Synthesis, Structure, and Reactivity of Ruthenium and Osmium Nitrido Complexes with 1,2-Benzenedithiolate Ligands: N- versus S-Alkylation

Dieter Sellmann,* Michael W. Wemple, Wolfgang Donaubauer, and Frank W. Heinemann

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Received October 10, 1996[⊗]

The reactivity of the nitrido complexes $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1) and $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2) $(C_6H_4)_2$ $(SH)_2 = 1,2$ -benzenedithiol) toward electrophiles, R^+ (R = Me, Et, Ph₃C), is described. While 1 yielded intractable mixtures of products, 2 could be cleanly alkylated. The synthesis of 1 has been reported previously (Z. Naturforsch. 1987, 42B, 341); complex 2 can be synthesized by treating (NⁿBu₄)[Os(N)Cl₄] with deprotonated 1,2-benzenedithiol in acetone/MeOH at 0 °C. Complexes 1 and 2 are isostructural and crystallize in the orthorhombic space group $Pna2_1, Z = 8$, with a = 36.881(6) Å, b = 9.402(2) Å, and c = 17.652(2) Å for 1 and a = 37.042(4) Å, b = 9.402(2) Å, and c = 17.652(2) Å for 1 and a = 37.042(4) Å, b = 10009.375(2) Å, and c = 17.671(2) Å for 2. The anions of both compounds consist of a five-coordinate mononuclear center with a distorted square-pyramidal geometry; a terminal nitrido ligand occupies the apical position and two chelating $(S_2C_6H_4)^{2-1}$ ligands form the basal plane. Treatment of 2 with R₃OBF₄ in CH₂Cl₂ yields $[Os(N)(S_2C_6H_4)(SC_6H_4SR)]$ (R = Me, 3; R = Et, 4) where one thiolate donor is alkylated. Alkylation of the sulfur of the 1,2-benzenedithiolate ligand was confirmed by NMR spectroscopy and X-ray crystallography (for 3). Complex 3·CH₂Cl₂ crystallizes in the orthorhombic space group $P2_12_12_1$, Z = 4, with a = 8.551(1) Å, b =10.772(2) Å, and c = 19.716(3) Å. In contrast, treatment of 2 with Ph₃CPF₆ in CH₂Cl₂ yields [Os(NCPh₃)- $(S_2C_6H_4)_2$ (5), whose ¹H and ¹³C NMR spectra indicate that the terminal nitride is the site of electrophilic attack. X-ray crystallography further confirms the alkylation at the nitrogen atom; complex 5 crystallizes in the triclinic space group $P\bar{1}, Z = 2$, with a = 9.338(8) Å, b = 10.001(3) Å, c = 16.280(6) Å, $\alpha = 75.88(3)^{\circ}, \beta = 74.29(6)^{\circ}, \beta = 74.29(6$ and $\gamma = 69.55(5)^{\circ}$.

Introduction

Transition metal complexes with terminal nitrido ligands¹ are of interest as intermediates in nitrogen fixation² and for their involvement in nitrogen atom transfer reactions to both inorganic³ and organic⁴ substrates. Nitrido complexes have also been used as precursors for the formation of unusual metal– nitrogen bridges such as Re–N–Ga and Os–N–Ag⁵ and for

- (2) (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861-863. (b) Leigh, G. H. Science 1995, 268, 827-828. (c) Ishitani, O.; White, P. S.; Meyer, T. J. Inorg. Chem. 1996, 35, 2167-2168. (d) Coia, G. M.; White, P. S.; Meyer, T. J.; Wink, D. A.; Keefer, L. K.; Davis, W. M. J. Am. Chem. Soc. 1994, 116, 3649-3650. (e) Ware, D. C.; Taube, H. Inorg. Chem. 1991, 30, 4605-4610. (f) Pipes, D. W.; Bakir, M.; Vitols, S. E.; Hodgson, D. J.; Meyer, T. J. J. Am. Chem. Soc. 1990, 112, 5507-5514. (g) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589-625. (h) Kondo, M.; Oku, H.; Ueyama, N.; Nakamura, A. Bull. Chem. Soc. Jpn. 1996, 69, 117-123.
- (3) (a) Tong, C.; Bottomley, L. A. Inorg. Chem. 1996, 35, 5108-5109.
 (b) Laplaza, C. E.; Johnson, A. R.; Cummins, C. C. J. Am. Chem. Soc. 1996, 118, 709-710. (c) Bottomley, L. A.; Neely, F. L. Inorg. Chim. Acta 1992, 192, 147-149. (d) Woo, L. K.; Goll, J. G.; Czapla, D. J.; Hays, J. A. J. Am. Chem. Soc. 1991, 113, 8478-8484. (e) Bakir, M.; White, P. S.; Dovletoglou, A.; Meyer, T. J. Inorg. Chem. 1991, 30, 2836-2838. (f) Bottomley, L. A.; Neely, F. L. J. Am. Chem. Soc. 1989, 111, 5955-5957. (g) Woo, L. K. Chem. Rev. 1993, 93, 1125-1136.
- (4) (a) Bois, J. D.; Hong, J.; Carreira, E. M.; Day, M. W. J. Am. Chem. Soc. 1996, 118, 915–916. (b) Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073–2074.

the formation of nitrogen bridges between metal ions and nonmetallic atoms.^{1,6} Our interest in nitrido complexes derives from our investigation of the reactivity of small molecules bound to metal complexes with sulfur-rich coordination.7 This work had previously led to the discovery of several N-O bond cleavage reactions. For example, treatment of [Mo(NO)₂('S₄')] $(S_4)^{2-} = 1,2$ -bis((2-mercaptophenyl)thio)ethanate(2-)) with phosphines led to the formation of phosphoraniminato complexes with the general formula $[Mo(NPR_3)(NO)('S_4')]$ ⁸ these complexes formally contain a nitride bridge between the molybdenum and the phosphorus atoms. Treatment of (NnBu4)- $[Ru(NO)(S_2C_6H_4)_2]$ with NaBH₄ in MeOH yielded the nitrido complex, $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1; $C_6H_4(SH)_2 = 1,2$ benzenedithiol) (eq 1).9 This reaction is remarkable because the reduction of the nitrosyl ligand to a nitride is accompanied by an oxidation of the metal center despite the presence of a strong reducing agent (NaBH₄). More recent examples of the cleavage of the nitrosyl N-O bond by the addition of a reducing agent yielded nitride-bridged dinuclear complexes.¹⁰

^{*} Author to whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, March 1, 1997.

