 31.63), 219 (C₄F₉⁺, 51.06), 88 (PBu⁺, 2.32), 80(SO_3 ⁺, 42.18), 64 (SO_2 ⁺, 57.50), 57 (Bu⁺, 6.72). Elemental anal. for C16H27F8INO3PS. Required: C, 30.82; H, 4.33; N, 2.25. Found: C, 30.51; H, 4.56; N, 2.30.

Reaction of 3a with CS₂. Method A. To a 10 mL flask containing $3a$ (1.5 g, 2.2 mmol) was added excess CS_2 in one portion. After 2 days of refluxing, excess CS_2 was removed. The residue was detected by MS and NMR as starting material. **Method B.** The mixture of **3** and excess CS_2 sealed in a tube was heated to 80 °C for 2 days. After removal of the excess CS_2 , the starting material was recovered.

Reaction of 3a with Methanol. Stirring a mixture of **3a** (1.5 g, 2.2 mmol) and anhydrous methanol (5 mL) in a 10 mL flask at 80 °C for 8 h gave the corresponding $R_fSO_2NH_2$ (0.88 g, 95%) and P(O)Ph₃. The evolved gas was determined by GC -MS to be $CH₃OCH₃$.

Acknowledgment. The authors thank the National Natural Science Foundation of China (NNSFC) (No. 29632003 and No. 29672041) for financial support.

Supporting Information Available: Tables of crystal data, atomic coordinates, bond lengths and angles, anisotropic displacement parameters, torsion angles, and least squares planes of compound **3a** (15 pages). Ordering information is given on any current masthead page.

IC9611610