 ⁽a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: New York, 1988. (b) Dehnicke, K.; Strähle, J. Angew. Chem. 1992, 104, 978–1000; Angew. Chem., Int. Ed. Engl. 1992, 31, 955. (c) Dehnicke, K.; Strähle, J. Angew. Chem. 1981, 93, 451–464; Angew. Chem., Int. Ed. Engl. 1981, 20, 413.

 ^{(5) (}a) Ritter, S.; Hübener, R.; Abram, U. J. Chem. Soc., Chem. Commun. 1995, 2047–2048. (b) Marshman, R. W.; Shusta, J. M.; Wilson, S. R.; Shapley, P. A. Organometallics 1991, 10, 1671–1676.

⁽⁶⁾ For recent examples see: (a) Shapley, P. A.; Shusta, J. M.; Hunt, J. L. Organometallics 1996, 15, 1622-1629. (b) Williams, D. S.; Meyer, T. J.; White, P. S. J. Am. Chem. Soc. 1995, 117, 823-824. (c) Kim, J. C.; Rees, W. S., Jr.; Goedken, V. L. Inorg. Chem. 1995, 34, 2483-2486. (d) Ritter, S.; Abram, U. Inorg. Chim. Acta 1995, 231, 245-248. (e) Yoshida, T.; Adachi, T.; Yabunouchi, N.; Ueda, T.; Okamoto, S. J. Chem. Soc., Chem. Commun. 1994, 151-152. (f) Ritter, S.; Abram, U. Z. Anorg. Allg. Chem. 1994, 620, 1786-1792.

⁽⁷⁾ Sellmann, D. In *Molybdenum Enzymes, Cofactors and Model Systems*; Stiefel, E. I., Coucouvanis, D., Newton, W. E., Eds.; ACS Symposium Series 535; American Chemical Society: Washington, DC, 1993; pp 332–345.

 ^{(8) (}a) Sellmann, D.; Keller, J.; Moll, M.; Beck, H. P.; Milius, W. Z. Z. *Naturforsch*. **1986**, *41B*, 1551–1560. (b) Sellmann, D.; Keller, J.; Moll, M.; Campana, C. F.; Haase, M. *Inorg. Chim. Acta* **1988**, *141*, 243–252.

⁽⁹⁾ Sellmann, D.; Binker, G. Z. Naturforsch. 1987, 42B, 341-347.

The aim of the work presented here was to explore the reactivity of the nitrido complex, 1, in order to determine the preferred site of electrophilic attack. The most likely sites of 1 to be attacked by an electrophile are the thiolate donors. In fact, Shapley et al. have shown that alkylation of either (Nn-Bu₄)[Os(N)(CH₂SiMe₃)₂(SCH₂CH₂S)]¹¹ or (NⁿBu₄)[Os(N)(CH₂- $SiMe_{3}_{2}(WS_{4})$ ¹² occurs at a sulfur atom and not at the nitride ligand. Nevertheless, four thiolate donors could be sufficiently π -donating to weaken the M=N bond and make the nitrogen atom more prone to react with an electrophile. All experiments designed to determine the most nucleophilic site of 1 yielded only intractable solids.¹³ For this reason, we prepared the analogous $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2) to take advantage of the greater kinetic stability of osmium complexes. Complex 2 proved to have two nucleophilic sites and can be alkylated either at one of the thiolate donors (with Me⁺ or Et⁺) or at the nitride (with Ph_3C^+) depending on the attacking electrophile.

Experimental Section

General Procedures. All manipulations were performed under anaerobic conditions using standard Schlenk techniques; solvents were dried before use. 1,2-Benzenedithiol,¹⁴ (NⁿBu₄)[Os(N)Cl₄],¹⁵ and (Nⁿ-Bu₄)[Ru(N)(S₂C₆H₄)₂]⁹ (1) were prepared by literature methods. (Nⁿ-Bu₄)OH (1 *M* in MeOH) and Ph₃CPF₆ were purchased from Aldrich; Me₃OBF₄ and Et₃OBF₄ were purchased from Fluka. Elemental analyses were performed with a Carlo Erba EA 1106 or 1108 analyzer. Infrared spectra (KBr) were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer. ¹H and ¹³C{¹H} NMR spectra were recorded on a JEOL JNM GX-270 spectrometer with the protiosolvent signal used as a reference; chemical shifts are quoted on the δ scale (downfield shifts are positive) relative to tetramethylsilane. Mass spectra were recorded on a JEOL MSTATION 700 mass spectrometer.

(NⁿBu₄)[Os(N)(S₂C₆H₄)₂] (2). (NⁿBu₄)OH (21 mL of a 1 *M* solution, 21 mmol) was added dropwise to a solution of 1,2-benzeneditiol (1.17 mL, 10.2 mmol) in acetone (20 mL) that had been previously cooled to 0 °C in an ice bath. The final mixture was slowly added to a red solution of (NⁿBu₄)[Os(N)Cl₄] (3.00 g, 5.10 mmol) in acetone (50 mL) at 0 °C. The color of the solution changed to yellow over the course of the addition, and toward the end of the addition, a yellow precipitate could be observed. When addition was complete, the volume of the mixture was reduced to about 20 mL under vacuum. A yellow precipitate was isolated by filtration and washed with cold MeOH (2 × 5 mL) and Et₂O. The solid was dried under vacuum; yield 75% (2.78 g). Anal. Calcd (found) for C₂₈H₄₄N₂OsS₄ (fw = 727.11): C, 46.25 (46.33); H, 6.10 (6.33); N, 3.85 (3.67). IR (KBr, cm⁻¹): 1063 (vs, $\nu_{Os=N}$). ¹H NMR (CD₂Cl₂, ppm, 270 MHz): δ 7.61, 6.89 (AA'

- (11) Zhang, N.; Wilson, S. R.; Shapley, P. A. Organometallics 1988, 7, 1126–1131.
- (12) Shapley, P. A.; Zhang, N. J. Am. Chem. Soc. 1993, 115, 7866-7867.
- (13) Binker, G. Dissertation, Universität Erlangen-Nürnberg, Jan 1987.
- (14) Degani, J.; Fochi, R. Synthesis, 1976, 7, 471-472.
- (15) Griffith, W. P.; Pawson, D. J. Chem. Soc., Dalton Trans. 1973, 1315–1320. See also: Willilams, D. S.; Coia, G. M.; Meyer, T. J. Inorg. Chem. 1995, 34, 586–592.

and BB' parts of an AA'BB' spin system, 8 H, C₆H₄), 2.84 ("t", 8 H, NCH₂), 1.19–1.42 (m, 16 H, CH₂), 0.90 (t, 12 H, CH₃). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ 148.6, 128.3, 124.1 (C₆H₄), 58.6 (t), 24.0, 19.9, 13.7 (C₄H₉).

[Os(N)(S₂C₆H₄)(SC₆H₄SMe)] (3). Solid Me₃OBF₄ (0.075 g, 0.51 mmol) was added to a stirred yellow solution of complex 2 (0.36 g, 0.50 mmol) in CH₂Cl₂ (30 mL); the color of the solution changed to red-brown. After 30 min, the solvent was removed under vacuum and the residue was redissolved in toluene (40 mL). An oily yellow-green material was removed by filtration, and the filtrate was stored at -30°C overnight to give an additional precipitate. This precipitate was removed by filtration, hexane (50 mL) was added to the filtrate, and the mixture was again stored at -30 °C overnight. During this time, an orange solid precipitated which was collected by filtration, washed with hexane $(3 \times 5 \text{ mL})$, and dried under vacuum; yield 62% (0.16 g). The analysis sample was recrystallized from a CH₂Cl₂ solution at -30 °C and dried overnight under vacuum. Anal. Calcd (found) for $C_{13,3}H_{11,7}NCl_{0,7}OsS_4$ (3·¹/₃CH₂Cl₂; fw = 527.99): C, 30.33 (30.13); H, 2.23 (2.15); N, 2.65 (2.67); S, 24.29 (24.12). IR (KBr, cm⁻¹): 1058 (vs, ν_{Os=N}). ¹H NMR (CD₂Cl₂, ppm, 270 MHz): δ 7.89 ("dd"), 7.83-7.76 (m), 7.39 ("td"), 7.21 ("td"), 7.14-7.04 (m) (from two ABCD spin systems, 8 H, C₆H₄), 3.05 (s, 3 H, CH₃). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ 152.1, 145.9, 145.7, 133.4, 132.1, 131.2, 130.7, 129.0, 128.5, 126.9, 126.2, 125.4 (C₆H₄), 33.4 (CH₃). MS (FD⁺): m/z 501 (M⁺); the correct isotope pattern was observed.

[Os(N)(S₂C₆H₄)(SC₆H₄SEt)] (4). The procedure employed for **3** was repeated using solid Et₃OBF₄ (0.095 g, 0.50 mmol); yield 74% (0.19 g). Anal. Calcd (found) for C₁₄H₁₃NOsS₄ (fw = 513.70): C, 32.73 (33.04); H, 2.55 (2.66); N, 2.73 (2.69); S, 24.96 (25.05). IR (KBr, cm⁻¹): 1056 (vs, $v_{0s=N}$). ¹H NMR (CD₂Cl₂, ppm, 270 MHz): δ 7.89 ("dd"), 7.84–7.73 (m), 7.40 ("td"), 7.20 ("td"), 7.13–7.04 (m) (from two ABCD spin systems, 8 H, C₆H₄), 3.70, 3.29 (dq, ³*J* = 7.3, ²*J* = 14.3, 2 H, CH₂), 0.98 (t, ³*J* = 7.3, 3 H, CH₃). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ 153.4, 146.1, 145.8, 132.1, 131.4, 131.0, 130.4, 128.9, 128.5, 126.5, 126.0, 125.4 (C₆H₄), 43.5 (CH₂), 11.9 (CH₃). MS (FD⁺): *m*/z 515 (M⁺); the correct isotope pattern was observed.

[Os(NCPh₃)(S₂C₆H₄)₂] (5). Solid Ph₃CPF₆ (0.19 g, 0.49 mmol) was added to a stirred yellow solution of complex 2 (0.36 g, 0.50 mmol) in CH₂Cl₂ (30 mL); the color of the solution changed to black within a few minutes. After 1 h, the solvent was removed under vacuum and the residue was redissolved in toluene (20 mL). An undissolved black material was removed by filtration and washed with toluene (2×5) mL). The toluene washes were combined with the filtrate, and the solvent was removed under vacuum to give a black powder. This powder was washed with MeOH (30 mL) and petroleum ether and was dried under vacuum; yield 55% (0.20 g). Anal. Calcd (found) for $C_{31}H_{23}NOsS_4$ (fw = 727.97): C, 51.15 (50.90); H, 3.18 (3.27); N, 1.92 (1.95); S, 17.62 (17.36). IR (KBr, cm⁻¹): 1178 (vs; vide infra). ¹H NMR (CD₂Cl₂, ppm, 270 MHz): δ 7.82 (AA' of an AA'BB' spin system, 4 H, S₂C₆H₂), 7.21 (m, 3 H, p-C₆H of CPh₃), 7.16-7.08 (m, 10 H, S₂C₆H₂, m-C₆H₂ of CPh₃), 6.77 (m, 6 H, o-C₆H₂ of CPh₃). ¹³C{¹H} NMR (CD₂Cl₂, ppm, 67.7 MHz): δ 151.1, 137.9, 128.9, 128.8, 128.7, 128.4, 126.2 (S₂C₆H₄, C₆H₅), 95.9 (CPh₃). MS (FD⁺): m/z 729 (M^+) , 486 $(M^+ - CPh_3)$; the correct isotope pattern was observed in each case.

X-ray Crystallography and Structure Solution. Brown single crystals (columns) of $(N^{n}Bu_{4})[Ru(N)(S_{2}C_{6}H_{4})_{2}]$ (1) were obtained by slowly cooling a hot saturated THF solution of 1. Yellow single crystals (columns) of $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2) formed when a concentrated THF solution of 2 was slowly evaporated. Orange single crystals (prisms) of $[Os(N)(S_2C_6H_4)(SC_6H_4SMe)]$ ·CH₂Cl₂ (3·CH₂Cl₂) were grown from a CH₂Cl₂ solution at -30 °C. Black single crystals (plates) of $[Os(NCPh_3)(S_2C_6H_4)_2]$ (5) formed when a solution of 5 in a CH₂-Cl₂/hexane mixture was slowly evaporated. Crystals of 1, 2, 3•CH₂-Cl₂, and 5 were sealed in glass capillaries. Data were collected on a Siemens P4 diffractometer at 200(2) K; data collection parameters (4.5 $\leq 2\theta \leq 54.1$ for **1** and **2**; $4.1 \leq 2\theta \leq 50$ for **3**·CH₂Cl₂; $4.4 \leq 2\theta \leq$ 44.1 for 5) are summarized in Table 1. For all complexes, crystal systems were determined photographically and space groups were assigned by systematic absences; further refinement confirmed the space group assignments. For complex 1, no correction was made for absorption; for complexes 2, 3·CH₂Cl₂, and 5, data were corrected for

^{(10) (}a) Debad, J. D.; Legzdins, P.; Reina, R.; Young, M. A.; Batchelor, R. J.; Einstein, W. B. Organometallics 1994, 13, 4315-4321. Nitrosyl N-O bond cleavage has also been achieved via other routes: (b) Odom, A. L.; Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 6613-6614. (c) Brouwer, E. B.; Legzdins, P.; Rettig, S. J.; Ross, K. J. Organometallics 1994, 13, 2088-2091. (d) Legzdins, P.; Veltheer, J. E. Acc. Chem. Res. 1993, 26, 41-48. (e) Richter-Addo, G. B.; Legzdins, P. Metal Nitrosyls; Oxford University Press: New York, 1992; pp 279-280. (f) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: New York, 1988; p 71. (g) Gladfelter, W. L. Adv. Organomet. Chem. 1985, 24, 41-85.

Table 1. Crystallographic Data for $(N^{n}Bu_{4})[Ru(N)(S_{2}C_{6}H_{4})_{2}]$ (1), $(N^{n}Bu_{4})[Os(N)(S_{2}C_{6}H_{4})_{2}]$ (2), $[Os(N)(S_{2}C_{6}H_{4})(SC_{6}H_{4}SMe)] \cdot CH_{2}Cl_{2}$ (3) $(3 \cdot CH_{2}Cl_{2})$, and $[Os(NCPh_{3})(S_{2}C_{6}H_{4})_{2}]$ (5)

	1	2	$3 \cdot CH_2Cl_2$	5
formula	$C_{28}H_{44}N_2RuS_4$	$C_{28}H_{44}N_2OsS_4$	$C_{14}H_{13}Cl_2NOsS_4^a$	C ₃₁ H ₂₃ NOsS ₄
fw	637.96	727.09	584.59^{a}	727.94
space group	<i>Pna</i> 2 ₁ (No. 33)	<i>Pna</i> 2 ₁ (No. 33)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	<i>P</i> 1 (No. 2)
a, Å	36.881(6)	37.042(4)	8.552(1)	9.338(8)
b, Å	9.402(2)	9.375(2)	10.772(2)	10.001(3)
<i>c</i> , Å	17.652(2)	17.761(2)	19.716(3)	16.280(6)
α, deg				75.88(3)
β , deg				74.20(6)
γ , deg				69.55(5)
V, Å ³	6121(2)	6137(2)	1816.3(5)	1352(1)
Ζ	8	8	4	2
Т, К	200(2)	200(2)	200(2)	200(2)
$\lambda, Å^b$	0.710 73	0.710 73	0.710 73	0.710 73
$\rho_{\rm calc}, {\rm g/cm^3}$	1.385	1.574	2.138	1.788
μ , mm ⁻¹	0.805	4.448	7.768	5.047
$T_{\rm max}, T_{\rm min}$		0.357, 0.097	0.145, 0.084	0.145, 0.072
R1 (wR2), ^{<i>c,d</i>} %	2.52 (4.20)	3.86 (8.03)	3.62 (8.48)	3.44 (8.97)

^{*a*} Including solvent molecule. ^{*b*} Mo K_a; graphite monochromator. ^{*c*} R1 = $\Sigma ||F_o| - |F_c| |/\Sigma|F_o|$ for $F > 4\sigma(F)$. ^{*d*} wR2 = $[\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]]^{1/2}$ where $w = 1/[\sigma^2(F_o^2) + (0.0009P)^2]$ and $P = (F_o^2 + 2F_c^2)/3$.

absorption using an empirical method (XABS2).¹⁶ Structures were solved by direct methods (SHELXS-86);¹⁷ refinement on F^2 was carried out by full-matrix least-squares cycles (SHELXL-93).¹⁸ All nonhydrogen atoms were refined anisotropically. For complexes **1** and **3**·CH₂Cl₂, hydrogen atom positions were determined from the difference Fourier maps and were refined isotropically. For complexes **2** and **5**, hydrogen atoms were refined with a fixed isotropic thermal parameter calculated by multiplying the equivalent isotropic thermal parameter, U_{eq} , of the corresponding carbon atom by a factor of 1.5. Final values of R1 ($F > 4\sigma(F)$) and wR2 (all unique data) are listed in Table 1. Final difference Fourier map for **1** was essentially featureless, the largest peak being 0.317 and the deepest hole being -0.446 e/Å^3 . For complexes **2**, **3**·CH₂Cl₂, and **5**, all remaining residual electron density was located in the area of the strongly absorbing Os atom.

Results and Discussion

Treatment of $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1) with various electrophiles (such as Me⁺, Et⁺, and H⁺) resulted, in all cases, in the formation of black materials. These products were insoluble in all common solvents; therefore, further characterization was not possible. For example, treatment of complex **1** with Me₃OBF₄ in CH₂Cl₂ gave an insoluble black precipitate that analyzed for the methyl derivative, [{Ru(N)(S₂C₆H₄)₂}-CH₃]_x.¹³ This product did not show a $\nu_{Ru=N}$, but due to the insolubility of the material, the site of methylation could not be ascertained. Because of these difficulties, the analogous complex (NⁿBu₄)[Os(N)(S₂C₆H₄)₂] (**2**) was prepared in order to exploit the greater kinetic stability of osmium complexes. Complex **2** could be prepared by simply treating the readily available (NⁿBu₄)[Os(N)Cl₄] with deprotonated 1,2-benzenedithiol (eq 2). Complex **2** was isolated as a yellow powder

and identified by common spectroscopic methods. The NMR spectra of **2** are consistent with the square-pyramidal geometry of the anion shown in eq 2. The diagnostic $\nu_{\text{Os}=N}$ of **2** is at 1063 cm⁻¹; this value is higher than the $\nu_{\text{Ru}=N}$ of **1** (1024 cm⁻¹)

- (16) Parkin, S.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53-56.
- (17) Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, A46, 467-473.
- (18) Sheldrick, G. M. SHELXL-93. Universität Göttingen, Germany, 1993.

but significantly lower than the $\nu_{Os} \equiv N$ of the starting material, (NⁿBu₄)[Os(N)Cl₄] (1126 cm⁻¹). This shift indicates that substitution of the chloro ligands with thiolato ligands weakens the Os \equiv N bond, suggesting that the four thiolate donors are significantly electron donating. π -Donation of the thiolate sulfur atoms to the osmium center could make the nitride more electron-rich and the sulfur atoms more electron-poor.¹¹ It should be noted that the $\nu_{Os} \equiv N$ for **2** is even lower than that reported for both (NⁿBu₄)[Os(N)(CH₂SiMe₃)₂(SCH₂CH₂S)] (1091 cm⁻¹).¹¹

In contrast to our expectations, treatment of **2** with Me₃OBF₄ or Et₃OBF₄ in CH₂Cl₂ led to S-alkylation and gave the orange products $[Os(N)(S_2C_6H_4)(SC_6H_4SR)]$ (**3**, $R = Me^+$; **4**, $R = Et^+$) (eq 3). The alkylation of a thiolate donor was confirmed by

$$\begin{bmatrix} O_{S}(N)(S_{2}C_{6}H_{4})_{2}\end{bmatrix}^{-} + R_{3}O^{+} \xrightarrow{CH_{2}Cl_{2}} R.T.$$

$$S \xrightarrow{O} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{R} R^{+}$$

$$3, R = Me^{+}$$

$$4, R = Et^{+}$$

$$(3)$$

IR and NMR spectroscopy as well as by X-ray crystallography (for **3**). The $\nu_{OS=N}$ values for **3** and **4** (1058 and 1056 cm⁻¹, respectively) are only slightly lower than that for **2**, and the NMR spectra of **3** and **4** indicate C_1 symmetry for both complexes. For example, the ¹³C NMR spectrum of the starting complex, **2**, displays only three signals assignable to the aromatic C atoms of the $[Os(N)(S_2C_6H_4)_2]^-$ anion, but 12 signals for the aromatic ¹³C atoms can be identified in the ¹³C NMR spectra of **3** and **4**. As was the case with complex **1**, treatment of complex **2** with 1 equiv of HBF₄ (or CF₃SO₃SiMe₃) led to the formation of a black insoluble precipitate that could not be characterized fully.

In one case, alkylation at the nitrogen was observed and the product could be characterized. Treatment of **2** with Ph_3CPF_6 in CH_2Cl_2 resulted in the formation of a black product, [Os-(NCPh₃)(S₂C₆H₄)₂] (**4**) (eq 4). The formation of the imido

Figure 1. ORTEP diagrams of the anions of $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1) (left) and $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2) (right) at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Table 2. Selected Distances (Å) and Angles (deg) for $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1) and $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2)

	complex (M)			compl	ex (M)
	1 (Ru)	2 (Os)		1 (Ru)	2 (Os)
		Dista	ances		
M(1) - N(1)	1.613(5)	1.64(1)	M(2)-N(2)	1.621(5)	1.66(1)
M(1) - S(1)	2.328(1)	2.337(4)	M(2) - S(5)	2.325(1)	2.319(4)
M(1) - S(2)	2.319(1)	2.326(4)	M(2) - S(6)	2.325(2)	2.336(4)
M(1) - S(3)	2.330(2)	2.311(4)	M(2) - S(7)	2.319(2)	2.316(4)
M(1) - S(4)	2.325(1)	2.325(4)	M(2)-S(8)	2.317(2)	2.315(4)
		An	gles		
N(1)-M(1)-S(1)	108.5(2)	107.7(3)	N(2)-M(2)-S(5)	106.0(2)	107.4(5)
N(1)-M(1)-S(2)	107.6(2)	107.9(4)	N(2)-M(2)-S(6)	108.3(2)	107.8(3)
N(1)-M(1)-S(3)	108.5(2)	105.2(3)	N(2)-M(2)-S(7)	107.3(2)	108.8(4)
N(1)-M(1)-S(4)	106.0(2)	107.7(4)	N(2)-M(2)-S(8)	108.5(2)	105.3(3)
S(1)-M(1)-S(2)	85.76(5)	85.8(1)	S(5)-M(2)-S(6)	85.64(5)	85.2(1)
S(1) - M(1) - S(4)	83.07(5)	83.7(1)	S(5)-M(2)-S(8)	83.18(5)	85.2(1)
S(2)-M(1)-S(3)	84.36(5)	84.8(1)	S(6) - M(2) - S(7)	84.60(5)	83.6(1)
S(3) - M(1) - S(4)	85.70(5)	85.8(1)	S(7) - M(2) - S(8)	85.78(5)	85.7(1)

ligand, NCPh₃⁻, in complex 4 was confirmed by both IR and NMR spectroscopy and by X-ray crystallography. The strong $v_{\text{Os}=N}$ present in the IR spectrum of complex 2 is absent in 4. Furthermore, 4 exhibits a new band at 1178 cm^{-1} ; imido complexes commonly possess a band in this region.¹⁹ The number of aromatic ¹³C signals observed in the ¹³C spectrum of 4 is consistent with a higher symmetry for 4 as compared to 3 and further supports the formation of the $NCPh_3^-$ ligand. The resonance of the quaternary carbon of the trityl group was located at 95.9 ppm in the ¹³C NMR spectrum. This value is significantly upfield from the position of the central carbon atom in the free Ph_3C^+ cation (214 ppm in CF_3CO_2D).²⁰ The ¹³C chemical shifts for the α -carbon atoms of *tert*-butylimido complexes are reported to be between 64 to 84 ppm,²¹ and the shift of the quaternary carbon atom of the trityl group of Ph_3C- N=C=NSiMe₃ is reported at 73 ppm.²² Complex 4 is soluble in organic solvents like toluene and ether and is insoluble in solvents like methanol. Other examples of the formation of an imido complex from the reaction of the Ph₃C⁺ cation with a nitrido complex have been reported in the literature.²³ The reason that Ph₃CPF₆ alkylates the N atom of 2 but R₃OBF₄ alkylates a S atom of 2 may be found in the electronic differences between the Ph_3C^+ and the Me⁺ or Et⁺ cations. More important, however, are probably steric factors; the planar and more bulky trityl cation preferentially attacks the more exposed nitrogen atom.

Description of Structure. Compounds 1 and 2 both crystallize in the orthorhombic space group *Pna*2₁. ORTEP repre-

(23) (a) Bishop, M. W.; Chatt, J.; Dilworth, J. R.; Neaves, B. D.; Dahlstrom, P.; Hyde, J.; Zubieta, J. J. Organomet. Chem. 1981, 213, 109–124.
(b) Fenske, D.; Kujanek, R.; Dehnicke, K. Z. Anorg. Allg. Chem. 1983, 507, 51–58.

sentations of the anions of 1 and 2 are shown in Figure 1. Selected distances and angles are listed in Table 2. Both compounds contain two independent molecules in the asymmetric unit; in each case, the two molecules are statistically identical and only one molecule has been arbitrarily chosen for display. The $(N^nBu_4)^+$ cations in both structures will not be discussed. The anions of 1 and 2 are mononuclear with squarepyramidal geometry; the terminal nitrido ligand occupies the apical position, and two chelating $(S_2C_6H_4)^{2-}$ ligands form the basal plane. The metal atoms are 0.69 Å (for 1) and 0.68 Å (for 2) above the plane of the basal ligands. The anions possess no crystallographically imposed symmetry but can be considered to possess idealized $C_{2\nu}$ symmetry with the C_2 axis lying along the M≡N bond, a fact supported in solution by the ¹³C NMR spectra of 1^9 and 2. Complexes 1 and 2 are isostructural and are statistically identical. The only noticeable difference between the two structures is that the M≡N bond lengths for the two independent molecules of 2, 1.64(1) and 1.66(1) Å, are slightly longer than those for 1, 1.613(5) and 1.621(5) Å; this difference, however, is small and cannot be considered significant within the 3σ criterion. The average N-M-S angles are 107.6 and 107.2° for 1 and 2, respectively; the N-Ru-S angles for 1 are similar to the N-Ru-S angles reported for (Nn-Bu₄)[Ru(N)(NHCOCH₂CH₂S)₂] (107.1 and 109.7°), and likewise, the N-Os-S angles for 2 are in the range of the N-Os-S angles reported for (NⁿBu₄)[Os(N){O₂CCH(NHCOCH₃)CH₂S}₂] and (NⁿBu₄)[Os(N)(O₂CCH₂CH₂S)₂] (107.1°-111.9°).²⁴ N-M-Cl angles are reported to be 104.58° for (AsPh₄)[Ru(N)Cl₄)]²⁵ and 104.29° for (AsPh₄)[Os(N)Cl₄)],²⁶ and the bend of the basal ligands away from the plane of the metal has been attributed to the repulsion between the π -electrons of the metal-nitrogen triple bond and the metal-Cl bonding electrons.²⁶ The greater

(26) Phillips, F. L.; Skapski, A. C. J. Cryst. Mol. Struct. 1975, 5, 83-92.

⁽¹⁹⁾ Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley & Sons: New York, 1988; pp 123–125.

⁽²⁰⁾ Hellwinkel, D.; Fritsch, H. *Chem. Ber.* 1989, 122, 2351–2360.
(21) Nugent, W. A.; Mayer, J. M. *Metal-Ligand Multiple Bonds*; John Wiley

[&]amp; Sons: New York, 1988; p 133.

⁽²²⁾ Ruppert, I. *Tetrahedron Lett.* **1977**, 1987–1990.

⁽²⁴⁾ Schwab, J. J.; Wilkinson, E. C.; Wilson, S. R.; Shapley, P. A. J. Am. Chem. Soc. 1991, 113, 6124–6129.

⁽²⁵⁾ Phillips, F. L.; Skapski, A. C. Acta Crystallogr., Sect. B 1975, B31, 2667–2670.

Figure 2. ORTEP diagram of $[Os(N)(S_2C_6H_4)(SC_6H_4SM_e)]$ (**3**) at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Table 3. Selected Distances (Å) and Angles (deg) for $[Os(N)(S_2C_6H_4)(SC_6H_4SMe)] \cdot CH_2Cl_2$ (**3**·CH₂Cl₂)

Distances							
1.639(9)	Os(1) - S(3)	2.318(3)					
2.298(3)	Os(1)-S(4)	2.403(3)					
2.312(3)	S(4) - C(1)	1.83(1)					
Angles							
107.6(4)	S(1) - Os(1) - S(2)	86.9(1)					
105.1(4)	S(1) = Os(1) = S(4)	87.5(1)					
112.2(4)	S(2) - Os(1) - S(3)	83.8(1)					
98.6(4)	S(3) = Os(1) = S(4)	85.7(1)					
	Distar 1.639(9) 2.298(3) 2.312(3) Ang 107.6(4) 105.1(4) 112.2(4) 98.6(4)	$\begin{tabular}{ c c c c c c } \hline Distances \\ \hline 1.639(9) & Os(1)-S(3) \\ \hline 2.298(3) & Os(1)-S(4) \\ \hline 2.312(3) & S(4)-C(1) \\ \hline Angles \\ \hline 107.6(4) & S(1)-Os(1)-S(2) \\ \hline 105.1(4) & S(1)-Os(1)-S(4) \\ \hline 112.2(4) & S(2)-Os(1)-S(3) \\ \hline 98.6(4) & S(3)-Os(1)-S(4) \\ \hline \end{tabular}$					

bend observed for thiolate-ligated nitrido complexes when compared to the choride-ligated complexes reflects the greater donor ability of the sulfur atom. The M \equiv N and M-S bond lengths for 1 and 2 are consistent with others reported in the literature.^{11,24,27}

Methylation of 2 yielded $[O_{S}(N)(S_{2}C_{6}H_{4})(SC_{6}H_{4}SM_{6})]$ (3) (eq 3), and the alkylation of the sulfur atom of a 1,2benzenedithiolate ligand was confirmed by X-ray crystallography. Complex 3·CH₂Cl₂ crystallizes in the orthorhombic space group $P2_12_12_1$. An ORTEP representation of **3** is shown in Figure 2. Selected distances and angles are listed in Table 3. Complex 3 is mononuclear with distorted square-pyramidal geometry; the terminal nitrido ligand occupies the apical position, and chelating $(S_2C_6H_4)^{2-}$ and $(SC_6H_4SMe)^{-}$ ligands form the basal plane. The metal atom is 0.63 Å above the plane of the basal ligands. The distortion seen here is due to the smaller N(1)-Os(1)-S(4) angle at the thioether sulfur atom, 98.6(4)°, and the larger N(1)-Os(1)-S(3) angle for the thiolate sulfur atom, 112.2(4)°, of the (SC₆H₄SMe)⁻ ligand as compared to the average N-Os-S angle for 2 (107.2°). Also, the Os-S bond length of the S(4) (thioether) atom, 2.403(3) Å, is longer than the other Os-S (thiolate) bond lengths, 2.298(3)-2.318(3) Å, as expected. The S(4)-C(1) distance of 1.83(1) Å is consistent with literature values reported for other complexes with a chelating $(SC_6H_4SMe)^-$ ligand.²⁸

The alkylation at the nitrogen atom of **2** with the trityl cation to form $[Os(NCPh_3)(S_2C_6H_4)_2]$ (**5**) (eq 4) was also confirmed by X-ray crystallography. Complex **5** crystallizes in the triclinic space group *P*1. An ORTEP representation of **5** is shown in Figure 3. Selected distances and angles are listed in Table 4. Complex **5** possesses no crystallographically imposed symmetry,

Figure 3. ORTEP diagram of $[Os(NCPh_3)(S_2C_6H_4)_2]$ (5) at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Table 4. Selected Distances (Å) and Angles (deg) for $[Os(NCPh_3)(S_2C_6H_4)_2]$ (5)

Distances						
Os(1) - N(1)	1.710(6)	Os(1) - S(3)	2.279(2)			
Os(1)-S(1)	2.302(2)	Os(1)-S(4)	2.280(3)			
Os(1) - S(2)	2.304(2)	N(1)-C(27)	1.47(1)			
Angles						
N(1) - Os(1) - S(1)	109.6(2)	S(1) - Os(1) - S(4)	83.08(9)			
N(1) - Os(1) - S(2)	108.2(2)	S(2) - Os(1) - S(3)	83.29(8)			
N(1) - Os(1) - S(3)	107.0(2)	S(3) - Os(1) - S(4)	86.28(9)			
N(1) - Os(1) - S(4)	106.9(2)	Os(1) - N(1) - C(27)	163.3(5)			
S(1) - Os(1) - S(2)	85.63(8)					

but can be considered to posses idealized C_{2v} symmetry with the C_2 axis lying along the Os=N bond, a fact supported in solution by the ¹³C NMR spectrum. Complex 5 is also mononuclear with square-pyramidal geometry; the terminal NCPh3⁻ ligand occupies the apical position, and the two chelating $(S_2C_6H_4)^{2-}$ ligands form the basal plane. The metal atom is 0.70 Å above the plane of the basal ligands. Alkylation at the nitrogen results in the lengthening of the Os-N bond from 1.65 Å (an average of the two independent molecules of 2) to 1.710(6) Å (5). The Os(1)-N(1)-C(27) angle, 163.3(5)°, is slightly smaller than the M–N–C angles in [Mo- $(NCPh_3)(S_2CNMe_2)_3]^+$ (175.1°)^{23a} and $[(Ph_3CN)WCl_4(\mu-F) WNCl_2(\mu$ -F)Cl_4W(NCPh_3)]⁺ (179°)^{23b} but identical to the Os-N-C angle found in [Os(NMe)(CH₂SiMe₃)₄] (163.6°).²⁹ The C(27)-N(1) bond length of 1.47(1) Å is identical with those of other NCPh₃⁻ ligands reported in the literature.²³ The average Os-S bond length for 5 (2.29 Å) is shorter than that for 2 (2.32 Å), indicating a stronger Os-S bond in 5 which may be due to the lower Os-N bond order in 5; however, the average N-Os-S angle does not change (107.9° for 5 and 107.2° for 2).

Concluding Remarks. The synthesis and structure of three new osmium complexes, $(N^nBu_4)[Os(N)(S_2C_6H_4)_2]$ (2), $[Os(N)-(S_2C_6H_4)(SC_6H_4SMe)]$ (3), and $[Os(NCPh_3)(S_2C_6H_4)_2]$ (5), have been presented here. The structure of $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1) was also determined, and 1 was found to be isostructural with 2. Complex 2 was treated with various electrophiles (Me⁺, Et⁺, and Ph₃C⁺) in order to determine the most nucleophilic site of 2. It turned out that 2 could be alkylated either at a sulfur atom of a 1,2-benzenedithiolate ligand (with Me⁺ and Et⁺) or at the nitrogen atom (with Ph₃C⁺). It may be concluded, however, that the sulfur atoms of 2 are more nucleophilic than the nitride ligand and that the trityl cation attacks the nitrogen of 2 for steric reasons.

^{(27) (}a) Liang, H.-C.; Shapley, P. A. Organometallics 1996, 15, 1331–1333. (b) Shapley, P. A.; Liang, H.-C.; Shusta, J. M.; Schwab, J. J.; Zhang, N.; Wilson, S. R. Organometallics 1994, 13, 3351–3359. (c) Shapley, P. A.; Gebeyehu, Z.; Zhang, N.; Wilson, S. R. Inorg. Chem. 1993, 32, 5646–5651.

^{(28) (}a) Sellmann, D.; Lanzrath, G.; Huttner, G.; Zsolnai, L.; Krüger, C.; Claus, K. H. Z. Naturforsch. 1983, 38B, 961–981. (b) Sellmann, D.; Binker, G.; Schwarz, J.; Knoch, F.; Böse, R.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1987, 323, 323–338. (c) Sellmann, D.; Fetz, A.; Moll, M.; Knoch, F. J. Organomet. Chem. 1988, 355, 495–511. (d) Sellmann, D.; Fetz, A.; Moll, M.; Knoch, F. Polyhedron 1989, 8, 613–625. (e) Sellmann, D.; Schillinger, H.; Knoch, F.; Moll, M. Inorg. Chim. Acta 1992, 198, 351–357. (f) Sellmann, D.; Schillinger, H.; Knoch, F. Z. Naturforsch. 1992, 47B, 748–753.

⁽²⁹⁾ Shapley, P. A.; Own, Z.-Y.; Huffman, J. C. Organometallics **1986**, *5*, 1269–1271.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Supporting Information Available: X-ray crystallographic data, in CIF format, for compounds **1**, **2**, **3**•CH₂Cl₂, and **5** are available on the Internet. Access information is given on any current masthead page. Details of the X-ray crystallography have also been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Informationen mbH, D-76344 Eggenstein-Leopoldshafen, Germany, and can be obtained by citing the depository numbers CSD 406342 for $(N^nBu_4)[Ru(N)(S_2C_6H_4)_2]$ (1), CSD 406343 for $(N^nBu_4)-[Os(N)(S_2C_6H_4)_2]$ (2), CSD 406344 for $[Os(N)(S_2C_6H_4)(SC_6H_4SMe)]$ · CH₂Cl₂ (3·CH₂Cl₂), and CSD 406345 for $[Os(NCPh_3)(S_2C_6H_4)_2]$ (5), the authors, and the reference.

IC961240B